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Integrated Device Technology, Inc.

Introduction

The IDT79R4600 (R4600) and IDT79R4700 (R4700) support a wide
variety of processor-based applications. Because of their low power
consumption, coupled with high performance, they are well suited for a
wide variety of embedded applications, including laser printers,
X-terminals, internetworking equipment, imaging equipment, and high-
end video games. The R4600 and R4700 are also well-suited to high-
performance desktop applications such as Windows™ NT desktop and
notebook systems, and 3-D workstations.

Compatible with the IDT79R4400PC family for both hardware and
software, the R4600 and R4700 will serve in many of the same
applications, but in addition support low-power operation for applications
such as notebook computers.

Floating Point

The R4700 has improved FPA multiply operations. All other features of
the R4700 are the same as those in the R4600. In this manual, these two
products are referred to collectively as the R4600/R4700, except when
information pertains only to one of them. In that situation they are
referred to individually.

Secondary Cache

The R4600/R4700 does not provide integrated secondary cache and
multiprocessor support as found in the R4000SC and R4000MC, but it is
simple to build an external secondary cache. For most embedded
applications, however, the large on-chip, two-way set associative caches
make this unnecessary.

Performance

The R4600/R4700 brings R4000SC performance levels to the R4000PC
package, while at the same time providing lower cost and lower power. It
does this by providing larger on-chip caches that are two-way set
associative, fewer pipeline stalls, and early restart for data cache misses.
The result is higher performance than for an R4000 at the same frequency
and for the same system latencies (exact figures are system dependent).

Upward Compatibility

The R4600/R4700 provides complete upward application-software
compatibility with the IDT79R3000 family of microprocessors, including
the IDT79R3000A and the IDT RISController™ family (IDT79R30xx family)
as well the IDT79R4000 family of microprocessors. Microsoft
Windows™NT and UNISOFT Unix™ V.4 operating systems insure the
availability of thousands of applications programs, geared to provide a
complete solution to a large number of processing needs. An array of
development tools facilitates the rapid development of R4600/R4700-
based systems, enabling a wide variety of customers to take advantage of
the MIPS Open Architecture philosophy.

Together with the R4400, the R4600/R4700 provides a compatible,
timely, and necessary evolution path from 32-bit to true, 64-bit
computing. The original design objectives of the R4000 clearly mandated
this evolution path; the result is a true 64-bit processor fully compatible
with 32-bit operating systems and applications.

The R4600/R4700 enables 32-bit applications to access 64-bit compute
power painlessly. The software tools support a wide variety of models,
including 32-bit address and data, 64-bit address and data, and 32-bit
address/64-bit data. 32-bit address/data enables applications to be
migrated without “cleaning up” some software.
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The R4600/R4700 offers high-performance, large caches, and MMU and
FPA functions to these systems. For desktop systems, the R4600/R4700
supports a full migration to 64-bit, allowing 64-bit systems to execute true
64-bit or older 32-bit applications. For embedded applications, the power
and bandwidth of 64-bit data types can be used without the memory
expansion of 64-bit addressing.

The list on the following page summarizes the R4600/R4700 features.

For a feature-by-feature comparison with the R4000, refer to the tables
beginning on page 9-23.
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Features

True 64-bit microprocessor
- 64-bit integer operations
- 64-bit floating-point operations
- 64-bit registers
- 64-bit virtual address space
High-performance microprocessor
- For R4600: 133 peak MIPS at 133MHz
For R4700: 175 peak MIPS at 175MHz
- For R4600: 44 peak MFLOP/s at 133MHz
For R4700: 87 peak MFLOP/s at 175MH
- For R4600: 109 SPECIint92 and 83 SPECfp92 at 150Mz
For R4700: 132 SPECInt92 and 94 SPECfp92 at 175Mz
- Large two-way set associative caches on-chip

Improved FPA multiply performance (R4700 only)
- 1 mul, 1 add every 4 clock cycles

High level of integration

- 64-bit integer CPU

- 64-bit floating-point unit

- 16KB instruction cache; 16KB data cache
- Flexible MMU with large TLB

Low-power operation

- 3.3V or 5V power supply options
- For R4600: 25mW/MHz internal power dissipation
(2.5W @ 100MHz, 3.3V)
For R4700: 24mW/MHz internal power dissipation
(2.4W @ 100MHz, 3.3V)
- Standby mode reduces internal power to 400mwW

Fully software compatible with R4000 Processor Family

Standard operating system support includes:

- Microsoft Windows NT

- UNISOFT Unix™ System V.4
- JMI C-executive

- VX Works

Available in 179-pin PGA or 208-pin MQUAD

Input and output clock frequency:
- Input clock at one-half pipeline frequency

- Output clock is a programmable divisor of the pipeline frequency

- Selectable bus frequency
- Ratios of 1/2...1/8 of pipeline rate
64GB physical address space

Processor family for a wide variety of applications
- Desktop workstations and PCs

- Deskside or departmental servers

- Routers

- High-performance embedded applications
Notebooks

Large number of development tools, including:

- Cross compilers
- Logic models
- Logic analyzer support
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Device Overview

The R4600/R4700 family brings a high-level of integration designed for
high-performance and high-bandwidth computing. The key elements of
the R4600/R4700 are briefly described below. An overview of these blocks
is found here, with more detailed information on each block presented in
subsequent chapters.

Figure 1.1 shows a block level representation of the functional units
within the R4600/R4700.

DataTag A

Data Set A Instruction Set A
DTLB Physical
Store Buffer DataTag B
— —
SysAD I
|
Instruction Select
Write Buffer Address Buffer Instruction Register
Read Buffer Instruction Tag A
ITLB Physical
Data Set B Instruction Set B
Instruction Tag B
DBus
IBus
Control
| Tag AuxTag
Floating-point - Load Aligner
Register File . 3
JointTLB Ko Integer Register File
Unpacker/Packer ) @
= o Integer/Address Adder
o =]
) ) o 5 Data TLB Virtual
Floatmg—po_mt = Coprocessor 0 DVA| = ;
Add/Sub/Cvt/Div/Sqrt e Shifter/Store Aligner
Integer Divide > - -
£ Logic Unit
g
I PC Incrementer
Floating-point/Integer || system/Memory
Multiply Control Branch Adder
VA Instruction TLB Virtual
Phase Lock Loop, Clocks Programl Counter

Figure 1.1 R4600/R4700 Block Diagram

Pipeline Overview

The R4600/R4700 uses a 5-stage pipeline similar to the IDT79R3000.
The simplicity of this pipeline allows the R4600/R4700 to be lower-cost
and lower-power than super-scalar or super-pipelined processors. Unlike
the R3000, the R4600/R4700 does virtual-to-physical translation in
parallel with cache access. This allows the R4600/R4700 to operate at over
twice the frequency of the R3000 and to support a larger TLB for address
translation.

Compared to the 8-stage R4000 pipeline, the R4600/R4700 is more
efficient (requires fewer stalls). This is because the branch and load latency
for the R4600/R4700 is shorter than for the R4000 (both are 2 cycles for
the R4600/R4700 but are 3 and 4 cycles respectively for the R4000).
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The internal pipeline of the R4600/R4700 processor operates at twice
the frequency of the master clock, as discussed in Chapter 3. The
processor achieves high throughput by pipelining cache accesses,
shortening register access times, implementing virtual-indexed primary
caches, and allowing the latency of certain functional units to span more
than one pipeline clock cycles.

Refer to Chapter 3 for a detailed discussion of the CPU pipeline
operation, including descriptions of the delay instructions, interruptions
to the pipeline flow caused by interlocks and exceptions, and the R4600/
R4700 implementation of a store buffer. Refer to Chapter 6 for a detailed
discussion of the FPU pipeline.

CPU Register Overview

The R4600/R4700 has thirty-two general purpose registers. These
registers are used for scalar integer operations and address calculation.
The register file consists of two read ports and one write port, and is fully
bypassed to minimize operation latency in the pipeline.

Figure 1.2 shows the R4600/R4700 CPU registers.

General Purpose Registers

63 5 0 Multiply and Divide Registers
r 63 0
rl al I
63 0

LO I

Program Counter
63 0

—

Figure 1.2 R4600/R4700 CPU Registers

Two of the CPU general purpose registers have assigned functions:

* r0 is hardwired to a value of zero, and can be used as the target reg-
ister for any instruction whose result is to be discarded. rO can also
be used as a source when a zero value is needed.

e r31 is used as an implicit return destination address register by the
JAL and BAL series of instructions.

The CPU has three special purpose registers:

e PC — Program Counter register

e HI — Multiply and Divide register higher result

e LO — Multiply and Divide register lower result

The two Multiply and Divide registers (HI, LO) store:

e the product of integer multiply operations, or

» the quotient (in LO) and remainder (in HI) of integer divide operations.

The R4600/R4700 processor has no Program Status Word (PSW) register

as such; this is covered by the Status and Cause registers incorporated
within the System Control Coprocessor (CP0). CPO registers are described
later in this chapter.
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CPU Instruction Set Overview
Each CPU instruction is 32 bits long. As shown in Figure 1.3, there are
three instruction formats:

immediate (I-type)

* jump (J-type)

register (R-type)

31 2625 2120 16 15 0
I-Type (Immediate) op rs rt immediate

31 26 25 0
J-Type (Jump) op target

31 2625 2120 1615 11 10 6 5 0

Figure 1.3 CPU Instruction Formats

Each format contains a number of different instructions, which are
described further in this chapter. Fields of the instruction formats are
described in Chapter 2.

Instruction decoding is simplified by limiting the number of formats to
these three. This limitation means that the more complicated (and less
frequently used) operations and addressing modes can be synthesized by
the compiler, using sequences of these same simple instructions.

The instruction set can be further divided into the following groupings:

Load and Store instructions move data between memory and general
registers. They are all immediate (I-type) instructions, since the only
addressing mode supported is base register plus 16-bit, signed imme-
diate offset.

Computational instructions perform arithmetic, logical, shift, multi-
ply, and divide operations on values in registers. They include register
(R-type, in which both the operands and the result are stored in reg-
isters) and immediate (I-type, in which one operand is a 16-bit imme-
diate value) formats.

Jump and Branch instructions change the control flow of a program.
Jumps are always made to a paged, absolute address formed by com-
bining a 26-bit target address with the high-order bits of the Program
Counter (J-type format) or register address (R-type format). Branches
have 16-bit offsets relative to the program counter (I-type). Jump And
Link instructions save their return address in register 31.

Coprocessor instructions perform operations in the coprocessors.
Coprocessor load and store instructions are I-type.

Coprocessor 0 (system coprocessor) instructions perform operations
on CPO registers to control the memory management and exception
handling facilities of the processor and the standby mode for power
management. These are listed in Table 1.17.

Special instructions perform system calls and breakpoint operations.
These instructions are always R-type.

Exception instructions cause a branch to the general exception-han-
dling vector based upon the result of a comparison. These instruc-
tions occur in both R-type (both the operands and the result are
registers) and I-type (one operand is a 16-bit immediate value) for-
mats.
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Chapter 2 provides more detail about these instructions, and Appendix

A gives a complete description of each.

Table 1.1 through Table 1.16 list CPU instructions common to MIPS
R-Series processors, along with the level in which they first appeared. The
last column in each table refers to the MIPS ISA level in which the

instruction first appeared. Table 1.17 lists CPO instructions.

OpCode Description MIPS ISA Level*
LB Load Byte |
LBU Load Byte Unsigned I
LH Load Halfword |
LHU Load Halfword Unsigned |
LW Load Word |
LWL Load Word Left |
LWR Load Word Right |
SB Store Byte |
SH Store Halfword I
SW Store Word |
SWL Store Word Left |
SWR Store Word Right |
Note: 1For Tables 1.1 through 1.17 this column refers to the level in which the
instruction first appeared.

Table 1.1 CPU Instruction Set: Load and Store Instructions

OpCode Description MIPS ISA Level
ADDI Add Immediate |
ADDIU Add Immediate Unsigned |
SLTI Set on Less Than Immediate |
SLTIU Set on Less Than Immediate |
Unsigned
ANDI AND Immediate |
ORI OR Immediate |
XORI Exclusive OR Immediate |
LUI Load Upper Immediate |

Table 1.2 CPU Instruction Set: Arithmetic Instructions (ALU Immediate)
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OpCode Description MIPS ISA Level
ADD Add |
ADDU Add Unsigned |
SuUB Subtract |
SUBU Subtract Unsigned |
SLT Set on Less Than |
SLTU Set on Less Than Unsigned |
AND AND |
OR OR |
XOR Exclusive OR |
NOR NOR |

Table 1.3 CPU Instruction Set: Arithmetic (3-Operand, R-Type)

OpCode Description MIPS ISA Level
MULT Multiply |
MULTU Multiply Unsigned |
DIV Divide |
DIVU Divide Unsigned |
MFHI Move From HI |
MTHI Move To HI |
MFLO Move From LO |
MTLO Move To LO |

Table 1.4 CPU Instruction Set: Multiply and Divide Instructions

OpCode | Description MIPS ISA Level
J Jump I
JAL Jump And Link |

Table 1.5 CPU Instruction Set: Jump and Branch Instruction
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OpCode | Description MIPS ISA Level
JR Jump Register |
JALR Jump And Link Register |
BEQ Branch on Equal |
BNE Branch on Not Equal |
BLEZ Branch on Less Than or Equal to Zero |
BGTzZ Branch on Greater Than Zero |
BLTZ Branch on Less Than Zero |
BGEZ Branch on Greater Than or Equal to Zero |
BLTZAL | Branch on Less Than Zero And Link |
BGEZAL | Branch on Greater Than or Equal to Zero |

And Link

Table 1.5 CPU Instruction Set: Jump and Branch Instruction

OpCode Description MIPS ISA Level
SLL Shift Left Logical |
SRL Shift Right Logical |
SRA Shift Right Arithmetic |
SLLV Shift Left Logical Variable |
SRLV Shift Right Logical Variable |
SRAV Shift Right Arithmetic Variable |
Table 1.6 CPU Instruction Set: Shift Instructions
OpCode Description MIPS ISA Level
LWCz Load Word to Coprocessor z |
SWCz Store Word from Coprocessor z |
MTCz Move To Coprocessor z |
MFCz Move From Coprocessor z |
CTCz Move Control to Coprocessor z |
CFCz Move Control From Coprocessor z |
COPz Coprocessor Operation z |
BCzT Branch on Coprocessor z True |
BCzF Branch on Coprocessor z False |
Table 1.7 Instruction Set: Coprocessor Instructions
OpCode Description MIPS ISA Level
SYSCALL System Call |
BREAK Break |

Table 1.8 CPU Instruction Set: Special Instructions
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OpCode Description MIPS ISA Level
LD Load Doubleword "
LDL Load Doubleword Left Il
LDR Load Doubleword Right 11
LL Load Linked 1l
LLD Load Linked Doubleword 1l
LWuU Load Word Unsigned 1l
SC Store Conditional I
SCD Store Conditional Doubleword I
SD Store Doubleword i
SDL Store Doubleword Left 1
SDR Store Doubleword Right 1
SYNC Sync 1l

Table 1.9 MIPS 2/MIPS 3 Additional: Load and Store Instructions

OpCode Description MIPS ISA Level

DADDI Doubleword Add Immediate 11

DADDIU Doubleword Add Immediate 11
Unsigned

Table 1.10 MIPS 2/MIPS 3 Additional: Arithmetic Instructions (ALU Immediate)

OpCode Description MIPS ISA Level
DMULT Doubleword Multiply 11
DMULTU Doubleword Multiply Unsigned 11
DDIV Doubleword Divide 1"
DDIVU Doubleword Divide Unsigned 1l

Table 1.11 MIPS 2/MIPS 3 Additional: Multiply and Divide Instructions
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OpCode

Description

MIPS ISA Level

BEQL

Branch on Equal Likely

BNEL

Branch on Not Equal Likely

BLEZL

Branch on Less Than or Equal to Zero
Likely

BGTZL

Branch on Greater Than Zero Likely

BLTZL

Branch on Less Than Zero Likely

BGEZL

Branch on Greater Than or Equal to Zero
Likely

BLTZALL

Branch on Less Than Zero And Link
Likely

BGEZALL

Branch on Greater Than or Equal to Zero
And Link Likely

BCzTL

Branch on Coprocessor z True Likely

BCzFL

Branch on Coprocessor z False Likely

Table 1.12 MIPS 2/MIPS 3 Additional: Branch Instructions

OpCode Description MIPS ISA Level
DADD Doubleword Add 11
DADDU Doubleword Add Unsigned 11
DSuUB Doubleword Subtract 11
DSUBU Doubleword Subtract Unsigned I
Table 1.13 MIPS 2/MIPS 3 Additional: Arithmetic Instructions
(3-operand, R-type)
OpCode | Description MIPS ISA Level
DSLL Doubleword Shift Left Logical Il
DSRL Doubleword Shift Right Logical 1
DSRA Doubleword Shift Right Arithmetic 1l
DSLLV Doubleword Shift Left Logical Variable I
DSRLV Doubleword Shift Right Logical Variable Il
DSRAV Doubleword Shift Right Arithmetic Variable 1l
DSLL32 | Doubleword Shift Left Logical + 32 11
DSRL32 | Doubleword Shift Right Logical + 32 11
DSRA32 | Doubleword Shift Right Arithmetic + 32 Il

Table 1.14 MIPS 2/MIPS 3 Additional: Shift Instructions
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OpCode | Description MIPS ISA Level
TGE Trap if Greater Than or Equal 1l
TGEU Trap if Greater Than or Equal Unsigned 1
TLT Trap if Less Than 1
TLTU Trap if Less Than Unsigned 1l
TEQ Trap if Equal I
TNE Trap if Not Equal 1l
TGEI Trap if Greater Than or Equal Immediate 1
TGEIU Trap if Greater Than or Equal Immediate 1
Unsigned
TLTI Trap if Less Than Immediate 1
TLTIU Trap if Less Than Immediate Unsigned 1l
TEQI Trap if Equal Immediate 1
TNEI Trap if Not Equal Immediate 1

Table 1.15 MIPS 2/MIPS 3 Additional: Exception Instructions

OpCode | Description MIPS ISA Level
DMFCz Doubleword Move From Coprocessor z 1
DMTCz Doubleword Move To Coprocessor z 1l
LDCz Load Double Coprocessor z ]
SDCz Store Double Coprocessor z 1

Table 1.16 MIPS 2/MIPS 3 Additional: Coprocessor Instructions

OpCode Description MIPS ISA Level
DMFCO Doubleword Move From CPO 1l
DMTCO Doubleword Move To CPO 1"
MTCO Move to CPO |
MFCO Move from CPO |
TLBR Read Indexed TLB Entry |
TLBWI Write Indexed TLB Entry |
TLBWR Write Random TLB Entry |
TLBP Probe TLB for Matching Entry |
CACHE Cache Operation R4xxx only
ERET Exception Return R4xxx only
WAIT Enter Standby mode R4600 only

Table 1.17 CPO Instructions
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Data Formats and Addressing

The R4600/R4700 processor uses four data formats: a 64-bit
doubleword, a 32-bit word, a 16-bit halfword, and an 8-bit byte. Byte
ordering within each of the larger data formats—halfword, word,
doubleword—can be configured in either big-endian or little-endian order.
Endianness refers to the location of byte O within the multi-byte data
structure. Figures 1.4 and 1.5 show the ordering of bytes within words and
the ordering of words within multiple-word structures for the big-endian
and little-endian conventions.

When the R4000 processor is configured as a big-endian system, byte O
is the most-significant (leftmost) byte, thereby providing compatibility with
MC 68000’ and IBM 370’ conventions. Figure 1.4 shows this configuration.

Higher  Word Bitl#

Address Address |31 24 23 1615 8 7 0l
12 12 13 | 14 | 15 |
8 8 9 | 10 | 11 |
4 | 4 | 5 6 7

Lower 0 | 0 " 1 | 3

Address

Figure 1.4 Big-Endian Byte Ordering

When configured as a little-endian system, byte O is always the least-
significant (rightmost) byte, which is compatible with iAPX' x86 and DEC
VAX' conventions. Figure 1.5 shows this configuration.

Higher  Word Bitl#
Address Address |31 24 23 1615 8 7 ol
12 | 15 || 14 || 13 || 12 |
| 1 | 10 | 9 | |
L 7 [ s | 5 | |
Lower L 3 [ 2 | 1 | |
Address

Figure 1.5 Little-Endian Byte Ordering

In this text, bit O is always the least-significant (rightmost) bit; thus, bit
designations are always little-endian (although no instructions explicitly
designate bit positions within words).

Figures 1.6 and 1.7 show little-endian and big-endian byte ordering in
doublewords.
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Most-significant byte Least-significant byte
Word

I
Bit # 63 \5655 48 47 40 39 32|31 2423 1615 87 O|
Byew | 7 | 6 || 5 [ 4 || 38 | 2 [[ 1 ] o |

I I

Halfword Byte

|
Bit#/7 6 5 4 32 1 0

AR EEEEN

Bits in a Byte

Figure 1.6 Little-Endian Data in a Doubleword

Most-significant byte Least-significant byte

Word \
I

Bit# 63 \ 5655 4847 4039 32031 2423 1615 87 \ O

Byes| O | 1 | 2 [ 3 [ 4 |[5 [[6 |[7 |
L |
Halfword Byte

|
Bit#!7 6 5 4 3 2 1 ol

RN

Bits in a Byte

Figure 1.7 Big-Endian Data in a Doubleword

The CPU uses byte addressing for halfword, word, and doubleword
accesses with the following alignment constraints:
« Halfword accesses must be aligned on an even byte boundary
©, 2, 4..)).
 Word accesses must be aligned on a byte boundary divisible by four
(0, 4, 8...).
« Doubleword accesses must be aligned on a byte boundary divisible by
eight (0, 8, 16...).
The following special instructions load and store words that are not
aligned on 4-byte (word) or 8-word (doubleword) boundaries:

LWL LWR SWL SWR
LDL LDR SDL SDR

These instructions are used in pairs to provide addressing of misaligned
words. Addressing misaligned data incurs one additional instruction cycle
over that required for addressing aligned data. This extra cycle is because
of an extra instruction for the “pair” (e.g., LWL and LWR form a pair). Also
note that the CPU moves the unaligned data at the same rate as a
hardware mechanism.
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Figures 1.8 and 1.9 show the access of a misaligned word that has byte
address 3.

Higher

Address Bitl#
[31 24 23 1615 8 7 ol
L 4 | 5 ] 8 | |
| | | L3 |

Lower

Address

Figure 1.8 Big-Endian Misaligned Word Addressing

Higher

Address Bitl#
[31 24 23 1615 8 7 ol
| 6 | 5 | 4 |
L 3 | [ | |

Lower

Address

Figure 1.9 Little-Endian Misaligned Word Addressing

Coprocessors (CPO-CP2)
The MIPS ISA (MIPS Ill) for the R4600/R4700 (and R4000/R4400)
defines three coprocessors (designated CPO through CP2):
e Coprocessor O (CPOQ) is incorporated on the CPU chip and supports
the virtual memory system and exception handling. CPO is also re-
ferred to as the System Control Coprocessor.

e Coprocessor 1 (CP1) is incorporated on the R4600/R4700, and imple-
ments the MIPS floating-point instruction set.

e Coprocessor 2 (CP2) is reserved for future use.
CPO and CP1 are described in the sections that follow.

System Control Coprocessor, CPO

CPO translates virtual addresses into physical addresses and manages
exceptions and transitions between kernel, supervisor, and user states.
CPO also controls the cache subsystem, as well as providing diagnostic
control and error recovery facilities.

CPO is also used to control the power management for the R4600/
R4700. This is the standby mode and it can be used to reduce the power
consumption of the internal core of the CPU. The standby mode is entered
by executing the WAIT instruction with the SysAD bus idle and is exited by
any interrupt. This feature is discussed in Appendix G.
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The CPO registers shown in Figure 1.10 and described in Table 1.18 on
page 1.17 manipulate the memory management and exception handling
capabilities of the CPU.

Note: Access to reserved or undefined CPO register results are unde-

fined. An exception may or may not result.

Register Name Reg. # Register Name Reg. #
[ Index | 0 | Config | 16
| Random | 1 | LLAddr | 17
| EntryLoO | 2 | | 18
| EntryLol | 3 [ | 19
[ Context | 4 | XContext | 20
[ PageMask | 5 | | 21
| Wired | 6 [ | 22
| | 7 | | 23
| BadVAddr | 8 [ | 24
| Count | 9 | | 25
[ EntryHi | 10 | ECC | 26
[ Compare | 11 [ CacheErr | 27
| SR | 12 | TagLo | 28
| Cause | 13 | TagHi | 29
| EPC | 14 | ErrorEPC | 30
[ PRI | 15 | | 31

] Exception Processing [ Memory Management [ Reserved

Figure 1.10 R4600/R4700 CPO Registers
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Number | Register Description

0 Index Programmable pointer into TLB array

1 Random Pseudorandom pointer into TLB array (read only)

2 EntryLoO Low half of TLB entry for even virtual page (VPN)

3 EntryLol Low half of TLB entry for odd virtual page (VPN)

4 Context Pointer to kernel virtual page table entry (PTE) for 32-
bit address spaces

5 PageMask TLB Page Mask

6 Wired Number of wired TLB entries

7 — Reserved

8 BadVAddr Bad virtual address

9 Count Timer Count

10 EntryHi High half of TLB entry

11 Compare Timer Compare

12 SR Status register

13 Cause Cause of last exception

14 EPC Exception Program Counter

15 PRId Processor Revision Identifier

16 Config Configuration register

17 LLAddr Load Linked Address

18-19 | — Reserved

20 XContext Pointer to kernel virtual PTE table for 64-bit address

spaces
21-25 | — Reserved

26 ECC Secondary-cache error checking and correcting (ECC)
and Primary parity

27 CacheErr Cache Error and Status register

28 TagLo Cache Tag register

29 TagHi Cache Tag register

30 ErrorEPC Error Exception Program Counter

31 — Reserved

Table 1.18 System Control Coprocessor (CPO) Register Definitions
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Floating-Point Co-Processor

The R4600/R4700 incorporates an entire floating-point co-processor on
chip, including a floating-point register file and execution units. The
floating-point co-processor forms a “seamless” interface with the integer
unit, decoding and executing instructions in parallel with the integer unit.
The R4700 enhances the FPA implemented in the original R4600, resulting
in an improved peak MFLOP rate.

Floating-Point Units

The R4600/R4700 floating-point execution units supports single and
double precision arithmetic, as specified in the IEEE Standard 754. The
execution unit is broken into a separate multiply unit and a combined
add/convert/divide/square root unit. Overlap of multiplies and add/
subtract is supported. The multiplier is partially pipelined, allowing a new
multiply to begin every 6 cycles for the R4600, and every 4 cycles for the
R4700.

As in the R3010 and R4000, the R4600/R4700 maintains fully precise
floating-point exceptions while allowing both overlapped and pipelined
operations. Precise exceptions are extremely important in mission-critical
environments, such as ADA, and highly desirable for debugging in any
environment.

The floating-point unit’'s operation set includes floating-point add,
subtract, multiply, divide, square root, conversion between fixed-point and
floating-point format, conversion among floating-point formats, and
floating-point compare. These operations comply with the IEEE Standard
754.

Table 1.19 shows the latencies of some of the floating-point instructions
in internal processor cycles. Due to pipelining, repeat rates may be higher.
Also note that many operations are autonomous and can go in parallel.

Operation Single Precision Double Precision
ADD 4 4
SUB 4 4
MUL R4600: 8 R4600: 8

R4700: 4 R4700: 5

DIV 32 61
SQRT 31 60
CMP 3 3
FIX 4 4
FLOAT 6 6
ABS 1 1
MOV 1 1
NEG 1 1
LWC1, LDC1 2 2
SWC1, SDC1 1 1

Table 1.19 Floating-Point Latency Cycles
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Virtual to Physical Address Mapping
The R4600/R4700 provides three modes of operation:
e user mode

e supervisor mode
e kernel mode

This mechanism is available to system software to provide a secure
environment for user processes. Bits in a status register determine the
mode of operation. In the user mode, the R4600/R4700 provides a single,
uniform virtual address space of 256GB (2GB when Status.UX = 0).

When operating in the kernel mode, four distinct virtual address spaces,
totalling 1024GB (4GB when Status.KX = 0), are simultaneously available
and are differentiated by the high-order bits of the virtual address.

The R4600/R4700 processors also support a supervisor mode in which
the virtual address space is 256.5GB (2.5GB when Stauts.SX = 0), divided
into three regions based on the high-order bits of the virtual address.

When the R4600/R4700 uses 64-bit virtual addresses, the address
space layouts are an upward compatible extension of the 32-bit virtual
address space layout. A detailed description of the addressing is given in
Chapter 4.

Joint TLB

For fast virtual-to-physical address decoding, the R4600/R4700 uses a
large, fully associative TLB which maps 96 Virtual pages to their
corresponding physical addresses. The TLB is organized as 48 pairs of
even-odd entries, and maps a virtual address and address space identifier
into the large, 64GB physical address space.

Two mechanisms are provided to assist in controlling the amount of
mapped space, and the replacement characteristics of various memory
regions. First, the page size can be configured, on a per-entry basis, to map
a page size of 4KB to 16MB (in multiples of 4). A CPO register is loaded with
the page size of a mapping, and that size is entered into the TLB when a
new entry is written. Thus, operating systems can provide special purpose
maps; for example, a typical frame buffer can be memory mapped using
only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB
miss occurs. The R4600/R4700 provides a random replacement algorithm
to select a TLB entry to be written with a new mapping; however, the
processor provides a mechanism whereby a system specific number of
mappings can be locked into the TLB, and thus avoid being randomly
replaced. This facilitates the design of real-time systems, by allowing
deterministic access to critical software.

The joint TLB also contains information to control the cache coherency
protocol for each page. Specifically, each page has attribute bits to
determine whether the coherency algorithm is: uncached, non-coherent
write-back, non-coherent write-through write-allocate, non-coherent
write-through no write-allocate, sharable, exclusive, or update. Non-
coherent write-back is typically used for both code and data on the R4600/
R4700; the write-through modes support more efficient frame buffer
accesses than the R4000 family. The coherent modes are supported for
R4000 compatibility and generate different transaction types on the
system interface; cache coherency is not supported however.
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Instruction TLB

The R4600/R4700 also incorporates a 2-entry instruction TLB. Each
entry maps a 4KB page. The instruction TLB improves performance by
allowing instruction address translation to occur in parallel with data
address translation. When a miss occurs on an instruction address
translation, the least-recently used ITLB entry is filled from the JTLB. The
operation of the ITLB is invisible to the user.

Data TLB

The R4600/R4700 also incorporates a 4-entry data TLB. Each entry
maps a 4KB page. The data TLB improves performance by allowing data
address translation to occur in parallel with data address translation.
When a miss occurs on an data address translation, the DTLB is filled from
the JTLB. The DTLB refill is pseudo-LRU: the least recently used entry of
the least recently used half is filled. The operation of the DTLB is invisible
to the user.

Cache Memory

In order to keep the R4600/R4700’'s high-performance pipeline full and
operating efficiently, the R4600/R4700 incorporates on-chip instruction
and data caches that can be accessed in a single processor cycle. Each
cache has its own 64-bit data path and can be accessed in parallel. The
cache subsystem provides the integer and floating-point units with an
aggregate bandwidth of 1.6GB per second at a system clock frequency of
50MHz.

Furthermore, the large, Two-way set associative caches increase
emulation performance of DOS and Windows 3.1 applications when
running under Windows NT.

Instruction Cache

The R4600/R4700 incorporates a two-way set associative on-chip
instruction cache. This virtually indexed, physically tagged cache is 16KB
in size and is protected with word parity.

Because the cache is virtually indexed, the virtual-to-physical address
translation occurs in parallel with the cache access, thus further
increasing performance by allowing these two operations to occur
simultaneously. The tag holds a 24-bit physical address and valid bit, and
is parity protected.

The instruction cache is 64-bits wide, and can be refilled or accessed in
a single processor cycle. Instruction fetches require only 32 bits per cycle,
for a peak instruction bandwidth of 700 MB/sec @ 175MHz. Sequential
accesses take advantage of the 64-bit fetch to reduce power dissipation,
and cache miss refill writes 64 bits per cycle to minimize the cache miss
penalty. The line size is eight instructions (32 bytes) to maximize
performance.

Data Cache

For fast, single cycle data access, the R4600/R4700 includes a 16KB on-
chip data cache that is two-way set associative with a fixed 32-byte (eight
words) line size. Both the D-cache and the I-cache can be accessed each
pipeline cycle; thus, the data bandwidth is 1400 MB/sec @ 175 MHz, in
addition to the 700 MB/sec instruction bandwidth.

The data cache is protected with byte parity and its tag is protected with
a single parity bit. It is virtually indexed and physically tagged to allow
simultaneous address translation and data cache access
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The normal write policy is writeback, which means that a store to a cache
line does not immediately cause memory to be updated. This increases
system performance by reducing bus traffic and eliminating the bottleneck
of waiting for each store operation to finish before issuing a subsequent
memory operation. Software can however select write-through on a per-
page basis when it is appropriate, such as for frame buffers.

Associated with the Data Cache is the store buffer. When the R4600/
R4700 executes a Store instruction, this single-entry buffer gets written
with the store data while the tag comparison is performed. If the tag
matches, then the data is written into the Data Cache in the next cycle that
the Data Cache is not accessed (the next non-load cycle). The store buffer
allows the R4600/R4700 to execute a store every processor cycle and to
perform back-to-back stores without penalty.

Write buffer

Writes to external memory, whether cache miss writebacks or stores to
uncached or write-through addresses, use the on-chip write buffer. The
write buffer holds up to four 64-bit address and data pairs or 1 cache line
to be written back. The entire buffer is used for a data cache writeback and
allows the processor to proceed in parallel with memory update. For
uncached and write-through stores, the write buffer significantly increases
performance over the R4000 family of processors.

R4600/R4700 Clocks

The R4600/R4700 has a number of clocks for the user. First, there is
the pipeline clock, PClock. This clock is used for the pipeline and pipeline
related functions internal to the R4600/R4700. It is two times the
MasterClock frequency. The next clock is the system interface clock,
SClock. This is also an internal clock and is used to sample data at the
system interface and to clock data into the processor system interface
output registers. The SClock is a divided version of the PClock. The divisor
is selected at boot time.

There are three external clocks. (Some outputs are replicated to minimize
loading.) The MasterOut is at the same frequency as MasterClock and can
be used to clock certain external logic. The other clocks are used by the
external agent. These are the TClock, Transmit clock, and the RClock,
Receive clock. The TClock is used to clock the output registers (signals
transmitted to the R4600/R4700) of the external agent and is at the same
frequency as SClock. The RClock is used to clock the input register (signals
received from the R4600/R4700) of the external agent. It is also at the
same frequency as the SClock but its phase leads the SClock and TClock
by 25%. The R4600/R4700 implements an on-chip PLL to eliminate the
effects of clock skew.
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System Interface

The R4600/R4700 supports a 64-bit system interface that is compatible
with the R4000PC system interface. This interface operates from two
clocks provided by the R4600/R4700, TClock[1:0] and RClock[1:0], at a
division of the pipeline clock.

The interface consists of a 64-bit Address/Data bus with 8 check bits
and a 9-bit command bus. In addition, there are 8 handshake signals and
6 interrupt inputs. The interface has a simple timing specification and is
capable of transferring data between the processor and memory at a peak
rate of 400MB/sec at 50MHz.

Figure 1.11 shows a typical system using the R4600/R4700. In this
example there is DRAM, a boot EPROM and an optional secondary cache.

R4600

P Address
<_ i L2
Boot DRAM Cache
80ns ;
ROM (80ns) Optional} | cqnirel
+— <
SCSI| ENET
Y ¢ ¢
64 64 64 16 32
Y
- »
64 Memory 1/C | < >
Controller
9
'
2
-

11

Figure 1.11 Typical System Block Diagram
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Comparison of R4600/R4700 and R4400
This section compares features of the R4600/R4700 to the earlier R4400
PC. Table 1.20 to Table 1.26 highlight some of the differences between the
R4600/R4700 and the R4400 PC. This list is not exhaustive.
Item R4400 PC R4600/R4700
170 R4400: TTL compatible R4600/R4700: TTL-compatible (5V +0.5%)
RV4400: LV CMOS RV4600/RV4700: LVCMOS (3.3V+0.3V)
Package 179-pin ceramic PGA same and 208-pin MQUAD
JTAG yes no (serial out connected directly to serial in)
Block transfer sizes 16B or 32B 32B
Sclock divisor 2,3,4,6,8 2,3,4,5,6,7,8

Non-block writes

max throughput of 4 sclock cycles

two new system interface protocol options
that support 2 sclock cycle throughput
(remains 4 in compatibility mode)

Serial configuration

as described in R4000 User’s Guide

different, as described in Table 9.2 on
page 9-7

Address bits 63..56 on reads and
writes

zero

bits 19..12 of virtual address

Uncached and write-through
stores

uncached stores are buffered in 1-
entry uncached store buffer (write
through not possible)

uncached and write-though stores buffered
in 4-entry write buffer

SysADC parity only same
SysADC for non-data cycles parity zero
SysCmdP parity zero

Parity error during writeback

use Cache Error exception

output bad parity

Error bit in data identifier of
read responses

Bus Error if error bit set for any dou-
bleword

only check error bit of first doubleword; all
other error bits ignored

Parity error on read data

Bus Error if parity error in any dou-
bleword

bad parity written to cache; take Cache
Error exception if bad parity occurs on dou-
blewords that the processor is waiting for

Block writes

1-2 null cycles between address and
data

0 cycles between address and data

Release after Read Request

variable latency

0 latency

SysAD value for x cycles of write-
back data pattern

data bus undefined

data bus maintains last D cycle value

SysAD bus use after last D cycle
of writeback

data bus undefined

trailing x cycles (e.g. DDxxDDxx, not
DDxxDD) follow rule in entry immediately
preceding

Output slew rate

dynamic feedback control

simple CMOS output buffers with 2-bit
static strength control

100ut output

output slew rate control feedback
loop output

driven HIGH, do not connect
(reserved for future output)

10In input

output slew rate control input

should be driven high
(reserved for future input)

GrpRunB output

do not connect

same
(reserved for future output)

GrpStallB input

should be connected to VCC

same
(reserved for future input)

FaultB output pin

indicates compare mismatch

driven HIGH, do not connect
(reserved for future output)

Table 1.20 System Interface Comparison Between R4400 PC and R4600/R4700
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Item

R4400 PC

R4600/R4700

Cache Sizes

16KB Instruction cache, 16KB Data
cache

16KB Instruction cache, 16KB Data
cache

Cache Line Sizes software selectable between 16B and fixed at 32B
32B

Cache Index vAddriz o VAddris g

Cache Tag pAddrzs 12 same

Cache Organization

direct mapped

2-way set associative

Data cache write policy

write-allocate and write-back

write-allocate or not based on TLB
entry, write-through or not based on
TLB entry

Data cache miss

stall, output address, copy dirty data to
writeback buffer, refill cache, output
writeback data

same, with FIFO to select the set to
refill

Data order for block sub-block ordering same
reads
Data order for block sequential same
writes
Instruction cache miss restart after all data received and writ- | same

restart

ten to cache

Data cache miss restart

restart after all data received and writ-
ten to cache

restart on first doubleword, send sub-
sequent doublewords to response
buffer

Instruction Tag

2-bit cache state

1-bit cache state

Cache miss overhead 5-8 cycles 3 cycles
Instruction cache parity | 1 parity bit per 8 data bits 1 parity bit per 32 data bits
Data cache parity 1 parity bit per 8 data bits same

Table 1.21 Cache Comparison Between R4400 PC and R4600/R4700
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Item R4400 PC R4600/R4700
Instruction virtual 2-entry ITLB same

address translation

ITLB miss

1 cycle penalty, refilled from JTLB,
LRU replacement

1 cycle on branch, jump, and ERET, 2
cycles otherwise, refilled from JTLB,
LRU replacement

Data virtual address

done directly in JTLB

4-entry DTLB

translation
DTLB miss n.a. 1 cycle penalty, refilled from JTLB,
pseudo-LRU replacement
JTLB 48 entries of even/odd page pairs, fully | same
associative
Page size 4KB, 16KB, ..., 16 MB same

Multiple entry match
in JTLB

sets TS in Status and disables TLB
until Reset to prevent damage

no damage for multiple match; no
detection or shutdown implemented

Virtual address size

VSIZE = 40

same

Physical address size

PSIZE = 36

same

Table 1.22 TLB Comparison Between R4400 PC and R4600/R4700

Item R4400 PC R4600/R4700
ALU latency 1 cycle 1 cycle
Load latency 3 cycles 2 cycles

Branch latency

4 cycles (2 cycle penalty for taken
branches)

2 cycles (no penalty for taken
branches)

Store buffer (not write
buffer)

2 doublewords

1 doubleword

Integer multiply

integer multiply hardware, 1 cycle to
issue

done in floating-point multiplier, 4
cycles to issue

Integer divide

done in integer datapath adder, slips
until done

done in floating-point adder, 4 cycles to
issue

Integer multiply

HIGH and LOW available at the same
time

LOW available one cycle before HIGH

Integer divide

HIGH and LOW available at the same
time

HIGH available one cycle before LOW

HIGH and LOW hazards

yes, HIGH and LOW written early in
pipeline

no, HIGH and LOW written after W

MFHI/MFLO latency

1 cycle

2 cycles

SLLV, SRLV, SRAV

2 cycles to issue

1 cycle to issue

DSLL, DSRL, DSRA,
DSLL32, DSRL32,
DSRA32, DSLLYV,
DSRLV, DSRAV

2 cycles to issue

1 cycle to issue

Table 1.23 Pipeline Comparison Between R4400 PC and R4600/R4700
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Item R4400 PC R4600/R4700
WatchLo, WatchHi implemented unimplemented (no watch registers)
Config as described in R4000 User’s Guide subset
Status as described in R4000 User’s Guide, no TS or RP

but RP not functional

Low-power standby
mode

no

WAIT instruction disables internal
clock, freezing pipeline and other state;
resume on interrupt

MFCO/MTCO hazard

only hazardous for certain cpO register
combinations

always hazardous -- detected and 1-
cycle slip inserted

EntryLoO, EntryLol

as described in R4000 User’s Guide

two new cache algorithms added to C
field for non-coherent write-through

TagLo, TagHi, ECC,
CacheErr

R4400SC bits implemented but mean-
ingless

Only bits meaningful on R4400 PC
implemented

TagLo as described in R4000 User’s Guide bits 5..3 read/writeable but otherwise
unused, bit 2 used for F bit
Exceptions as described in R4000 User’s Guide VCEI, VCED, and WATCH exceptions

(VCEI and VCED not possible)

not implemented

Index CACHE ops

use vAddr,3_ 4 to select line

use vAddr, 3 to select set, vAddry, g to

| Fill CACHE op select line of set
Index Store Tag CACHE | Status.CE ignored TagLo.P stored if Status.CE set
op
PRId Imp = 0x04 R4600: Imp = 0x20
R4700: Imp = 0x21
Table 1.24 Coprocessor 0 Comparison Between R4400 PC and R4600/R4700
Item R4400 PC R4600/R4700

Possible exception stall

only for operands that can cause
exceptions

some simplifications in detection hard-
ware

Floating-point divide

separate divide unit

done in floating-point adder

Floating-point square

root

done in floating-point adder

same

Converts to/from 64-bit

integer

uses unimplemented for integer oper-
ands/results with more than 53 bits of
precision

handles full 64-bit operands and
results

Floating-point registers

Status.FR enables all 32 floating point
registers

same

FCRO

Imp = 0x05

R4600: Imp = 0x20
R4700: Imp = 0x21

Table 1.25 Coprocessor 1 Comparison Between R4400 PC and R4600/R4700
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CPU Instruction Set Chapter 2
Summary

Introduction

This chapter is an overview of the central processing unit (CPU)
instruction set; refer to Appendix A for detailed descriptions of individual
CPU instructions.

An overview of the floating-point unit (FPU) instruction set is in
Chapter 6; refer to Appendix B for detailed descriptions of individual FPU
instructions.

CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word
boundary. There are three instruction formats—immediate (I-type), jump
(J-type), and register (R-type)—as shown in Figure 2.1. The use of a small
number of instruction formats simplifies instruction decoding (thus higher
frequency operations) and allowing the compiler to synthesize more
complicated (and less frequently used) operations and addressing modes
from these three formats as needed.

I-Type (Immediate)
31 2625 2120 1615 0
op rs rt immediate

J-Type (Jump)
31 26 25 0

OE targ et .

R-Type (Register)
31 2625 2120 1615 1110 65 0
op rs rt rd sa |funct

Figure Legend:

op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch condition

immediate 16-bit immediate value, branch displacement or address
displacement

target 26-bit jump target address

rd 5-bit destination register specifier
sa 5-bit shift amount

funct 6-bit function field

Figure 2.1 CPU Instruction Formats

In the MIPS architecture, coprocessor instructions are implementation-
dependent; refer to Appendix A for details of individual Coprocessor O
instructions.
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Load and Store Instructions

Load and store are immediate (I-type) instructions that move data
between memory and the general registers. The only addressing mode that
load and store instructions directly support is base register plus 16-bit
signed immediate offset.

Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the
instruction immediately following is called a delayed load instruction. The
instruction slot immediately following this delayed load instruction is
referred to as the load delay slot.

In the R4600/R4700 processor, the instruction immediately following a
load instruction can request the contents of the loaded register, however,
in such cases, hardware interlocks insert additional real cycles.
Consequently, scheduling load delay slots can be desirable, both for
performance and R-Series (e.g., R3051) processor compatibility. However,
the scheduling of load delay slots is not absolutely required.

Defining Access Types

Access type indicates the size of an R4600/R4700 processor data item
to be loaded or stored, set by the load or store instruction opcode. Access
types are defined in Appendix A.

Regardless of access type or byte ordering (endianness), the address
given specifies the low-order byte in the addressed field. For a big-endian
configuration, the low-order byte is the most-significant byte; for a little-
endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address,
define the bytes accessed within the addressed doubleword, which is
shown in Table 2.1 on page 2-3.
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Only the combinations shown in Table 2.1 are permissible; other
combinations cause address error exceptions. See Appendix A for
individual descriptions of CPU load and store instructions.

Access Type Low Order | Bytes Accessed

Mnemonic Address
(value) Bits Big endian Little endian
(63 31 0) | (63 31 0)
2 |1 |0 Byte Byte

Doubleword (7)
Septibyte (6)

Sextibyte (5)

Quintibyte (4)

3
3
3
3
3
3
3
3

Word (3)

3 3]2]1]0]
415]6]7[7[6]5]4]

1

32

Triplebyte (2)

3
415 ]c 6|54
51617171615

Halfword (1)

Byte (0)

| O| Ol FP|PFR|O|O|FRP|O|PFR|O|]O|OC|O|O|OC|O|RrR|O|FrR|O|O| O] O

Pl PPl OlO|lOC|O|FR|FR|O|O|RFR|FR|O|O|FrRr|O|O| O|OC| O|O| O] O
P O|lFR|O| k| O|Fr,|O|O|O|OC|O|FR|O|FrP|O|OC|OC|Fr|O|OC|O|Fr|O| O

[E

Table 2.1 Byte Access within a Doubleword
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Computational Instructions

Computational instructions can be either: 1) in register (R-type) format,
in which both operands are registers, or 2) in immediate (I-type) format, in
which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register
values:

e arithmetic

e logical

< shift

e multiply

e divide

These operations fit in the following four categories of computational
instructions:

¢ ALU Immediate instructions

e three-Operand Register-Type instructions

e shift instructions

e multiply and divide instructions

64-bit Virtual Address Operations with 32-bit operands

Operands to 32-bit operand opcodes must be in sign-extended form. 32-
bit operand opcodes include all non-doubleword operations, such as: ADD,
ADDU, SUB, SUBU, ADDI, SLL, SRL, SRA, SLLV, etc. The result of
operations that use incorrect sign-extended 32-bit values is unpredictable.

Cycle Timing for Multiply and Divide Instructions

MFHI and MFLO instructions (described in Appendix A) are interlocked
so that any attempt to read them before prior multiply or divide
instructions complete delays the execution of these instructions until the
prior instructions finish.

Table 2.2 gives the number of processor cycles (PCycles) required to
resolve an interlock or stall between various multiply or divide
instructions, and a subsequent MFHI or MFLO instruction.

Instruction R4600 R4700
MULT 10 8
MULTU 10 8
DIV 42 42
DIVU 42 42
DMULT 12 10
DMULTU 12 10
DDIV 74 74
DDIVU 74 74

Table 2.2 Multiply/Divide Instruction Cycle Timing

For more information about computational instructions, refer to the
individual instruction as described in Appendix A.
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Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All
jump and branch instructions occur with a delay of one instruction: that
is, the instruction immediately following the jump or branch (this is known
as the instruction in the delay slot) always executes while the target
instruction is being fetched from storage.

Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with
Jump or Jump and Link instructions, both of which are J-type
instructions. In J-type format, the 26-bit target address shifts left 2 bits
and combines with the high-order 4 bits of the current program counter to
form an absolute address.

Returns, dispatches, and large cross-page jumps are usually
implemented with the Jump Register or Jump and Link Register
instructions. Both are R-type instructions that take the 32-bit or 64-bit
byte address contained in one of the general purpose registers.

For more information about jump instructions, refer to the individual
instruction as described in Appendix A.

Overview of Branch Instructions

All branch instruction target addresses are computed by adding the
address of the instruction in the delay slot to the 16-bit offset (shifts left
2 bits and is sign-extended to 32 bits). All branches occur with a delay of
one instruction.

If a conditional branch likely is not taken, the instruction in the delay
slot is nullified. For regular conditional branches, the delay slot is always
executed.

For more information about branch instructions, refer to the individual
instruction as described in Appendix A.

Special Instructions

Special instructions allow the software to initiate traps; they are always
R-type. For more information about special instructions, refer to the
individual instruction as described in Appendix A.

Exception Instructions

Exception instructions are extensions to the MIPS ISA. For more
information about exception instructions, refer to the individual
instruction as described in Appendix A.

Coprocessor Instructions

Coprocessor instructions perform operations in their respective
coprocessors. Coprocessor loads and stores are I-type, and coprocessor
computational instructions have coprocessor-dependent formats.

Individual coprocessor instructions are described in Appendices A (for
CPO) and B (for the FPU, CP1).

CPO instructions perform operations specifically on the System Control
Coprocessor registers to manipulate the memory management and
exception handling facilities of the processor. Appendix A contains details
of the CPO instructions.




dt

H
S

Integrated Device Technology,

The CPU Pipeline Chapter 3

Inc.

Introduction

This chapter describes the basic operation of the CPU pipeline, which
includes descriptions of the delay instructions (instructions that follow a
branch or load instruction in the pipeline), interruptions to the pipeline
flow caused by interlocks and exceptions, and R4600/R4700
implementation of an uncached store buffer. The FPU pipeline is described
in a later chapter.

CPU Pipeline Operation

The R4600/R4700 uses a 5-stage pipeline similar to the R3000. The
simplicity of this pipeline allows the R4600/R4700 to be lower cost and
lower power than super-scalar or super-pipelined processors. Unlike the
R3000, the R4600/R4700 does virtual to physical translation in parallel
with cache access. This allows the R4600/R4700 to operate at over twice
the frequency of the R3000 and to support a larger TLB for address
translation.

Compared to the 8-stage R4000 pipeline, the R4600/R4700 is more
efficient (requires fewer stalls).

Once the pipeline has been filled, five instructions are executed
simultaneously. Figure 3.1 shows the five stages of the instruction
pipeline; the next section describes the pipeline stages.

|0|1||2|

|1R|2R|1A|2A|1D|2D|1W|2W|

Iy

|1I|2I|1R|2R|1A|2A|1D|2D|1W|2W|

|l||2I|1R|2R|1A|2A|1D|2D|1W

|1I|2I|1R|2R|1A|2A|1D

I | 1l | 2l | 1R | 2R | 1A | eee
‘ one cycle ‘
B S
Figure Legend
1I-1R Instruction cache access 2R Instruction decode
2l Instruction virtual to physical address translation in ITLB  1A-2A  Integer add, logical, shift
2A-2D Data cache access and load align 1A Data virtual address calculation
1D Data virtual to physical address translation in DTLB 2A  Store align
1D-2D Virtual to physical address translation in JTLB 1A Branch decision
2R Register file read 2W  Register file write

2R Bypass calculation

Figure 3.1 Instruction Pipeline Stages
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CPU Pipeline Stages

This section describes each of the phases of the five pipeline stages.
Each stage has 2 phases:

e 1l - Instruction Fetch, Phase one
21 - Instruction Fetch, Phase two
1R - Register Fetch, Phase one
2R - Register Fetch, Phase two
1A - Execution, Phase one
2A - Execution, Phase two
1D - Data Fetch, Phase one
2D - Data Fetch, Phase two
1W - Write Back, Phase one
2W - Write Back, Phase two

11 - Instruction Fetch, Phase one

During the 11 phase the instruction address translation begins in the
ITLB.

21 - Instruction Fetch, Phase two
During the 21 phase, the instruction cache fetch begins and the
instruction address translation in the ITLB continues.

1R - Register Fetch, Phase one
During the 1R phase, the following occurs:
e The instruction cache fetch finishes.
e The instruction cache tag is checked against the page frame number
obtained from the ITLB.

2R - Register Fetch, Phase two
During the 2R phase, the following occurs:
e The instruction decoder decodes the instruction.
e Any required operands are fetched from the register file.
* Make a decision to either issue or slip (for an interlock condition).
e For a branch, the branch address is calculated.

1A - Execution, Phase one

During the 1A phase, one of the following occurs:

« Any result from the A or D stages are bypassed.

e The arithmetic logic unit (ALU) starts the integer arithmetic, logical or
shift operation.

e The ALU calculates the data virtual address for load and store in-
structions.

e The ALU determines whether the branch condition is true.

2A - Execution, Phase two
During the 2A phase, one of the following occurs:
e The integer arithmetic, logical or shift operation will complete.
e A data cache access will start.
e Store data is shifted to the specified byte position(s).
e The data virtual to physical address translation in the DTLB will start.

1D - Data Fetch, Phase one
During the 1D phase, one of the following occurs:
e The data cache access will continue.
e The data address translation in the DTLB completes.
e The virtual to physical address translation in the JTLB will start.
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2D - Data Fetch, Phase two
During the 2D phase, one of the following occurs:
e The data cache access will finish and the data is shifted down and ex-
tended.
e The virtual to physical address translation in the JTLB will finish.
The data cache tag is checked against the PFN from the DTLB or JTLB
for any data cache access.

1W - Write Back, Phase one
This phase is used internally by the processor to resolve all exceptions,
in preparation for the register file write.

2W - Write Back, Phase two
For register-to-register and load instructions, the result is written back
to the register file during the 2W stage. Branch instructions perform no
operation during this stage.
Figure 3.2 shows the activities occurring during each ALU pipeline
stage, for load, store, and branch instructions.

ook _\_/—\_/—\_/—\_/—\_/
stage [ 11 | 22 | 1R | 2R | 1A [ 2a | | 20 [ 1w [ 2w |
ICD ICA
IFetch (7 BMm [ ITLBR | 1TC
and
Decode RF
IDEC
ALU EX1 [ Ex2
Load/Store DVA | DCAD | DCAA | DCLA
JTLB1 | JTLB2
DTLBM| DTLBR| DTC | wB
SA DCW
Branch BAC
ICD Instruction cache address decode ICA Instruction cache array access
ITLBM | Instruction address translation ITLBR Instrustion address translation read
match

ITC Instruction tag check RF Register operand fetch
IDEC Instruction decode EX1 Operation stage 1
EX2 Operation stage 2 WwB Write back to register file
DVA Data virtual address calculation DCAD Data cache address decode
DCAA Data cache array access DCLA Data cache load align
JTLB1 | Address translation in JTLB stage 1 JTLB2 | Address translation in JTLB stage 2
DTLBM | Data address translation match DTLMR | Data address translation read
DTC Data tag check SA Store align
DCW Data cache write BAC Branch address calculation

Figure 3.2 CPU Pipeline Activities
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Branch Delay

The CPU pipeline has a branch delay of one cycle and a load delay of one
cycle. The one-cycle branch delay is a result of the branch decision logic
operating during the 1A pipeline phase of the branch instruction. This
allows the branch target address calculated in the previous phase to be
used for the instruction access in the following 11 phase. The pipeline will
begin the fetch of the branch path as well as the fall-through path in the
cycle following the delay slot. After the branch decision is made, the
processor will continue with the fetch of either the branch path (for a taken
branch) or the fall-through path (for the non-taken branch).

Figure 3.3 illustrates the branch delay.

| One Cycle | One Cycle One Cycle | One Cycle | One Cycle |
| u |2 | 1rR|2r] 1A 2a| D] 2D | 2w | 2w |
*
| u |2 JirJ2r[1a]2a| D] 20| 2w | 2w |
*x

u ]2 |1rR|2r[1a]2a| D] 20| 2w 2w

| u |2 [1R|2r[1a]2a| D] 20| 2w | 2w |

Delay *Branch and fall-through address calculated
**Address selection made

Figure 3.3 CPU Pipeline Branch Delay

Load Delay

The completion of a load at the end of the 2D pipeline phase produces
an operand that is available for the 1A pipeline phase of the instruction
following the load delay slot.

Figure 3.4 shows the load delay of one pipeline cycle.

One Cycle

One Cycle | One Cycle | One Cycle | One Cycle

|1I|2I|1R|2R|1A|2A|1D|2D|1W|2W|

|1||2| |1R|2R|1A|2A 1D|2D|1W|2W|

|1||2| |1R|2R 1A|2A|1D|2D|1W|2W|

Load Delay

Figure 3.4 CPU Pipeline Load Delay
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Interlock and Exception Handling

Smooth pipeline flow is interrupted when cache misses or exceptions
occur, or when data dependencies are detected. Interruptions handled
using hardware, such as cache misses, are referred to as interlocks, while
those that are handled using software are called exceptions.

There are two types of interlocks:

» stalls, which are resolved by halting the pipeline

» slips, which require the back end of the pipeline to advance while the

front end of the pipeline is held static

At each cycle, exception and interlock conditions are checked for all
active instructions.

Because each exception or interlock condition corresponds to a
particular pipeline stage, a condition can be traced back to the particular
instruction in the exception/interlock stage, as shown in Figure 3.5. For
instance, a Reserved Instruction (RI) exception is raised in the execution
(A) stage.

Pipeline Stage
State
| R A D w
Stall ITM ICM DCM
CPE
| R A D w
Slip LDI
MDSt
FCBsy
| R A D w
Exceptions ITLB IBE RI DBE
IPErr CuUn NMI
BP Reset
SC DPErr
DTLB OVF
TLBMod Trap
Intr

Figure 3.5 Correspondence of Pipeline Stage to Interlock Condition

For a description of the pipeline interlocks and exceptions listed in
Figure 3.5, refer to Table 3.1 and Table 3.2, which follow.
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Table 3.1 and Table 3.2 describe the pipeline interlocks and exceptions
listed in Figure 3.5.

Exception Description
ITLB Instruction Translation or Address Exception
Intr External Interrupt
IBE Instruction Bus Error
RI Reserved Instruction
BP Breakpoint
SC System Call
CUn Coprocessor Unusable
IPErr Instruction Parity Error
OVF Integer Overflow
FPE FP Interrupt
ExTrap EX Stage Traps
DTLB Data Translation or Address Exception
TLBMod TLB Modified
DBE Data Bus Error
DPErr Data Parity Error
NMI Non-maskable Interrupt (or Soft Reset)
Reset Reset

Table 3.1 Pipeline Exceptions

Interlock Description
IT™ Instruction TLB Miss
ICM Instruction Cache Miss
CPE Coprocessor Possible Exception
DCM Data Cache Miss
LDI Load Interlock
MDSt Multiply/Divide Start
FCBsy FP Coprocessor Busy

Table 3.2 Pipeline Interlocks

Exception Conditions

When an exception condition occurs, the relevant instruction and all
those that follow it in the pipeline are cancelled. Accordingly, any stall
conditions and any later exception conditions that may have referenced
this instruction are inhibited; there is no benefit in servicing stalls for a
cancelled instruction.
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When an exceptional condition is detected for an instruction, the
R4600/R4700 will kill it and all following instructions. When this
instruction reaches the W stage, the exception flag causes it to write
various CPO registers with the exception state, change the current PC to
the appropriate exception vector address and clear the exception bits of
earlier pipeline stages.

This implementation allows all preceding instructions to complete
execution and prevents all subsequent instructions from completing. Thus
the value in the EPC is sufficient to restart execution. It also ensures that
exceptions are taken in the order of execution; an instruction taking an
exception may itself be killed by an instruction further down the pipeline
that takes an exception in a later cycle.

Figure 3.6 shows the exception detection procedure (e.g., a reserved
instruction exception).

Exc

11 | 21 | 1R| 2R| 1A| 2A| 1D| 2D | 1W| 2W
1| 21 .| 2r| 14 2A{ 1D| 2D | 1W| 2w
\?\ 21 | 1IR| 2R| 1A| 2A| 1D| 2D | 1W| 2w
Kill 11 | 21 | 1R| 2R| 1A| 2A| 1D| 2D | 1W| 2w
Exception Vector 11 | 21 | 1R| 2R| 1A| 2A| 1D| 2D | 1W| 2w

Exception Vector Address

Eigure 3.6 Exception Detection

Stall Conditions

Stalls are used to stop the pipeline for conditions detected after the R
pipe-stage. When a stall occurs, the processor will resolve the condition
and then the pipeline will continue.
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Figure 3.7 shows a data cache miss stall.

© @ ® @
vy v Y

[t [rRIAa]D W W] -[w/[w]|w|]
| R |a|D|D|[D |D]|D[w]
[t [ rRIAa]AJ[Aa]a]afD W]
[ [RIR|[R]JR|R[A[D|W]

|
o Detect Cache Miss

9 Start moving dirty cache line data to write buffer
e Get first doubleword into cache and restart pipeline
° Load remainder of cache line into cache

Eigure 3.7 Data Cache Miss

The data cache miss is detected in the D pipe stage. If the cache line to
be replaced is dirty — the W bit is set — the data is moved to the internal
write buffer in the next cycle. The first doubleword of data is returned to
the cache in 3 and the pipeline will then restart. The remainder of the
cache line is returned in the subsequent cycles. The data to be written
back will be returned to memory some time after the entire new cache line
is returned.

Slip Conditions

During the 2R and 1A pipe-stages, internal logic will determine whether
it is possible to start the current instruction in this cycle. If all of the source
operands are available (either from the register file or via the internal
bypass logic) and all the hardware resources necessary to complete the
instruction will be available at the necessary time(s), then the instruction
“issues”; otherwise, the instruction will “slip”. Slipped instructions are
retried on subsequent cycles until they issue. The backend of the pipeline
(stages D and W) will advance normally during slips in an attempt to
resolve the conflict. “NOPS” will be inserted into the bubble in the pipeline.
Instructions killed by branch likely instructions, ERET or exceptions will
not cause slips.
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Figure 3.8 shows an instruction cache miss.
CYCLE Issue Issue Slip Slip Slip Slip Issue Issue Issue
0
2
)
o
c
o [ A]D ] W]
3
2
s [RTAJD[W]
o
*NoP | I [ R| A | D[ W]
*NOP | 1 | R A]D]| W]
*NOP | 1 | R A]D]| W]
*NOP | 1 | R A]D]| W]
IIIC%IRIRIRIRI%IDIWI
[t [R[A[D]|wW]

Detect Cache Miss

% Get entire cache line into cache
Continue pipeline

*NOP - Inserted NOP instructions

Eigure 3.8 Instruction cache miss

Instruction cache misses are detected in R as shown in Figure 3.8 and
the pipeline slips in its A stage. There can never be a writeback required
for an instruction cache miss since dirty data can never exist in the |
cache. Writes are not allowed to the | cache. Note that early restart is not
employed for instruction cache misses, the requested cache line will be
loaded into the cache in its entirety and, after that, the pipeline will restart.

R4600/R4700 Write Buffer

The R4600/R4700 contains a write buffer to improve the performance
of writes to the external memory. Writes to external memory, whether
cache miss writebacks or stores to uncached or write-through addresses,
use this on-chip write buffer. The write buffer holds up to four 64-bit
address and data pairs.

For a cache miss write-back, the entire buffer is used for the write-back
data and allows the processor to proceed in parallel with the memory
update. For uncached and write-through stores, the write buffer
uncouples the CPU from the write to memory allowing increased
performance over the R4000 family of processors. If the write buffer is full,
additional stores will stall until there is room for them in the write buffer.
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The R4600/R4700 processor provides a full-featured memory
management unit (MMU) which uses an on-chip Translation Lookaside
Buffer (TLB) to translate virtual addresses into physical addresses.

This chapter describes the processor virtual and physical address
spaces, the virtual-to-physical address translation, the operation of the
TLB in making these translations, and those System Control Coprocessor
(CPO) registers that provide the software interface to the TLB.

Translation Lookaside Buffer (TLB)

Mapped virtual addresses are translated into physical addresses using
an on-chip TLB.1 The TLB is a fully associative memory that holds 48
entries, which provide mapping to 48 odd/even page pairs (96 pages).
When address mapping is indicated, each TLB entry is checked
simultaneously for a match with the virtual address that is extended with
an ASID stored in the EntryHi register.

The address mapped to a page ranges in size from 4Kbytes to 16Mbytes,
in multiples of 4—that is, 4K, 16K, 64K, 256K, 1M, 4M, 16M.

Hits and Misses

If there is a virtual address match, or hit, in the TLB, the physical page
number is extracted from the TLB and concatenated with the offset to form
the physical address (see Figure 4.1).

If no match occurs (TLB miss), an exception is taken and software refills
the TLB from the page table resident in memory. Software can write over
a selected TLB entry or use a hardware mechanism to write into a random
entry.

Multiple Matches

The R4600/R4700 does not provide any detection or shutdown
mechanism for multiple matches in the TLB. There is no damage possible
from this condition. The result is undefined for this condition. Software is
expected never to allow this to occur.

Address Spaces

This section describes the virtual and physical address spaces and the
manner in which virtual addresses are converted or “translated” into
physical addresses in the TLB.

Virtual Address Space

The processor virtual address can be either 32- or 64-bits wide,
depending on mode of operation (user, supervisor or kernel) and the
setting of the corresponding extended address bit in the Status register
(UX, SX and KX).

* For the extended address bit = 0, addresses are 32-bits wide.

* For the extended address bit = 1, addresses are 64-bits wide.

Both 32-bit and 64-bit address wrap in the same way. For example, in
64-bit mode OXxffffffffffffffff will wrap to Ox0000000000000000. While the
R4400 slipped on shift of >32-bit or other shift variables, the R4600/
R4700 does not.

L Therearevirtual -to-physical addresstrandationsthat occur outside of the TLB.
For example, addresses in kseg0 and ksegl spaces are unmapped translations. In
these spaces the physical address is 0x0000 0000 O || VA[28:0]

4-1
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Figure 4.1 shows the translation of a virtual address into a physical
address.

1. Virtual address (VA) represented by the

virtual page number (VPN) is compared G ASID VPN Offset I

with tag in TLB.

2. If there is a match, the page frame G ASID VPN
number (PFN) representing the upper
bits of the physical address (PA) is >. TLB
output from the TLB. Entry
PFN
TLB \

3. The Offset, which does not pass through

the TLB, is then concatenated to the PFN. PEN | Offset I

Virtual address

A

Physical address

Figure 4.1 Overview of a Virtual-to-Physical Address Translation

As shown in Figure 4.2 and Figure 4.3, the virtual address is extended
with an 8-bit address space identifier (ASID), which reduces the frequency
of TLB flushing when switching contexts. This 8-bit ASID is in the CPO
EntryHi register, described later in this chapter. The Global bit (G) is in the
EntryLoO and EntryLol registers, described later in this chapter.

Physical Address Space

Using a 36-bit address, the processor physical address space
encompasses 64Gigabytes. The section following describes the translation
of a virtual address to a physical address.

Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing
the virtual address from the processor with the virtual address in the TLB;
there is a match when the virtual page number (VPN) of the address is the
same as the VPN field of the entry, and either:

« the Global (G) bit of the TLB entry is set, or

« the ASID field of the virtual address is the same as the ASID field of

the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss
exception is taken by the processor and software is allowed to refill the TLB
from a page table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is
output from the TLB and concatenated with the Offset, which represents
an address within the page frame space. The Offset does not pass through
the TLB.

Virtual-to-physical translation is described in greater detail throughout
the remainder of this chapter; Figure 4.19 on page 22 is a flow diagram of
the process.

The next two sections describe the 32-bit and 64-bit address
translations.
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32-bit Virtual Address Translation
Figure 4.2 shows the virtual-to-physical-address translation of a 32-bit

virtual address.

e The top portion of Figure 4.2 shows a virtual address with a 12-bit, or
4Kbyte, page size, labelled Offset. The remaining 20 bits of the ad-
dress represent the VPN, and index the 1M-entry page table.

e The bottom portion of Figure 4.2 shows a virtual address with a 24-
bit, or 16Mbyte, page size, labelled Offset. The remaining 8 bits of the
address represent the VPN, and index the 256-entry page table.

Virtual Address with 1M (220) 4-Kbyte pages

39 3231 29 28 20 bits = 1M pages 12 11

ASID VPN
8
AN J
Y
Virtual-to-physical Offset passed
translation in TLB unchanged to
Bits 31, 30 and 29 of the virtual TLB physical
address select user, supervisor, 36-bit Physical Address memory
or kernel address spaces.
35 0
| PFN Offset I
Virtual-to-physical Offset
S passed
translation in TLB unchanged to
TLB physical
A AL memory
N\ N ™
39 3231 2928 24 23 0
8 8 24

8 bits = 256 pages
Virtual Address with 256 (28)16—Mbyte pages

Figure 4.2 32-bit Virtual Address Translation

64-bit Virtual Address Translation
Figure 4.3 on page 4 shows the virtual-to-physical-address translation
of a 64-bit virtual address. This figure illustrates the two extremes in the
range of possible page sizes: a 4Kbyte page (12 bits) and a 16Mbyte page
(24 bits).
e The top portion of Figure 4.3 shows a virtual address with a
12-bit, or 4Kbyte, page size, labelled Offset. The remaining 28 bits of
the address represent the VPN, and index the 256M-entry page table.
e The bottom portion of Figure 4.3 shows a virtual address with a 24-
bit, or 16Mbyte, page size, labelled Offset. The remaining 16 bits of
the address represent the VPN, and index the 64K-entry page table.
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Virtual Address with 256M (228) 4-Kbyte pages

71 64 636261 40 39 28 bits = 256M pages 12 11 0

VPN

12

N J
Offset passed
Virtual-to-physical yunchanpged to
translation in TLB physical

36-bit Physical Address l

Bits 62 and 63 of the virtual memory
address select user, supervisor, 35 0
or kernel address spaces.
PFN Offset
. . Offset passed
Virtual-to-physical unchanged to
translation in TLB physical

memory

N AN

Virtual Address with 64K (216)16-Mbyte pages

71 64 6362 61 4039 24 23
VPN Offset

16 24
16 bits = 64K pages

ASID Oor-1
8 24

Figure 4.3 64-bit Virtual Address Translation

Operating Modes

The processor has three operating modes that function in both 32- and
64-bit operations:

e User mode

e Supervisor mode

+ Kernel mode
These modes are described in the next three sections.

User Mode Operations
In User mode, a single, uniform virtual address space—labelled User

segment—is available; its size is:
e 2 Gbytes (231 bytes) for Status.UX = 0 (useg)
- 1 Thyte (20 bytes) for Status.UX = 1 (xuseg)
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Figure 4.4 shows the User mode virtual address space.

32-bit* 64-bit
Ox FFF A Ox FF FIF FF FEF
Address Address
Error Error
Ox 8000 0000 Ox 0000 0100 OCDO 0000
2 GB 1TB
useg xuseg
Mapped Mapped
Ox 0000 0000 0Ox 0000 0000 0000 0000

Note: *For 32-bit virtual addresses, bit 31 is sign-extended through bits 63:32.
Failure (i.e., bit 31 = 1) results in an Address Error exception.

Figure 4.4 User Mode Virtual Address Space

The User segment starts at address O and the current active user
process resides in either useg (32-bit virtual addressing) or xuseg (in 64-
bit virtual addressing). The TLB identically maps all references to useg/
xuseg from all modes, and controls cache accessibility.

The processor operates in User mode when the Status register contains
the following bit-values:

e KSU bits = 10,

« EXL=0

« ERL=0

In conjunction with these bits, the UX bit in the Status register selects
between 32- or 64-bit User virtual addressing as follows:

< when UX = 0, 32-bit useg space is selected

e when UX = 1, 64-bit xuseg space is selected

Table 4.1 lists the characteristics of the two user mode segments, useg
and xuseg.

Address Bit Status Register Segment Address Range Segment Size
Name
Bit Values
KSU | EXL | ERL | UX
10, | O 0 0 useg 0x0000 0000 2 Gbyte

through (231 bytes)
Ox7FFF FFFF

A(63:40) = 0 through (240 bytes)

10, | O 0 1 xuseg 0x0000 0000 0000 0000 | 1 Thyte

0x0000 OOFF FFFF FFFF

Table 4.1 32-bit and 64-bit User Mode Segments

32-bit User Mode (useq)

In User mode, when Status.UX = 0, User mode virtual addressing is
compatible with the 32-bit addressing model shown in Figure 4.4, and a 2-
Gbyte user address space is available, labelled useg.
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All valid User mode virtual addresses have their most-significant bit
cleared to O; any attempt to reference an address with the most-significant
bit set while in User mode causes an Address Error exception.

In 32-bit User mode virtual addressing, the TLB refill exception vector is
used for TLB misses.

The system maps all references to useg through the TLB, and bit
settings within the TLB entry for the page determine the cacheability of a
reference.

64-bit User Mode (xuseq)

In User mode, when Status.UX =1, User mode virtual addressing is
extended to the 64-bit model shown in Figure 4.4, and a 1-Tbyte user
address space is available, labelled xuseg.

All valid User mode virtual addresses have bits 63:40 equal to O; an
attempt to reference an address with bits 63:40 not equal to O causes an
Address Error exception.

The extended addressing TLB refill exception vector is used for TLB
misses.

Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a
true kernel runs in R4600/R4700 Kernel mode, and the rest of the
operating system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register
contains the following bit-values:

- KSU =01,
« EXL=0
« ERL=0

In conjunction with these bits, the SX bit in the Status register selects
between 32- or 64-bit Supervisor mode virtual addressing:

 when SX = 0, 32-bit supervisor space virtual addressing is selected

< when SX = 1, 64-bit supervisor space virtual addressing is selected

Figure 4.5 shows Supervisor mode address mapping. Table 4.2, which
follows the figure, lists the characteristics of the supervisor mode
segments; descriptions of the address spaces follow.

32-bit* 64-bit
O FFE T A ddress Ox FHF A FFE B [ Address
Ox EDOO 0000 error Ox FAE FRERE EDOO 0000 error
Ox @000 0000 l\afpggﬂ SSed |\C/)|'5 GB& csseg
appe
Address Ox FFFF AFF Q000 0000 Aidrecs
Ox A000 0000|  ©rror error
Address 0x 4000 0100 0000 0000 —
Ox 8000 oooo|  €FTOF Mapped [ xssed
0x 4000 0000 0000 0000
Address
error
2 GB suseg O 0000 0100 0000 0000
Mapped 1TB
Mapped xsuseg
Ox 0000 0000 Ox 0000 0000 0000 0000

Note:  *In 32-bit virtual addressing, bit 31 is sign-extended through bits
63:32. Failure results in an Address Error exception.

Figure 4.5 Supervisor Mode Virtual Address Space
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Status Register
Bit Values
Address Bit Segment Segment
Values KSU | EXL | ERL | sX Name Address Range Size

32-bit 01, |O 0 0 suseg 0x0000 0000 2 Gbytes

A(31)=0 through (231 pytes)
OX7FFF FFFF

32-bit 01, |O 0 0 sseg 0xC000 0000 512 Mbytes

A(31:29) = 110, through (229 bytes)
OxDFFF FFFF

64-bit 01, |O 0 1 xsuseg 0x0000 0000 0000 0000 |1 Thyte

A(63:62) = 00, through (240 bytes)
0x0000 OOFF FFFF FFFF

64-bit 01, |O 0 1 Xsseg 0x4000 0000 0000 0000 | 1 Thyte

A(63:62) = 01, through (240 bytes)
0x4000 OOFF FFFF FFFF

64-bit 01, (O 0 1 csseg OXxFFFF FFFF C0O00 0000 | 512 Mbytes

A(63:62) = 11, through (229 bytes)
OxFFFF FFFF DFFF FFFF

Table 4.2 32-bit and 64-bit Supervisor Mode Segments

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when Status.SX = 0 and the most-significant bit of
the 32-bit virtual address is set to O, the suseg virtual address space is
selected; it covers the full 231 bytes (2Gbytes) of the current user address
space. The virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs
through Ox7FFF FFFF.

32-bit Supervisor Mode, Supervisor Space (sseq)

In Supervisor mode, when Status.SX = 0 and the three most-significant
bits of the 32-bit virtual address are 110,, the sseg virtual address space
is selected; it covers 22°-bytes (512Mbytes) of the current supervisor
address space. The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.

This mapped space begins at virtual address OxC0O00 0000 and runs
through OxDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual
address are set to 00,, the xsuseg virtual address space is selected; it
covers the full 240 bytes (1Tbyte) of the current user address space. The
virtual address is extended with the contents of the 8-bit ASID field to form
a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000
and runs through 0x0000 OOFF FFFF FFFF.

64-bit Supervisor Mode, Current Supervisor Space (xsseq)

In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual
address are set to 01,, the xsseg current supervisor virtual address space
is selected. The virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000
and runs through 0x4000 OOFF FFFF FFFF.
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64-bit Supervisor Mode, Separate Supervisor Space (csseg)

In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual
address are set to 11,, the csseg separate supervisor virtual address space
is selected. Addressing of the csseg is compatible with addressing sseg in
32-bit mode. The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.

This mapped space begins at virtual address OxFFFF FFFF CO00 0000
and runs through OxFFFF FFFF DFFF FFFF.

Kernel Mode Operations
The processor operates in Kernel mode when the Status register
contains one of the following values:

- KSU =00,
e« EXL=1
« ERL=1

In conjunction with these bits, the KX bit in the Status register selects
between 32- or 64-bit Kernel mode addressing:

< when KX = 0, 32-bit kernel space virtual addressing is selected

< when KX = 1, 64-bit kernel space virtual addressing is selected

The processor enters Kernel mode whenever an exception is detected
and it remains in Kernel mode until an Exception Return (ERET)
instruction is executed. The ERET instruction restores the processor to
the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated
by the high-order bits of the virtual address, as shown in Figure 4.6.
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Ox )00 0000

Ox AO0O 0000

Ox 8000 0000

Ox 0000 0000

Note:

32-bit*

0.5GB
Mapped

0.5GB
Mapped

0.5GB
Unmapped
Uncached

0.5GB
Unmapped
Cached

2GB
Mapped

kseg3

ksseg

ksegl

kseg0

kuseg

Ox A A A A

Ox A A EDOO 0000

Ox A A 00 0000

Ox A A A00O0 0000

Ox FH HF- 8000 0000

Ox (00 OOF- 8000 0000

Ox (D00 0000 0000 0000

Ox 8000 0000 0000 0000

Ox 4000 0100 0000 0000

Ox 4000 0000 0000 0000

Ox 0000 0100 0000 0000

Ox 0000 0000 0000 0000

results in an Address Error exception.

64-bit
0.5GB
Mapped

0.5GB
Mapped

0.5 GB
Unmapped
Uncached

0.5GB
Unmapped
Cached

Address
error

Mapped
Unmapped

Address
error

1TB
Mapped

Address
error

1TB
Mapped

ckseg3

cksseg

cksegl

ckseg0

xkseg

xkphys

xksseg

xkuseg

*In 32-bit virtual addressing, bit 31 is sign-extended through bits 63:32. Failure

Figure 4.6 Kernel Mode Address Space
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Table 4.3 lists the characteristics of the 32-bit kernel mode segments,
and Table 4.4 lists the characteristics of the 64-bit kernel mode segments

Address Bit Status Register Is Segment | Address Range Segment
Values One Of These Values | Name Size
KSU | EXL | ERL | KX
A(B1)=0 0 kuseg 0x0000 0000 2 Gbytes
through (231 bytes)
OX7FFF FFFF
KSU = 00,
A(31:29) = 100, 0 kseg0 0x8000 0000 512
or through Mbytes
OX9FFF FFFF (22° bytes)
A(31:29) = 101, EXL=1 0 |ksegl 0xA000 0000 512
through Mbytes
or OXBFFF FFFF (22° bytes)
A(31:29) = 110, ERL =1 0] ksseg 0xC000 0000 512
through Mbytes
OXDFFF FFFF (22° bytes)
A(31:29) = 111, 0 kseg3 O0xEO000 0000 512
through Mbytes
OXFFFF FFFF (22° bytes)

Table 4.3 32-bit Kernel Mode Segments

32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when Status.KX = 0, and the most-significant bit of the
virtual address, A31, is cleared, the 32-bit kuseg virtual address space is
selected:; it covers the full 231 bytes (2 Gbytes) of the current user address
space. The virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space O (ksegO)

In Kernel mode, when Status.KX = 0 and the most-significant three bits
of the virtual address are 100,, 32-bit ksegO virtual address space is
selected; it is the current 229—byte (512-Mbyte) kernel physical space.

References to ksegO are not mapped through the TLB; the physical
address selected is defined by subtracting 0x8000 0000 from the virtual
address (physical address = 0x0000 0000 O || VA[28:0]).

The KO field of the Config register, described in this chapter, controls
cacheability and coherency.

32-bit Kernel Mode, Kernel Space 1 (ksegl)

In Kernel mode, when Status.KX = 0 and the most-significant three bits
of the 32-bit virtual address are 101,, 32-bit ksegl virtual address space
is selected; it is the current 22°-byte (512Mbyte) kernel physical space.

References to ksegl are not mapped through the TLB; the physical
address selected is defined by subtracting OXA0O00 0000 from the virtual
address (physical address = 0x0000 0000 O || VA[28:0]).

Caches are disabled for accesses to these addresses, and physical
memory (or memory-mapped I/0 device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when Status.KX = 0 and the most-significant three bits
of the 32-bit virtual address are 110,, the ksseg virtual address space is
selected; it is the current 22°-byte (512Mbyte) supervisor virtual space.
The virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address.
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32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when Status.KX = 0 and the most-significant three bits
of the 32-bit virtual address are 111,, the kseg3 virtual address space is
selected; it is the current 22°-byte (512Mbyte) kernel virtual space. The
virtual address is extended with the contents of the 8-bit ASID field to form
a unique virtual address.

Address Bit Status Register Is Segment Address Range Segment
Values

One Of These Values Name Size

KSU | EXL | ERL | KX

A(63:62) = 00, 1 [xkuseg |0x0000 0000 0000 0000 |1 Thyte
through (240 bytes)
0x0000 OOFF FFFF FFFF

A(63:62) = 01, 1 |xksseg | 0Ox4000 0000 0000 0000 |1 Thyte
through (20 bytes)
0x4000 OOFF FFFF FFFF

A(63:62) = 10, KSU=002 [71 [xkphys |Ox8000 0000 0000 0000 |8 236_byte
through spaces

or OXBFFF FFFF FFFF FFFF

A(63:62) = 11, EXL=1 1 | xkseg 0xC000 0000 0000 0000 | 244 bytes

through
or 0xCO000 OOFF 7FFF FFFF

A(63:62) = 11, ERL =1 1 |ckseg0 | OxFFFF FFFF 8000 0000 |512

A(61:31) =-1 through Mbytes
OXFFFF FFFF 9FFF FFFF | (22° bytes)

A(63:62) = 11, 1 |cksegl |OxFFFF FFFF AOOO 0000 |512

A(61:31) =-1 through Mbytes
OXFFFF FFFF BFFF FFFF | (22° bytes)

A(63:62) = 11, 1 |cksseg | OxFFFF FFFF CO00 0000 |512

A(61:31) =-1 through Mbytes
OXFFFF FFFF DFFF FFFF | (22° bytes)

A(63:62) = 11, 1 |ckseg3 | OxFFFF FFFF E00O 0000 |512

A(61:31) =-1 through Mbytes

OXFFFF FFFF FFFF FFFF | (22° bytes)

Table 4.4 64-bit Kernel Mode Segments

64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual
address are 005, the xkuseg virtual address space is selected; it covers the
current user address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

As a special feature for the ECC handler, if the ERL bit of the Status
register is set, the user address region becomes a 23'-byte unmapped,
uncached space. This allows the ECC exception code to operate uncached
using rO as a base register.

64-bit Kernel Mode, Current Supervisor Space (xksseq)

In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual
address are 01,, the xksseg virtual address space is selected; it is the
current supervisor virtual space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.
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64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual
address are 10,, the xkphys virtual address space is selected; it is a set of
eight 23%-byte kernel physical spaces. Accesses with address bits 58:36
not equal to O cause an address error.

References to this space are not mapped; the physical address selected
is taken from bits 35:0 of the virtual address. Bits 61:59 of the virtual
address specify the cacheability and coherency attributes, as shown in
Table 4.5.

Value Cacheability and Coherency Attributes Starting Address

(61:59)

0 Cacheable, noncoherent, write-through, no 0x8000 0000 0000 0000
write allocate

1 Cacheable, noncoherent, write-through, write | 0x8800 0000 0000 0000
allocate

2 Uncached 0x9000 0000 0000 0000

3 Cacheable, noncoherent 0x9800 0000 0000 0000

4-7 Reserved 0xA000 0000 0000 0000

Table 4.5 Cacheability and Coherency Attributes

64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual

address are 11,, the address space selected is one of the following:

« kernel virtual space, xkseg, the current supervisor virtual space; the
virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address

< one of the four 32-bit kernel compatibility spaces, as described in the
next section.

64-bit Kernel Mode, Compatibility Spaces (cksegl1:0, cksseg, ckseg3)

In Kernel mode, when Status.KX = 1, bits 63:62 of the 64-bit virtual
address are 11,, and bits 61:31 of the virtual address equal “-1”, the lower
two bytes of address, as shown in Figure 4.6, select one of the following
512-Mbyte compatibility spaces.

e cksegO. This 64-bit virtual address space is an unmapped region,
compatible with the 32-bit address model kseg0. The KO field of the
Config register, described in this chapter, controls cacheability and
coherency.

e cksegl. This 64-bit virtual address space is an unmapped and un-
cached region, compatible with the 32-bit address model kseg1l.

e cksseg. This 64-bit virtual address space is the current supervisor
virtual space, compatible with the 32-bit address model ksseg.

e ckseg3. This 64-bit virtual address space is kernel virtual space,
compatible with the 32-bit address model kseg3.

System Control Coprocessor

The System Control Coprocessor (CPO) is implemented as an integral
part of the CPU, and supports memory management, address translation,
exception handling, and other privileged operations. CPO contains the
registers shown in Figure 4.7 plus a 48-entry TLB. The sections that follow
describe how the processor uses each of the memory management-related
registers.

Each CPO register has a unique number that identifies it; this number
is referred to as the register number. For instance, the Page Mask register
is register number 5.
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Entrz)il-oo In%(ix Context BadVAddr
EntryHi 4* 8*
10* EntryLol
3* Random Count Compare
1* o* 11*
47
Page Mask Status Cause
S* 12* 13*
TLB Wired EPC XContext
6* 14* 20*
PRId ECC CacheErr
15* 26* 27*
(“Safe” entries)
(See Random Register, .
contents of TLB Wired) Conflg ErrorePC
o l127 0 16 30*
LLAddr TaglLo TagHi
17* 28* 29*

Used with exception
processing. See
Chapter 5 for details.

Used with memory
management system.

Note: *Register number

L

Figure 4.7 CPO Registers and the TLB

Format of a TLB Entry

Figure 4.8 shows the TLB entry formats for both 32- and 64-bit virtual
addressing. Each field of an entry has a corresponding field in the EntryHi,
EntryLoO, EntryLol, or PageMask registers, as shown in Figure 4.9 and
Figure 4.10; for example the Mask field of the TLB entry is also held in the
PageMask register.




Memory Management

Chapter 4
64-bit Virtual Addressing
255 217 216 205 204 96
0 MASK 0 I
39 12 13
191 190 189 168 167 141 140139 136 135 128
256:bit TLB R 0 VPN2 G| o ASID |
entry in 64-bit < 2 22 27 1 4 8
virtual addressing
127 94 93 70 69 67 66 65 64
0 PFN C |D|V|0
34 24 3 111
63 30 29 6 5 321 0
0 PEN C |D|V|0
34 24 3 111

Figure 4.8 Format of a TLB Entry

The format of the EntryHi, EntryLoO, EntryLol, and PageMask registers
are nearly the same as the TLB entry. The one exception is the Global field
(G bit), which is used in the TLB, but is reserved in the EntryHi register.
Figure 4.9 and Figure 4.10 describe the TLB entry fields that are shown in

Figure 4.8.
PageMask Register
31 25 24 13 12 0
0 MASK 0 |
7 12 13
Mask .... Page comparison mask.
0........... Reserved. Must be written as zeroes, and returns zeroes when read.
EntryHi Register
63 62 61 40 39 13 12 8 7 0
64-bit
VA R FILL VPN2 ASID
2 22 27 5 8
VPNZ2.... Virtual page number divided by two (maps to two pages).
ASID..... Address space ID field. An 8-bit field that lets multiple processes share the TLB; each
process has a distinct mapping of otherwise identical virtual page numbers.
R Region. (00 - user, 01 - supervisor, 11 — kernel) used to match vAddrgs_ g0
Fill ........ Reserved. Returns zero when read, ignored on writes.
0........... Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 4.9 Fields of the PageMask and EntryHi Registers
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EntryLoO and EntryLol Registers

63 30 29 65 3210
64-bit
VA 0 PFEN C |D| V|G
34 24 3 111
63 30 29 65 3210
64-bit
VA 0 PFEN C |D|V|G I
34 24 3 111

PFN...... Page frame number; the upper bits of the physical address.

Coeeen Specifies the TLB page coherency attribute; see Table 4.6.

D...... Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is
actually a write-protect bit that software can use to prevent alteration of data.

Vi Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS
miss occurs.

(CH— Global. If this bit is set in both LoO and Lol, then the processor ignores the ASID during
TLB lookup.

0........... Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 4.10 Fields of the EntryLoO and EntryLol Registers

The TLB page coherency attribute (C) bits specify whether references to
the page should be cached; if cached, the algorithm selects between several
coherency attributes. Table 4.6 shows the coherency attributes selected
by the C bits.

C(5:3) Value | Page Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate

Cacheable, noncoherent, write-through, write allocate

Uncached

Cacheable, noncoherent, write-back

Al W] N P

-7 Reserved

Table 4.6 TLB Page Coherency (C) Bit Values

CPO Registers
The following sections describe the CPO registers (shown in Figure 4.7
on page 13) that are assigned specifically as a software interface with
memory management (each register is followed by its register number in
parentheses).
* Index register (CPO register number 0)
e Random register (1)
EntryLoO (2) and EntryLol (3) registers
PageMask register (5)
Wired register (6)
EntryHi register (10)
e PRId register (15)
Config register (16)
e LLAddr register (17)
e TaglLo (28) and TagHi (29) registers
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Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to
index an entry in the TLB. The high-order bit of the register shows the
success or failure of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read
(TLBR) or TLB Write Index (TLBWI) instructions.

Figure 4.11 shows the format of the Index register; Table 4.7, which
follows the figure, describes the Index register fields.

Index Register

31 30 6 5 0
p 0 Index I
1 25 6

Figure 4.11 Index Register

Field Description
p Probe failure. Setto 1 when the previous TLBProbe
(TLBP) instruction was unsuccessful.
Index Index to the TLB entry affected by the TLBRead and
TLBWrite instructions
0 Reserved. Must be written as zeroes, and returns
zeroes when read.

Table 4.7 Index Register Field Descriptions

Random Register (1)

The Random register is a read-only register of which six bits index an
entry in the TLB. This register decrements as each instruction executes,
and its values range between an upper and a lower bound, as follows:

< A lower bound is set by the number of TLB entries reserved for exclu-

sive use by the operating system (the contents of the Wired register).

e An upper bound is set by the total number of TLB entries. Thus the

upper bound is 47 (The TLB entries are number from O to 47).

The R4600/R4700 implements this register differently from the
R4000: The R4000 counts both valid and invalid instructions, while the
R4600/R4700 counts only valid instructions.

The Random register specifies the entry in the TLB that is affected by the
TLB Write Random instruction. The register does not need to be read for
this purpose; however, the register is readable to verify proper operation of
the processor.

To simplify testing, the Random register is set to the value of the upper
bound upon system reset. This register is also set to the upper bound
when the Wired register is written.

Figure 4.12 shows the format of the Random register; Table 4.8 on
page 17 describes the Random register fields.

Random Register
31 6 5 0

0 Random I

26 6

Figure 4.12 Random Register
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Field Description
Random TLB random index
0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 4.8 Random Register Field Descriptions

EntryLoO (2), and EntryLol (3) Registers

The EntryLo register consists of two registers that have identical
formats:

e EntryLoO is used for even virtual pages.

e EntryLol is used for odd virtual pages.

The EntryLoO and EntryLol registers are read/write registers. They
hold the physical page frame number (PFN) of the TLB entry for even and
odd pages, respectively, when performing TLB read and write operations.
Figure 4.10 on page 15 shows the format of these registers.

PageMask Register (5)

The PageMask register is a read/write register used for reading from or
writing to the TLB; it holds a comparison mask that sets the variable page
size for each TLB entry, as shown in Table 4.9.

TLB read and write operations use this register as either a source or a
destination; when virtual addresses are presented for translation into
physical address, the corresponding bits in the TLB identify which virtual
address bits among bits 24:13 are used in the comparison.

When the Mask field is not one of the values shown in Table 4.9, the
operation of the TLB is undefined.

Bit

PageSize |2 |22 f2f2 11|22 |1]1]1

4(3|2|1|0|9|8|7|6|5]|4]|3
4 Kbytes ol ol of of of of of of o] of o] o
16Kbytes | 0| 0ol of of o] of o] of 0| Of 1] 1
64Kbytes | 0| 0ol 0| of 0| o[ 0| Of 1| 1] 1| 1
256 Kbytes | 0| 0 0| of 0| Oof 1| 1| 1| 1] 1| 1
1 Mbyte ol of of of 1| 2| 1| 2| 1| 1| 1| 1
4 Mbytes o Oof 1| 2| 2| 2| 2| 2| 1] 1| 1] 1
16Mbytes | 1| 1| 1| 1| 1| 2| 1| 2| 1| 1| 1] 1

Table 4.9 Mask Field Values for Page Sizes
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Wired Register (6)

The Wired register is a read/write register that specifies the boundary
between the wired and random entries of the TLB, as shown in Figure 4.13.
Wired entries are nonreplaceable entries, which cannot be overwritten by
a TLB write random operation. Random entries can be overwritten.

TLB

47 T

Range of Random entries

< Wired l

Register

Range of Wired entries

Figure 4.13 Wired Register Boundary

The Wired register is set to O upon system reset. Writing this register
also sets the Random register to the value of its upper bound (see Random
register, above). Figure 4.14 shows the format of the Wired register;
Table 4.10, which follows the figure, describes the register fields.

Wired Register
31 65 0

0 Wired I
26 6

Figure 4.14 Wired Register

Field Description
Wired TLB Wired boundary (the number of wired TLB entries)

Reserved. Must be written as zeroes, and returns zeroes
when read.

Table 4.10 Wired Register Field Descriptions

EntryHi Register (CPO Register 10)

The EntryHi register holds the high-order bits of a TLB entry for TLB
read and write operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random,
TLB Write Indexed, and TLB Read Indexed instructions.

Figure 4.9 shows the format of this register.

When either a TLB refill, TLB invalid, or TLB modified exception occurs,
the EntryHi register is loaded with the virtual page number (VPN2) and the
ASID of the virtual address that did not have a matching TLB entry. (See
Chapter 5 for more information about these exceptions.)
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Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register
contains information identifying the implementation and revision level of
the CPU and CPO. Figure 4.15 shows the format of the PRId register;
Table 4.11 describes the PRId register fields.

PRId Register

31

16 15

87 0

0

Imp

Rev

16

8

Figure 4.15 Processor Revision ldentifier Register Format

Field Description
Imp Implementation number R46005 Imp f 0x20
R4700: Imp = 0x21
Rev Revision number
0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 4.11 PRId Register Fields

The low-order byte (bits 7:0) of the PRId register is interpreted as a
revision number, and the high-order byte (bits 15:8) is interpreted as an
implementation number. The implementation number of the R4600/
R4700 processor is 0x20. The content of the high-order halfword (bits
31:16) of the register are reserved.

The revision number is stored as a value in the form y.x, where y is a
major revision number in bits 7:4 and x is a minor revision number in bits
3:0.

The revision number can distinguish some chip revisions, however there
is no guarantee that changes to the chip will necessarily be reflected in the
PRId register, or that changes to the revision number necessarily reflect
real chip changes. For this reason, these values are not listed and software
should not rely on the revision number in the PRId register to characterize
the chip. Certain attributes, such as cache size, are independent of
implementation number.

Config Register (16)

The Config register specifies various configuration options selected on
R4600/R4700 processors; Table 4.12 lists these options.

Some configuration options, as defined by Config bits 31:3, are set by
the hardware during reset and are included in the Config register as read-
only status bits for the software to access. The KO field is the only read/
write field (as indicated by Config register bits 2:0) and controlled by
software; on reset these fields are undefined.

Figure 4.16 shows the format of the Config register; Table 4.12, which
follows the figure, describes the Config register fields.

Config Register

31 30 28 27 24 2322 2120 19181716 1514 13 1211 9 8 6 54 3 2 0

0| EC EP 0 |0j 0|0 |1|0(BH1|1|0] IC DC IB‘DB‘O KO

1 3 4 2 11 2 111111 3 3 111 3

Eigure 4.16 Config Register Format
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Field Description
System clock ratio:
0 - processor clock frequency divided by 2
1 - processor clock frequency divided by 3
2 - processor clock frequency divided by 4
EC 3 - processor clock frequency divided by 5
4 —, processor clock frequency divided by 6
5 - processor clock frequency divided by 7
6 — processor clock frequency divided by 8
7 Reserved
Writeback data rate:
0 -~ DDDD Doubleword every cycle
1 - DDxDDx 2 Doublewords every 3 cycles
2 - DDxxDDxx 2 Doublewords every 4 cycles
3 - DxDxDxDx 2 Doublewords every 4 cycles
EP 4 —, DDxxxDDxxx 2 Doublewords every 5 cycles
5 - DDxxxxDDxxxx 2 Doublewords every 6 cycles
6 —» DxxDxxDxxDxx 2 Doublewords every 6 cycles
7 - DDXXXXXDDXXXXX 2 Doublewords every 7 cycles
8 - DxxxDxxxDxxxDxxx 2 Doublewords every 8 cycles
9-15 Reserved
BigEndianMem
BE 0 - Little endian
1 - Big endian
I Primary I-cache Size (I-cache size = 212*!C pytes). In the R4600/R4700
processor, this is set to 16 Kbytes (IC = 010)
DC Primary D-cache Size (D-cache size = 212*PC pytes). In the R4600/R4700
processor, this is set to 16 Kbytes (DC = 010)
B Primary I-cache line size
1 - 32 bytes (8 Words)
DB Primary D-cache line size
1 - 32 bytes (8 Words)
KO kseg0 coherency algorithm (see EntryLoO and EntryLol registers)
Others Reserved. Returns indicated values when read.

Table 4.12 Config Register Fields

Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register contains the

physical address read by the most recent Load Linked instruction.

This register is for diagnostic purposes only, and serves no function

during normal operation.

Figure 4.17 shows the format of the LLAddr register; PAddr represents

bits of the physical address, PA(35:4).
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LLAddr Register
31 0
PAddr(35:4) I
32

Figure 4.17 LLAddr Register Format

Cache Tag Registers [TagLo (28) and TagHi (29)]

The TagLo and TagHi registers are 32-bit read/write registers that hold
the primary cache tag and parity during cache initialization, cache
diagnostics, or cache error processing. The Tag registers are written by the
CACHE and MTCO instructions.

The P field of these registers is ignored on Index Store Tag operations.
Parity is computed by the store operation.

The Windows NT Operating System uses the TagLo cpO register to save/
restore gp registers in the TLB refill exception handler. Thus, all 32 bits
must be present, even though they have no use for the primary purpose of
TagLo.

Figure 4.18 shows the format of these registers for primary cache

operations. Table 4.13 lists the field definitions of the TagLo and TagHi
registers.
31 8 7 6 5 3 2 1 0
TagLo PTagLo PState | RWNT | F| 0| P I
24 2 3 1 1 1
31 0
TagHi 0 I
32
Figure 4.18 TagLo and TagHi Register (P-cache) Formats
Field Description
PTagLo Specifies the physical address bits 35:12
PState Specifies the primary cache state
P Specifies the primary tag even parity bit
F The FIFO bit used to implement FIFO refill of the cache
RWNT Read/Write bits required for Windows NT
0 Reserved. Must be written as zeroes; returns zeroes when read

Table 4.13 Cache Tag Register Fields
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Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the
8-bit ASID (if the Global bit, G, is not set) of the virtual address to the ASID
of the TLB entry to see if there is a match.

The following comparison is also made:

* For the 64-bit virtual addresses, the highest 15-to-27 bits (depending
upon the page size) of the virtual address are compared to the con-
tents of the TLB virtual page number.

If a TLB entry matches, the physical address and access control bits (C,
D, and V) are retrieved from the matching TLB entry. While the V bit of the
entry must be set for a valid translation to take place, it is not involved in
the determination of a matching TLB entry.

Figure 4.19 illustrates the TLB address translation process.

Virtual Address (Input) Note: For vghd_add_ress space
see the section in this chapter
that describes Operating Modes.

NO /nddress
\ Error

Exception

Exception

\

& No g Dirty
Yes
Nol
[«
S
:Access : ' i :
f Access
Main - .
Memory Cache

Physical Address (Output)

Exception Exception

Figure 4.19 TLB Address Translation
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TLB Misses

If there is no TLB entry that matches the virtual address, a TLB miss
exception occurs. If the access control bits (D and V) indicate that the
access is not valid, a TLB modification or TLB invalid exception occurs. If
the C bits equal 010,, the physical address that is retrieved accesses main
memory, bypassing the cache.

TLB Instructions
Table 4.14 lists the instructions that the CPU provides for working with
the TLB. See Appendix A for a detailed description of these instructions.

Op Code Description of Instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index
TLBWR Translation Lookaside Buffer Write Random

Table 4.14 TLB Instructions
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CPU Exception Chapter 5
Processing

This chapter describes the CPU exception processing, including an
explanation of exception processing, followed by the format and use of
each CPU exception register.

The chapter concludes with a description of each exception’s cause,
together with the manner in which the CPU processes and services these
exceptions. For information about Floating-Point Unit exceptions, see
Chapter 7.

How Exception Processing Works

The processor receives exceptions from a number of sources, including
translation lookaside buffer (TLB) misses, arithmetic overflows, 1/0
interrupts, and system calls. When the CPU detects one of these
exceptions, the normal sequence of instruction execution is suspended
and the processor enters Kernel mode (see Chapter 4 for a description of
system operating modes).

The processor then disables interrupts and forces execution of a
software exception processor (called a handler) located at a fixed address.
The handler may save the context of the processor, including the contents
of the program counter, the current operating mode (User or Supervisor),
and the status of the interrupts (enabled or disabled). This context would
be saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program
Counter (EPC) register with a location where execution can restart after the
exception has been serviced. The restart location in the EPC register is the
address of the instruction that caused the exception or, if the instruction
was executing in a branch delay slot, the address of the branch instruction
immediately preceding the delay slot.

The registers described later in the chapter assist in this exception
processing by retaining address, cause and status information.

For a description of the exception handling process, see the description
of the individual exception contained in this chapter, or the flowcharts at
the end of this chapter.

Exception Processing Registers

This section describes the CPO registers that are used in exception
processing. Table 5.1 on page 5-2 lists these registers, along with their
number—each register has a unique identification number that is referred
to as its register number. For instance, the ECC register is register number
26. The remaining CPO registers are used in memory management, as
described in Chapter 4.

Software examines the CPO registers during exception processing to
determine the cause of the exception and the state of the CPU at the time
the exception occurred. The registers in Table 5.1 are used in exception
processing, and are described in the sections that follow.
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Register Name Reg. No.
Context 4
BadVAddr (Bad Virtual Address) 8
Count 9
Compare register 11
Status 12
Cause 13
EPC (Exception Program Counter) 14
XContext 20
ECC 26
CacheErr (Cache Error and Status) 27
ErrorEPC (Error Exception Program Counter) 30

Table 5.1 CPO0 Exception Processing Registers

Context Register (4)

The Context register is a read/write register containing the pointer to an
entry in the page table entry (PTE) array; this array is an operating system
data structure that stores virtual-to-physical address translations. When
there is a TLB miss, the CPU loads the TLB with the missing translation
from the PTE array. Normally, the operating system uses the Context
register to address the current page map which resides in the kernel-
mapped segment, kseg3. The Context register duplicates some of the
information provided in the BadVAddr register, but the information is
arranged in a form that is more useful for a software TLB exception
handler. Figure 5.1 shows the format of the Context register; Table 5.2,
which follows the figure, describes the Context register fields.

Context Register
63 23 22 4 3 0

PTEBase BadVPN2 0

41 19 4

FIgUTE 5.1 CONIEXT Register Format

Field Description

BadVPN2 This field is written by hardware on a miss. It contains
the virtual page number (VPN) of the most recent virtual
address that did not have a valid translation.

PTEBase This field is a read/write field for use by the operating
system. It is normally written with a value that allows
the operating system to use the Context register as a
pointer into the current PTE array in memory.

Table 5.2 Context Register Fields

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry maps
to an even-odd page pair. For a 4-Kbyte page size, this format can directly
address the pair-table of 8-byte PTEs. For other page and PTE sizes,
shifting and masking this value produces the appropriate address.
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Bad Virtual Address Register (BadVAddr) (8)

The Bad Virtual Address register (BadVAddr) is a read-only register that
displays the most recent virtual address that caused one of the following
exceptions: Address Error (e.g., unaligned access), TLB Invalid, TLB
Modified, TLB Refill, Virtual Coherency Data Access, or Virtual Coherency
Instruction Fetch.

The processor does not write to the BadVAddr register when the EXL bit
in the Status register is set to a 1.

Figure 5.2 shows the format of the BadVAddr register.

BadVAddr Register

63 0
Bad Virtual Address I
64

Figure 5.2 BadVAddr Register Format
Note: The BadVAddr register does not save any information for bus
errors, since bus errors are not addressing errors.

Count Register (9)

The Count register acts as a timer, incrementing at a constant rate—half
the maximum instruction issue rate—whether or not an instruction is
executed, retired, or any forward progress is made through the pipeline.

This register can be read or written. It can be written for diagnostic
purposes or system initialization; for example, to synchronize processors.

Figure 5.3 shows the format of the Count register.

Count Register

31 0
Count I
32

|—|gur§ 5.9 Count R§§I§E§r Format

Compare Register (11)

The Compare register acts as a timer (see also the Count register); it
maintains a stable value that does not change on its own.

When the value of the Count register equals the value of the Compare
register, interrupt bit IP(7) in the Cause register is set. This causes an
interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer
interrupt.

For diagnostic purposes, the Compare register is a read/write register.
In normal use however, the Compare register is write-only. Figure 5.4
shows the format of the Compare register.

Compare Register
31 0

Compare I
32

Figure 5.4 Compare Register Format
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Status Register (12)

The Status register (SR) is a read/write register that contains the
operating mode, interrupt enabling, and the diagnostic states of the
processor. The following list describes the more important Status register
fields; Figure 5.5 show the format of the entire register, including
descriptions of the fields. Some of the important fields include:

e The 8-bit Interrupt Mask (IM) field controls the enabling of eight inter-
rupt conditions. Interrupts must be enabled before they can cause the
exception, and the corresponding bits are set in both the Interrupt
Mask field of the Status register and the Interrupt Pending field of the
Cause register. For more information, refer to the Interrupt Pending
(IP) field of the Cause register. IM[1:0] are the masks for the two soft-
ware interrupts while IM[7:2] correspond to Int[5:0].

e The 4-bit Coprocessor Usability (CU) field controls the usability of 4
possible coprocessors. Regardless of the CUO bit setting, CPO is al-
ways usable in Kernel mode. For all other cases, an instruction for or
access to an unusable coprocessor causes an exception.

« The 9-bit Diagnostic Status (DS) field (Status[24:16]) is used for self-
testing, and checks the cache and virtual memory system.

e The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the
machine. The processor can be configured as either little-endian or
big-endian at system reset. This selection is always used in Kernel
and Supervisor modes, and also in User mode when the RE bit is O.
Setting the RE bit to 1 inverts the User mode endianness.

Status Register Format
Figure 5.5 shows the format of the Status register. Table 5.3, which
follows the figure, describes the Status register fields.

- DS »
31 28A2726 25 2423A22A21A20A19A18A17A16 15 8 7 6.5A4 3A2 1 0
C_U O|FRIRE| O BEV| 0 | SR| 0 | CH|CE|DE IM KX[SX| UX|KSU|ERL EXL| IE
(Cu3:.Cu0)
4 11 1 2 1 1 1 1 1 1 1 8 1 11 2 1 1 1

Figure 5.5 Status Register




CPU Exception Processing Chapter 5

Field Description

CuU Controls the usability of each of the four coprocessor unit numbers. CPO is always usable
when in Kernel mode, regardless of the setting of the CUq bit.

1 - usable 0 - unusable

FR Enables additional floating-point registers
0 - 16 registers 1 - 32 registers

RE Reverse-Endian bit, valid in User mode.

BEV Controls the location of TLB refill and general exception vectors.
0 - normal 1- bootstrap

SR 1- Indicates a soft reset or NMI has occurred.

CH Hit (tag match and valid state) or miss indication for last CACHE Hit Invalidate, Hit Write
Back Invalidate, Hit Write Back, or Hit Set Virtual for a primary cache.

0 - miss 1 - hit

CE Contents of the ECC register set or modify the check bits of the caches when CE = 1; see
description of the ECC register.

DE Specifies that cache parity errors cannot cause exceptions.

0 - parity remains enabled 1 - disables parity

0 Reserved. Must be written as zeroes, and returns zeroes when read.

IM Interrupt Mask: controls the enabling of each of the external, internal, and software inter-
rupts. An interrupt is taken if interrupts are enabled, and the corresponding bits are set in
both the Interrupt Mask field of the Status register and the Interrupt Pending field of the Cause
register. IM[7:2] correspond to interrupts Int[5:0] and IM[1:0] to the software interrupts.

0 - disabled 1- enabled

KX KX controls whether the TLB Refill Vector or the XTLB Refill Vector address is used for TLB

misses on kernel addresses
0 - TLB Refill Vector 1 - XTLB Refill Vector

SX Enables 64-bit virtual addressing and operations in Supervisor mode. The extended-address-

ing TLB refill exception is used for TLB misses on supervisor addresses.
0 - 32-bit 1 - 64-bit
UX Enables 64-bit virtual addressing and operations in User mode. The extended-addressing TLB
refill exception is used for TLB misses on user addresses.
0 - 32-bit 1 - 64-bit
KSU Mode bits
10, - User 01, - Supervisor 00, - Kernel
ERL Error Level
0 - normal 1 - error
EXL Exception Level
0 - normal 1 - exception
Note: When going from O to 1, IE should be disabled (0) first. This would be done when pre-
paring to return from the exception handler, such as before executing the ERET instruction.
IE Interrupt Enable
0 - disable interrupts 1 — enables interrupts

Table 5.3 Status Register Fields
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Status Register Modes and Access States
Fields of the Status register set the modes and access states described
in the sections that follow.

Interrupt Enable: Interrupts are enabled when all of the following
conditions are true:

e IE=1

e EXL=0

e« ERL=0

If these conditions are met, the settings of the IM bits identify the
interrupt.

Note: Setting the IE bit may be delayed by up to 3 cycles. If performing

nested interrupts, re-enable the IE bit first.

Operating Modes: The following CPU Status register bit settings are
required for User, Kernel, and Supervisor modes (see Chapter 4 for more
information about operating modes).

e The processor is in User mode when KSU = 10,, EXL =0, and ERL = 0.

e The processor is in Supervisor mode when KSU = 01,, EXL = 0, and

ERL = 0.
e The processor is in Kernel mode when KSU = 00,, or EXL = 1, or ERL
=1.

32- and 64-bit Virtual Addressing: The following CPU Status register
bit settings select 32- or 64-bit virtual addressing for User and Supervisor
operating modes. Enabling 64-bit virtual addressing permits the execution
of 64-bit opcodes and translation of 64-bit virtual addresses. 64-bit virtual
addressing for User and Supervisor modes can be set independently but is
always used for Kernel mode.

e The KX field controls whether the TLB Refill Vector or the XTLB Refill
Vector address is used for TLB misses on Kernel addresses. 64-bit op-
codes are always valid in Kernel mode.

e 64-bit addressing and operations are enabled for Supervisor mode

when SX = 1.
e 64-bit addressing and operations are enabled for User mode when UX
=1.

Kernel Address Space Accesses: Access to the kernel address space is
allowed when the processor is in Kernel mode.

Supervisor Address Space Accesses: Access to the supervisor address
space is allowed when the processor is in Kernel or Supervisor mode, as
described above in the paragraph titled Operating Modes.

User Address Space Accesses: Access to the user address space is
allowed in any of the three operating modes.

Status Register Reset

The contents of the Status register are undefined at reset, except for the
following bits — ERL and BEV = 1.

The SR bit distinguishes between Reset and Soft Reset (Nonmaskable
Interrupt [NMI]).
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Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most
recent exception.

Figure 5.6 shows the fields of this register; Table 5.4, which follows the
figure, describes the Cause register fields. A 5-bit exception code (ExcCode)
indicates the cause of the most recent exception, as listed in Table 5.5 on
page 5-8.

All bits in the Cause register, with the exception of the IP(1:0) bits, are
read-only; IP(1:0) are used for software interrupts.

Cause Register

31 30 29 28 27 16 15 876 21 0
BD 0| CE 02\2 IP o &€ 1o
11 2 12 8 1 5 2

Eigure 5.6 Cause ﬁegister Format

Field Description

BD Indicates whether the last exception taken occurred in a branch delay slot.
1 - delay slot
0 - normal

CE Coprocessor unit number referenced when a Coprocessor Unusable excep-

tion is taken.

IP Indicates an interrupt is pending.
1 - interrupt pending
0 - no interrupt

ExcCode Exception code field (see Table 5.5 on page 5-8)

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.4 Cause Register Fields
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Exception | Mnemonic | Description

Code

Value

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)
8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 — Reserved

15 FPE Floating-Point exception

16-31 — Reserved

Table 5.5 Cause Register ExcCode Field

Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that
contains the address at which processing resumes after an exception has
been serviced.

For synchronous exceptions, the EPC register contains either:

« the virtual address of the instruction that was the direct cause of the

exception, or

e the virtual address of the immediately preceding branch or jump in-

struction (when the instruction is in a branch delay slot, and the
Branch Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the
Status register is set to a 1.

Figure 5.7 shows the format of the EPC register.

EPC Register
63 0

EPC

64

Figure 5.7 EPC Register Format
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XContext Register (20)

The read/write XContext register contains a pointer to an entry in the
page table entry (PTE) array, an operating system data structure that
stores virtual-to-physical address translations. When there is a TLB miss,
the operating system software loads the TLB with the missing translation
from the PTE array. The XContext register duplicates some of the
information provided in the BadVAddr register, and puts it in a form useful
for a software TLB exception handler.

The XContext register is for use with the XTLB refill handler, which loads
TLB entries for references to a 64-bit address space, and is included solely
for operating system use. The operating system sets the PTE base field in
the register, as needed. Normally, the operating system uses the XContext
register to address the current page map, which resides in the kernel-
mapped segment kseg3.

Figure 5.8 shows the format of the XContext register; Table 5.6, which
follows the figure, describes the XContext register fields.

XContext Register

63 33 32 3130 4 3 0
PTEBase R BadVPN2 0
31 2 27 4

Figure 5.8 XContext Register Format

The 27-bit BadVPN2 field has bits 39:13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry maps
to an even-odd page pair. For a 4-Kbyte page size, this format may be used
directly to address the pair-table of 8-byte PTEs. For other page and PTE
sizes, shifting and masking this value produces the appropriate address.

Field Description

BadVPN2 | The Bad Virtual Page Number/2 field is written by hardware on a
miss. It contains the VPN of the most recent invalidly translated vir-
tual address.

R The Region field contains bits 63:62 of the virtual address.
00, = user

01, =supervisor

11, =kernel.

PTEBase | The Page Table Entry Base read/write field is normally written with
a value that allows the operating system to use the Context register
as a pointer into the current PTE array in memory.

Table 5.6 XContext Register Fields

Error Checking and Correcting (ECC) Register (26)

The 8-bit Error Checking and Correcting (ECC) register reads or writes
primary-cache data parity bits for cache initialization, cache diagnostics,
or cache error processing. (Tag parity is loaded from and stored to the
TagLo register.)

The ECC register is loaded by the Index Load Tag CACHE operation.
Content of the ECC register is:

e written into the primary data cache on store instructions (instead of

the computed parity) when the CE bit of the Status register is set

e substituted for the computed instruction parity for the CACHE oper-

ation Fill

To force a cache parity value use the Status CE bit and the ECC register.

5-9
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Figure 5.9 shows the format of the ECC register; Table 5.7, which follows
the figure, describes the register fields.

ECC Register
31 8 7 0

0 ‘ ECC

24 8

Figure 5.9 ECC RKedister Formmat

Field Description

An 8-bit field specifying the parity bits read from or

ECC written to a primary cache.

Reserved. Must be written as zeroes, and returns
zeroes when read.

Table 5.7 ECC Register Fields

Cache Error (CacheErr) Register (27)

The 32-bit read-only CacheErr register processes parity errors in the
primary cache. Parity errors cannot be corrected.

The CacheErr register holds cache index and status bits that indicate
the source and nature of the error; it is loaded when a Cache Error
exception is asserted. When a read response returns with bad parity this
exception is also asserted.

Figure 5.10 shows the format of the CacheErr register; , which follows
the figure, describes the CacheErr register fields.

CacheErr Register

31 30 29 28 27 26 25 24 23 22 21 3 2 0
ER|EC|ED|ET|ES|EE|EB| 0 | 0 | O Sldx Pldx
1111111111 19 0 2

Figure 5.10 Cacnecrr Redgister Format
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Field Description
Type of reference
ER 0 - instruction
1 - data

Cache level of the error
EC 0 - primary
1 - reserved

Indicates if a data field error occurred
ED 0 - noerror
1 - error

Indicates if a tag field error occurred
ET 0 - noerror
1 - error

Indicates the error occurred accessing processor-managed resources, in response to an external
request.

0 - internal reference
ES 1 - external reference

Since the R4600/R4700 doesn’t have any external events that would look in a cache (which is
the only processor-managed resource), this bit would not be set under normal operating

conditions.
EE Set if the error occurred on the SysAD bus.
Taking a cache error exception sets/clears this bit.
EB Set if a data error occurred in addition to the instruction error (indicated by the remainder of

the bits). If so, this requires flushing the data cache after fixing the instruction error.

Physical address 21:3 of the reference that encountered the error.

Sldx | The address may not be the same as the address of the double word in error, but it is sufficient
to locate that double word in the secondary cache.

Virtual address 13:12 of the double word in error.

Pldx To be used with Sldx to construct a virtual index for the primary caches. Only the lower two
bits (bits 1 and 0) are vAddr; the high bit (bit 2) is zero.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.8 CacheErr Register Fields

Error Exception Program Counter (Error EPC) Register (30)

The ErrorEPC register is similar to the EPC register, except that ErrorEPC
is used on parity error exceptions. It is also used to store the program
counter (PC) on Reset, Soft Reset, and nonmaskable interrupt (NMI)
exceptions.

The read/write ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address
can be:

< the virtual address of the instruction that caused the exception

e the virtual address of the immediately preceding branch or jump in-

struction, when this address is in a branch delay slot.

There is no branch delay slot indication for the ErrorEPC register.
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Figure 5.11 shows the format of the ErrorEPC register.

ErrorEPC Register

63 0
ErrorEPC I
64

Eigure 5.11 ErforEPC Register Format

Processor Exceptions

This section describes the processor exceptions—it describes the cause
of each exception, its processing by the hardware, and servicing by a
handler (software). The types of exception, with exception processing
operations, are described in the next section.

Exception Types

This section gives sample exception handler operations for the following
exception types:

e reset

e soft reset

 nonmaskable interrupt (NMI)

e cache error

e remaining processor exceptions

When the EXL bit in the Status register is 0, either User or Supervisor
operating mode is specified by the KSU bits in the Status register. When
the EXL bit or the ERL bit is a 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, which
means the system is in Kernel mode. After saving the appropriate state, the
exception handler typically resets the EXL bit back to 0. When restoring
the state and restarting, the handler sets the EXL bit back to 1.

Returning from an exception, also resets the EXL bit to O (see the ERET
instruction in Appendix A).

In the following sections, sample hardware processes for various
exceptions are shown, together with the servicing required by the handler
(software).

Reset Exception Process
Figure 5.12 shows the Reset exception process.

Wired

SR ~
PC —

T: undefined
Random —~ TLBENTRIES-1

Config <- 0 || EC || EP || 00000000 || BE || 110 || 010|010 |j 1|1 ]| O] undefined?®
ErrorEPC ~ PC

4—0

SR31:23 I L]| O[O || SR1g:3 || 1 |l SR1:0
OXFFFF FFFF BFCO 0000

Figure 5.12 Reset Exception Processing
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Cache Error Exception Process
Figure 5.13 shows the Cache Error exception process.

T:

ErrorEPC ~ PC
CacheErr — ER||EC ||ED || ET || ES || EE || EB || 0%°
SR « SR31:3 || 1||SR1
if SRy, = 1 then /* What is the BEV bit setting */

PC ~ OxFFFF FFFF BFCO 0200 + 0x100 /* access boot-PROM area */
else

PC ~ OxFFFF FFFF A000 0000 + 0x100 /* access main memory area */
endif

Figure 5.13 Cache Error Exception Processing

Soft Reset and NMI Exception Process
Figure 5.14 shows the Soft Reset and NMI exception process.

T: ErrorEPC ~ PC
SR « SR31:23 || 1| O[] 1 || SR1g:3 | 1 || SR1-0
PC — OxFFFF FFFF BFCO 0000

Figure 5.14 Soft Reset and NMI Exception Processing

General Exception Process
Figure 5.15 shows the process used for exceptions other than Reset, Soft
Reset, NMI, and Cache Error.

if SR

else

endif

T: Cause — BD || 0| CE || 0'? || Cause;s.g || O || ExcCode || 02

if SRy =0 then [* system in User or Supervisor mode with no current exception */
EPC - PC
endif

SR « SR3;:, || 1] SRO
PC ~ OxFFFF FFFF BFCO 0200 + vector /* access to uncached space */

PC ~ OxFFFF FFFF 8000 0000 + vector /* access to cached space */

2o = 1 then /* What is the BEV bit setting */

Figure 5.15 General Exception Processing (Except Reset, Soft Reset, NMI,
and Cache Error)

Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to
location OXFFFF FFFF BFCO 0000 (virtual address), corresponding to
ksegO.

Addresses for all other exceptions are a combination of a vector offset
and a base address. The base address is determined by the BEV bit of the
Status register, as shown in Table 5.9.
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Table 5.10 shows the vector offset that is added to the base address to
create the exception address.

BEV | R4600/R4700 Processor Vector Base | Cache Error Base
0 | OxFFFF FFFF 8000 0000 OXFFFF FFFF A000 0000
1 | OxFFFF FFFF BFCO 0200 OxFFFF FFFF BFC0 0200

Table 5.9 Exception Vector Base Addresses

As shown in Table 5.9, when BEV = 0, the vector base for the Cache
Error exception changes from ksegO (OxFFFF FFFF 8000 0000) to ksegl
(OXFFFF FFFF AOOO 0000).

When BEV = 1, the vector base for the Cache Error exception is OXxFFFF
FFFF BFCO 0200. This is an uncached and unmapped space, allowing the
exception to bypass the cache and TLB.

Exception R4600/R4700 Processor
Vector Offset
TLB refill, EXL =0 0x000
XTLB refill, EXL = 0 (X = 64-bit TLB) 0x080
Cache Error 0x100
Others 0x180

Table 5.10 Exception Vector Offsets

Priority of Exceptions

The remainder of this chapter describes exceptions in the order of their
priority, as shown in Table 5.11. While more than one exception can occur
for a single instruction, only the exception with the highest priority is

reported.
Exception Priority

1 | Reset (highest priority) 9 | Integer overflow, Trap, System Call, Break-
point, Reserved Instruction, Coprocessor
Unusable, or Floating-Point Exception

2 | Soft Reset 10 | Address error — Data access

3 | Nonmaskable Interrupt (NMI) 11 | TLB refill — Data access

4 | Address error — Instruction fetch 12 | TLB invalid — Data access

5 | TLB refill — Instruction fetch 13 | TLB modified — Data write

6 | TLB invalid — Instruction fetch 14 | Cache error — Data access

7 | Cache error — Instruction fetch 15 | Bus error — Data access

8 | Bus error — Instruction fetch 16 | Interrupt (lowest priority)

Table 5.11 Exception Priority Order

Generally speaking, the exceptions described in the following sections
are handled (“processed”) by hardware; these exceptions are then serviced
by software.
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Reset Exception

This section explains the Reset exception.
Cause

The Reset exception occurs when the ColdReset*! signal is asserted and
then deasserted. This exception is not maskable.

Processing
The CPU provides a special exception vector for this exception of:
OxFFFF FFFF BFCO 0000
The Reset vector resides in unmapped and uncached CPU address
space, so the hardware need not initialize the TLB or the cache to process
this exception. It also means the processor can fetch and execute
instructions while the caches and virtual memory are in an undefined
state.
The contents of all registers in the CPU are undefined when this
exception occurs, except for the following register fields:
e In the Status register, SR is cleared to O, and ERL and BEV are set to
1. All other bits are undefined.
e The Random register is initialized to the value of its upper bound.
 The Wired register is initialized to 0.
< Some of the Config Register bits are initialized from the boot-time
mode stream.
Reset exception processing is shown in Figure 5.12 on page 12.

Servicing
The Reset exception is serviced by:
< initializing all processor registers, coprocessor registers, caches, and
the memory system
performing diagnostic tests
* bootstrapping the operating system

L 1n the followi ng sections (and throughout this manual) a signal followed by an
asterisk, such as Reset*, islow active.

5-15
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Soft Reset Exception
This section explains the Soft Reset exception.

Cause

The Soft Reset exception occurs in response to the Reset* input signal,
and execution begins at the Reset vector when Reset* is deasserted. This
exception is not maskable.

Processing

The Reset exception vector is used for this exception, located within
unmapped and uncached address space so that the cache and TLB need
not be initialized to process this exception. When a Soft Reset occurs, the
SR bit of the Status register is set to distinguish this exception from a Reset
exception.

The primary purpose of the Soft Reset exception is to reinitialize the
processor after a fatal error during normal operations. Unlike an NMI, all
cache and bus state machines are reset by this exception. Like Reset, it
can be used on the processor in any state; the caches, TLB, and normal
exception vectors need not be properly initialized. Soft Reset preserves the
state of the caches and memory system, while resetting the bus state and
cache state machine.

When this exception occurs, the contents of all registers are preserved
except for:

e ErrorEPC register, which contains the restart PC

« ERL bit of the Status register, which is set to 1

* SR bit of the Status register, which is set to 1

e BEV bit of the Status register, which is set to 1

Because the Soft Reset can abort cache and bus operations, cache and
memory state is undefined when this exception occurs.

Soft reset exception processing is shown in Figure 5.14 on page 13.

Servicing
The Soft Reset exception is serviced by saving the current processor
state for diagnostic purposes, and reinitializing for the Reset exception.
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Nonmaskable Interrupt (NMI) Exception
This section explains the Nonmaskable Interrupt exception.

Cause

The Nonmaskable Interrupt (NMI) exception occurs in response to the
falling edge of the NMI pin, or an external write to the Int*[6] bit of the
Interrupt register.

Unlike all other interrupts, this interrupt is not maskable; it occurs
regardless of the settings of the EXL, ERL, and the IE bits in the Status
register.

Processing

The Reset exception vector is used for this exception. This vector is
located within unmapped and uncached address space so that the cache
and TLB need not be initialized to process an NMI interrupt. When an NMI
exception occurs, the SR bit of the Status register is set to differentiate this
exception from a Reset exception.

Because an NMI can occur in the midst of another exception, it is not
normally possible to continue program execution after servicing an NMI.

Unlike Reset and Soft Reset, but like other exceptions, NMI is taken only
at instruction boundaries. The state of the caches and memory system are
preserved by this exception.

To terminate a pending read that has hung the best approach is to
return a bus error. However, if you wish to use a CPU exception to indicate
a hung read, Soft Reset is preferable to NMI.

When this exception occurs, the contents of all registers are preserved
except for:

e ErrorEPC register, which contains the restart PC

« ERL bit of the Status register, which is set to 1

* SR bit of the Status register, which is set to 1

e BEV bit of the Status register, which is set to 1

NMI exception processing is shown in Figure 5.14 on page 13.

Servicing
The NMI exception is serviced by saving the current processor state for
diagnostic purposes, and reinitializing the system for the Reset exception.
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Address Error Exception
This section explains the Address Error exception.

Cause
The Address Error exception occurs when an attempt is made to execute
one of the following:
e load or store a doubleword that is not aligned on a doubleword
boundary (except for use of special instruction)
« load, fetch, or store a word that is not aligned on a word boundary
(except for use of special instruction)
< load or store a halfword that is not aligned on a halfword boundary
« reference the kernel address space from User or Supervisor mode
« reference the supervisor address space from User mode
This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or
AdES code in the Cause register is set, indicating whether the instruction
(shown by the EPC register and BD bit in the Cause register) caused the
exception with an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr register retains the virtual
address that was not properly aligned or referenced protected address
space. The contents of the VPN field of the Context and EntryHi registers
are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the
exception, unless this instruction is in a branch delay slot. If it is in a
branch delay slot, the EPC register contains the address of the preceding
branch instruction and the BD bit of the Cause register is set as indication.

Address Error exception processing is shown in Figure 5.15 on page 13.

Servicing

Typically the process executing at the time is handed a segmentation
violation signal. This error is usually fatal to the process incurring the
exception.

To resume execution, the EPC register must be altered so that the
unaligned reference instruction does not re-execute; this is accomplished
by adding a value of 4 to the EPC register (EPC register + 4) before
returning.

If an unaligned reference instruction is in a branch delay slot,
interpretation of the branch instruction is required to resume execution.
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TLB Exceptions

This section explains the TLB Exceptions. For specifics on the

exceptions listed here, refer to the following three subsections.

Three types of TLB exceptions can occur:

e TLB Refill occurs when there is no TLB entry that matches an at-
tempted reference to a mapped address space.

e TLB Invalid occurs when a virtual address reference matches a TLB
entry that is marked invalid.

e TLB Modified occurs when a store operation virtual address reference
to memory matches a TLB entry which is marked valid but is not dirty
(the entry is not writable).

The following three subsections describe the TLB exceptions.

TLB Refill Exception
This subsection explains the TLB refill exception.

Cause
The TLB refill exception occurs when there is no TLB entry to match a
reference to a mapped address space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for
references to 32-bit virtual address spaces, and one for references to 64-
bit virtual address spaces. The UX, SX, and KX bits of the Status register
determine whether the user, supervisor or kernel address spaces
referenced are 32-bit or 64-bit spaces. All references use these vectors
when the EXL bit is set to O in the Status register. This exception sets the
TLBL or TLBS code in the ExcCode field of the Cause register. This code
indicates whether the instruction, as shown by the EPC register and the
BD bit in the Cause register, caused the miss by an instruction reference,
load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers hold the virtual address that failed address translation.
The EntryHi register also contains the ASID from which the translation
fault occurred. The Random register normally suggests a valid location in
which to place the replacement TLB entry. The contents of the EntryLo
register are undefined. The EPC register contains the address of the
instruction that caused the exception, unless this instruction is in a
branch delay slot, in which case the EPC register contains the address of
the preceding branch instruction and the BD bit of the Cause register is
set.

TLB Refill exception processing is shown in Figure 5.15 on page 13.

Servicing

To service this exception, the contents of the Context or XContext register
are used as a virtual address to fetch memory locations containing the
physical page frame and access control bits for a pair of TLB entries. The
two entries are placed into the EntryLoO/EntryLol register; the EntryHi
and EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical address
and access control information is on a page that is not resident in the TLB.
This condition is processed by allowing a TLB refill exception in the TLB
refill handler. This second exception goes to the common exception vector
because the EXL bit of the Status register is set.
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TLB Invalid Exception
This subsection explains the TLB invalid exception.

Cause

The TLB invalid exception occurs when a virtual address reference
matches a TLB entry that is marked invalid (TLB valid bit cleared). This
exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or
TLBS code in the ExcCode field of the Cause register is set. This indicates
whether the instruction, as shown by the EPC register and BD bit in the
Cause register, caused the miss by an instruction reference, load
operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers contain the virtual address that failed address
translation. The EntryHi register also contains the ASID from which the
translation fault occurred. The Random register normally contains a valid
location in which to put the replacement TLB entry. The contents of the
EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the
exception unless this instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

TLB Invalid exception processing is shown in Figure 5.15 on page 13.

Servicing

A TLB entry is typically marked invalid when one of the following is true:

e avirtual address does not exist

e the virtual address exists, but is not in main memory (a page fault)

e atrap is desired on any reference to the page (for example, to main-

tain a reference bit or during debug)

After servicing the cause of a TLB Invalid exception, the TLB entry is
located with TLBP (TLB Probe), and replaced by an entry with that entry’s
Valid bit set.
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TLB Modified Exception
This subsection explains the TLB modified exception.

Cause

The TLB modified exception occurs when a store operation virtual
address reference to memory matches a TLB entry that is marked valid but
is not dirty and therefore is not writable. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Mod
code in the Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers contain the virtual address that failed address
translation. The EntryHi register also contains the ASID from which the
translation fault occurred. The contents of the EntrylLo registers are
undefined.

The EPC register contains the address of the instruction that caused the
exception unless that instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

TLB Modified exception processing is shown in Figure 5.15 on page 13.

Servicing

The kernel uses the failed virtual address or virtual page number to
identify the corresponding access control information. The page identified
may or may not permit write accesses; if writes are not permitted, a write
protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable
by the kernel in its own data structures. The TLBP instruction places the
index of the TLB entry that must be altered into the Index register. The
EntryLo register is loaded with a word containing the physical page frame
and access control bits (with the D bit set), and the EntryHi and EntryLo
registers are written into the TLB.
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Cache Error Exception
This section explains the Cache Error exception.

Cause
The Cache Error exception occurs when a primary cache parity error is
detected. This exception is maskable by the DE bit of the Status register.

Processing

The processor sets the ERL bit in the Status register, saves the exception
restart address in ErrorEPC register, and then transfers to a special vector
in uncached space:

If the BEV bit = 0, the vector is OxFFFF FFFF AO0OO 0100.
If the BEV bit = 1, the vector is OXFFFF FFFF BFCO 0300.
No other registers are changed.

Cache Error exception processing is shown in Figure 5.13 on page 13.

Servicing
All errors should be logged. To correct cache parity errors the system
uses the CACHE instruction to invalidate the cache block, overwrites the
old data through a cache miss, and resumes execution with an ERET.
Other errors are not correctable and are likely to be fatal to the current
process.
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Bus Error Exception
This section explains the Bus Error exception.

Cause

A Bus Error exception is raised by board-level circuitry for events such
as bus time-out, backplane bus parity errors, and invalid physical memory
addresses or access types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached
reference, or unbuffered write occurs synchronously; a Bus Error
exception resulting from a buffered write transaction must be reported
using the general interrupt mechanism.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE
or DBE code in the ExcCode field of the Cause register is set, signifying
whether the instruction (as indicated by the EPC register and BD bit in the
Cause register) caused the exception by an instruction reference, load
operation, or store operation.

The EPC register contains the address of the instruction that caused the
exception, unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of
the Cause register is set. Bus Error processing is shown in Figure 5.15 on
page 13.

Servicing
The physical address at which the fault occurred can be computed from
information available in the CPO registers.

e If the IBE code in the Cause register is set (indicating an instruction
fetch reference), the virtual address is contained in the EPC register.

< If the DBE code is set (indicating a load or store reference), the in-
struction that caused the exception is located at the virtual address
contained in the EPC register (or 4+ the contents of the EPC register
if the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained
by interpreting the instruction. The physical address can be obtained by
using the TLBP instruction and reading the EntrylLo register to compute
the physical page number.

The process executing at the time of this exception is handed a bus error
signal, which is usually fatal.
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Integer Overflow Exception
This section explains the Integer Overflow exception.

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,
DADDI or DSUB! instruction results in a 2's complement overflow. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the OV
code in the Cause register is set.

The EPC register contains the address of the instruction that caused the
exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Integer Overflow exception processing is shown in Figure 5.15 on
page 13.

Servicing

The process executing at the time of the exception is handed a floating-
point exception/integer overflow signal. This error is usually fatal to the
current process.

1. see Appendix A for instruction description.
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Trap Exception
This section explains the Trap exception.

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE,
TGEI, TGEUI, TLTI, TLTUI, TEQI, or TNEI! instruction results in a TRUE
condition. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code
in the Cause register is set.

The EPC register contains the address of the instruction causing the
exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Trap exception processing is shown in Figure 5.15 on page 13.

Servicing
The process executing at the time of a Trap exception is handed a
floating-point exception/integer overflow signal. This error is usually fatal.

L See Appendix A for instruction description.

5-25
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System Call Exception
This section explains the System Call exception.

Cause
A System Call exception occurs during an attempt to execute the
SYSCALL instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys
code in the Cause register is set.

The EPC register contains the address of the SYSCALL instruction
unless it is in a branch delay slot, in which case the EPC register contains
the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the
Status register is set; otherwise this bit is cleared.

System Call exception processing is shown in Figure 5.15 on page 13.

Servicing

When this exception occurs, control is transferred to the applicable
system routine.

To resume execution, the EPC register must be altered so that the
SYSCALL instruction does not re-execute; this is accomplished by adding
a value of 4 to the EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated
algorithm, beyond the scope of this description, may be required.
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Breakpoint Exception
This section explains the Breakpoint exception.

Cause
A Breakpoint exception occurs when an attempt is made to execute the
BREAK instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code
in the Cause register is set.

The EPC register contains the address of the BREAK instruction unless
it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the
Status register is set, otherwise the bit is cleared.

Breakpoint exception processing is shown in Figure 5.15 on page 13.

Servicing

When the Breakpoint exception occurs, control is transferred to the
applicable system routine. Additional distinctions can be made by
analyzing the unused bits of the BREAK instruction (bits 25:6), and
loading the contents of the instruction whose address the EPC register
contains. A value of 4 must be added to the contents of the EPC register
(EPC register + 4) to locate the instruction if it resides in a branch delay
slot.

To resume execution, the EPC register must be altered so that the
BREAK instruction does not re-execute; this is accomplished by adding a
value of 4 to the EPC register (EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the
branch instruction is required to resume execution.
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Reserved Instruction Exception
This section explains the Reserved Instruction exception.

Cause
The Reserved Instruction exception occurs when one of the following
conditions occurs:
e an attempt is made to execute an instruction with an undefined major
opcode (bits 31:26)
e an attempt is made to execute a SPECIAL instruction with an unde-
fined minor opcode (bits 5:0)
e an attempt is made to execute a REGIMM instruction with an unde-
fined minor opcode (bits 20:16)
e an attempt is made to execute 64-bit operations in 32-bit virtual ad-
dressing when in User or Supervisor modes
64-bit operations are always valid in Kernel mode regardless of the value
of the KX bit in the Status register.
This exception is not maskable.
Reserved Instruction exception processing is shown in Figure 5.15 on
page 13.

Processing

The common exception vector is used for this exception, and the RI code
in the Cause register is set.

The EPC register contains the address of the reserved instruction unless
it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process
executing at the time of this exception is handed an illegal instruction/
reserved operand fault signal. This error is usually fatal.
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Coprocessor Unusable Exception
This sections explains the Coprocessor Unusable exception.

Cause
The Coprocessor Unusable exception occurs when an attempt is made
to execute a coprocessor instruction for either:
e a corresponding coprocessor unit that has not been marked usable,
or
e CPO instructions, when the unit has not been marked usable and the
process executes in User mode.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU
code in the Cause register is set. The contents of the Coprocessor Usage
Error field of the coprocessor Control register indicate which of the four
coprocessors was referenced. The EPC register contains the address of the
unusable coprocessor instruction unless it is in a branch delay slot, in
which case the EPC register contains the address of the preceding branch
instruction.

Coprocessor Unusable exception processing is shown in Figure 5.15 on
page 13.

Servicing
The coprocessor unit to which an attempted reference was made is
identified by the Coprocessor Usage Error field, which results in one of the
following situations:
< If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the corresponding user state is restored to the co-
processor.
< If the process is entitled access to the coprocessor, but the coproces-
sor does not exist or has failed, interpretation of the coprocessor in-
struction is possible.
< If the BD bit is set in the Cause register, the branch instruction must
be interpreted; then the coprocessor instruction can be emulated and
execution resumed with the EPC register advanced past the coproces-
sor instruction.
« If the process is not entitled access to the coprocessor, the process ex-
ecuting at the time is handed an illegal instruction/privileged instruc-
tion fault signal. This error is usually fatal.
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Floating-Point Exception
This sections explains the Floating-Point exception.

Cause
The Floating-Point exception is used by the floating-point coprocessor.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the FPE
code in the Cause register is set.

The contents of the Floating-Point Control/Status register indicate the
cause of this exception.

Floating-Point exception processing is shown in Figure 5.15 on page 13.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-
Point Control/Status register.

For an unimplemented instruction exception, the kernel should emulate
the instruction; for other exceptions, the kernel should pass the exception
to the user program that caused the exception.
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Interrupt Exception
This sections explains the Interrupt exception.

Cause

The Interrupt exception occurs when one of the eight interrupt
conditions is asserted. The significance of these interrupts is dependent
upon the specific system implementation.

Each of the eight interrupts can be masked by clearing the
corresponding bit in the Int-Mask field of the Status register, and all of the
eight interrupts can be masked at once by clearing the IE bit of the Status
register.

Processing

The common exception vector is used for this exception, and the Int code
in the Cause register is set.

The IP field of the Cause register indicates current interrupt requests. It
is possible that more than one of the bits can be simultaneously set (or
even no bits may be set if the interrupt is asserted and then deasserted
before this register is read).

Interrupt exception processing is shown in Figure 5.15 on page 13.

Servicing

If the interrupt is caused by one of the two software-generated
exceptions (SW1 or SWO0), the interrupt condition is cleared by setting the
corresponding Cause register bit to 0.

If the interrupt is hardware-generated, the interrupt condition is cleared
by correcting the condition causing the interrupt pin to be asserted.

NOTE: due to the write buffer, a store to an external device will not
necessarily occur until after other instructions in the pipeline finish. Thus,
the user must ensure that the store will occur before the return from
exception instruction (ERET) is executed otherwise the interrupt may be
serviced again even though there should be no interrupt pending.
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Exception Handling and Servicing Flowcharts

The remainder of this chapter contains figures of flowcharts for the
exceptions described in Table 5.12, and guidelines for their handlers.

Figure Description

Figure 5.16, | General exceptions and their exception handler
Figure 5.17

Figure 5.18, | TLB/XTLB miss exception and their exception handler
Figure 5.19

Figure 5.20 | Cache error exception and its handler

Figure 5.21 | Reset, soft reset and NMI exceptions, and a guideline to
their handler.

Table 5.12 List of Exception Flowcharts

Generally speaking, the exceptions are handled by hardware (HW), and
then the exceptions are serviced by software (SW).
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Comments

Set FP Control Status Register| +kp control Status Register is only set
Enhi — VPN2, ASID if the respective exception occurs.
Context  VPN2 EnHi, X/Context are set only for

TLB- Invalid, Modified,

Set Cause Register & Refill exceptions

EXCCode, CE

Instr. in
Br.Dly. Slot?

Yes

Y
Cause 31 (BD) ~ 1 Cause 31 (BD) 0

Check if exception within
another exception

Y
EXL =1
(SR1) >
=0
BadVA is set only for
Set BadVA Set BadVA TLB- Invalid, Modified,
) Refill- and VCED/I exceptions
EPC - (PC-4) EPC - PC Note: not set if Bus Error
| _ Exception
Y
EXL « 1 Processor forced to Kernel Mode
& interrupt disabled

=0 (normal) =1 (bootstrap)

Y (Base is sign extended for 64 bits) Y
PC ~ OxFFFF FFFF 8000 0000 PC ~ OxFFFF FFFF BFCO0 0200
+180 +180
(unmapped, cached) (unmapped, uncached)

| el |
: 2

To General Exception Servicing Guidelines

Exceptions other than Reset, Soft Reset, NMI, CacheErr or first-level TLB miss
Note: Interrupts can be masked by IE or IMs

Eigure 5.16 General Exception Handler (HW)

Chapter 5
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Comments
MFCO - * Unmapped vector so TLBMod, TLBInv,
X/Context TLB Refill exceptions not possible
EPC
Status * EXL=1 so Interrupt exceptions disabled
Cause
* OS/System to avoid all other exceptions
*Only CacheErr, Reset, Soft Reset, NMI
exceptions possible.
MTCO -
(Set Status Bits:)
KSU « 00
E)I(IE_—E 0 (optional - only to enable Interrupts while keeping Kernel Mode)

* After EXL=0, all exceptions allowed.
Check CAUSE REG. & Jump to (except interrupt if masked by IE or IM
appropriate Service Code and CachekErr if masked by DE)

v

Service Code

'

v

MTCO -

EPC
STATUS

* Processor does not execute the instruction which is
ERET in the ERET'’s branch delay slot

* ERET is not allowed in the branch delay slot of
another Jump Instruction

*PC - EPC;EXL ~ O
* LLbit — O

Eigure 5.17 General Exception Servicing Guidelines (SW)
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Instr. in
Br.Dly. Slot?

Yes

\

Enhi — VPN2, ASID Enhi « VPN2, ASID

Context — VPN2 Context — VPN2

Set Cause Reg. Set Cause Reg.
EXCCode, CE and EXCCode, CE and
Cause bit 31 (BD) ~ 1 Cause bit 31 (BD) —~ 0

Check if exception within
Y another exception

EXL =1
(SR bit 1)

=0

Set BadVA Set BadVA
EPC — (PC-4) EPC - PC
[

"y

[
v XTLB N

Instruction?
v Ty ‘

Vec. Off. = 0x080 Vec. Off. = 0x000 Vec. Off. = 0x180

Points to Refill Exception '¢‘ "~ Points to General Exception

EXL . 1 Processor forced to Kernel Mode &
- interrupt disabled

BEV
(SR bit 22)

=0 (normal) =1 (bootstrap)

|/ (Base is sign extended for 64 bits) Y
PC — OxFFFF FFFF 8000 0000 PC  OXFFFF FFFF BFCO 0200
+ Vec.Off. + Vec.Off.
(unmapped, cached) (unmapped, uncached)
I

To TLB/XTLB Exception Servicing Guidelines

Eigure 5.18 TLB/XTLB Miss Exception Handler (HW)
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Comments

* Unmapped vector so TLBMod, TLBInv,
TLB Refill or VCEP exceptions
not possible

MFCO -

* EXL=1 so Interrupt exceptions disabled
CONTEXT . .
* OS/System to avoid all other exceptions

*Only CacheErr, Reset, Soft Reset, NMI
exceptions possible.

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

. * There could be a TLB miss again during the mapping
Service Code of the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general
exception handler or ERET to the original instruction
and take the exception again)

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
ERET in the ERET'’s branch delay slot
*PC « EPC;EXL ~ O

*LLbit < O

Figure 5.19 TLBZXTLB Exception servicing Guidelines (ow)
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Cache Error Exception Handling (HW)

Servicing Guidelines (SW)

Note: Can be masked/disabled by DE (SR16) bit =1

A

Set CacheErr Reg.

{

ErfEPC ~ (PC - 4)

ErrEPC ~ PC

=0 (normal)

Y

Y (Base is sign extended for 64 bits) Y

PC ~ OxFFFF FFFF A000 0000
+ 100

(unmapped, uncached)

=1 (bootstrap)

PC ~ OxFFFF FFFF BFCO 0200
+ 100

(unmapped, uncached)

Y
A

Service Code

ERET

Comments

* Unmapped Uncached vector so
TLB related & Cache Error Exception not possible

* ERL=1 so Interrupt exceptions disabled
* OS/System to avoid all other exceptions

*Only Reset, Soft Reset, NMI
exceptions possible.

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

*PC ~ ErrorEPC; ERL <« O
*LLbit < O

Figure 5.20

Tacne CITor EXcepuion ranarmng (rvw)

and Servicing Guidelines (SW)
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Reset, Soft Reset & NMI Exception Handling (HW)

Reset, Soft Reset & NMI
Servicing Guidelines (SW)

Soft Reset or NMI Exception Reset Exception
Status: Random ~ TLBENTRIES - 1
Wired ~ 0
BEV -1 Config — Update(31:6)|| Undef(5:0)
SR -1
Status:
ERL -« 1
BEV ~ 1
SR -0
ERL - 1

-
?

A

Y
ErrorEPC ~ PC

A

PC ~ OxFFFF FFFF BFCO 0000

Yes

Note: There is no indication from the
processor to differentiate between

NMI & Soft Reset; o
there must be a system level indication.

Status bit 20
(SR)

NMI Service Code

Soft Reset Service Code Reset Service Code

ERET

(Optional)

Figure 5.21 Reset, Soft Reset & NMI Exception Handling (HW) and Servicing
Guidelines (SW)
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Floating-Point Unit Chapter 6

This chapter describes the R4600 and R4700 floating-point unit (FPU)
features, including the programming model, instruction set and formats,
and the pipeline.

The FPU, with associated system software, fully conforms to the
requirements of ANSI/IEEE Standard 754-1985, IEEE Standard for Binary
Floating-Point Arithmetic. In addition, the MIPS architecture fully supports
the recommendations of the standard and precise exceptions.

Overview

The FPU operates as a coprocessor for the CPU (it is assigned
coprocessor label CP1), and extends the CPU instruction set to perform
arithmetic operations on floating-point values.

The R4600/R4700 Floating-Point Coprocessor

The R4600/R4700 incorporates an entire floating-point coprocessor on
chip, including a floating-point register file and execution units. The
floating-point coprocessor forms a seamless interface with the integer unit,
decoding and executing instructions in parallel with the integer unit. In
comparison to the R4600, the floating point coprocessor of the R4700 has
improved floating multiply operations.

The R4600/R4700 uses the floating-point unit to perform integer
multiply and divide, and results are placed in the HI and LO registers. The
values can then be transferred to the general purpose register file using the
MFHI/MFLO instructions. The R4700 performs an integer multiply faster
than the R4600 by 2 clock cycles, but it takes the same number of clock
cycles for integer division. The R4700 improves the multiply compared to
the R4600 by performing a single-precision multiply in 4 clock cycles, and
a double-precision multiply in 5 clock cycles.

Figure 6.1 illustrates the functional organization of the FPU.

Data Cache FCU

64 Control
64 ®

Yy

FP Bypass
Pipeline Chain

\

FP Add/Sub.
Cvt/Div/Sqrt
Int Div

4

FP/Int Mul

" FP Reg File '

Figure 6.1 FPU Functional Block Diagram
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FPU Features

This section briefly describes the operating model, the load/store
instruction set, and the coprocessor interface in the FPU. A more detailed
description is given in the sections that follow.

e Full 64-bit Operation. When the FR bit in the CPU Status register
equals 0O, the FPU is configured for sixteen 64-bit registers for double-
precision values or thirty-two 32-bit registers for single-precision val-
ues. When the FR bit in the CPU Status register equals 1, the FPU is
configured for thirty-two 64-bit registers. Each register can hold sin-
gle- or double-precision values. The FPU also includes a 32-bit Con-
trol/Status register that provides access to all IEEE-Standard
exception handling capabilities.

e Load and Store Instruction Set. Like the CPU, the FPU uses a load-
and store-oriented instruction set, with single-cycle load and store
operations. Overlap of multiply and add is supported.

e Tightly Coupled Coprocessor Interface. The FPU resides on-chip to
form a tightly coupled unit with a seamless integration of floating-
point and fixed-point instruction sets.

FPU Programming Model

This section describes the set of FPU registers and their data
organization. The FPU registers include Floating-Point General Purpose
registers (FGRs) and two control registers: Control/Status and
Implementation/Revision.

Floating-Point General Registers (FGRS)

The FPU has a set of Floating-Point General Purpose registers (FGRs) that

can be accessed in the following ways:

e As 32 general-purpose registers (32 FGRs), each of which is 32-bits
wide when the FR bit in the CPU Status register equals O; or as 32 gen-
eral-purpose registers (32 FGRs), each of which is 64-bits wide when
FR equals 1. The CPU accesses these registers through move, load,
and store instructions.

< As 16 floating-point registers (see the next section for a description of
FPRs), each of which is 64-bits wide, when the FR bit in the CPU Sta-
tus register equals 0. The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds to adjacently
numbered FGRs as shown in Figure 6.2 on page 6-3.

* As 32 floating-point registers (see the next section for a description of
FPRs), each of which is 64-bits wide, when the FR bit in the CPU Sta-
tus register equals 1. The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds to an FGR as
shown in Figure 6.2.
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Floating-Point Floating-Point
Registers (FPR) General Purpose Registers

(FR=0) a1 (FGR) 0
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: (most)
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31 FCR31 0

Floating-Point
Control Registers
(FCR)

S

Floating-Point Floating-Point
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Implementation/Revision Register
31 FCRO 0

S

Figure 6.2 FPU Registers

Floating-Point Registers

The FPU provides:

e 16 Floating-Point registers (FPRs) for Status.FR = 0, or

e 32 Floating-Point registers (FPRs) for Status.FR = 1.

These 64-bit registers hold floating-point values during floating-point
operations and are physically formed from the General Purpose registers
(FGRs). When the FR bit in the Status register equals 1, the FPR references

a single 64-bit FGR.

The FPRs hold values in either single- or double-precision floating-point
format. If the FR bit equals 0, only even numbers (the least register, as
shown in Figure 6.2) can be used to address FPRs. When the FR bit is set
to a 1, all FPR register numbers are valid.

If the FR bit equals 0 during a double-precision floating-point operation,
the general registers are accessed in double pairs. Thus, in a double-
precision operation, selecting Floating-Point Register 0 (FPRO) actually
addresses adjacent Floating-Point General Purpose registers FGRO and

FGR1.

Floating-Point Control Registers

The FPU has 32 control registers (FCRs) that can only be accessed by
move operations. The FCRs are described below:
e The Implementation/Revision register (FCRO) holds revision informa-

tion about the FPU.

e The Control/Status register (FCR31) controls and monitors excep-
tions, holds the result of compare operations, and establishes round-

ing modes.

e FCR1 to FCR30 are reserved.
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Table 6.1 lists the assignments of the FCRs.

FCR Number Use

FCRO Coprocessor implementation and revision register

FCR1 to FCR30 Reserved

FCR31 Rounding mode, cause, trap enables, and flags

Table 6.1 Floating-Point Control Register Assignments

Implementation and Revision Register, (FCRO)

The read-only Implementation and Revision register (FCRO) specifies the
implementation and revision number of the FPU. This information can
determine the coprocessor revision and performance level, and can also be
used by diagnostic software.

Figure 6.3 shows the layout of the register; Table 6.2, which follows the
figure, describes the Implementation and Revision register (FCRO) fields.

Implementation/Revision Register (FCRO)

31 16 15 87 0
0 Imp ‘ Rev

16 8 8

Figure 6.3 Implementation/Revision Register

Field Description

Imp Implementation number R4600: 0x20
R4700: 0x21

Rev Revision number in the form of y.x

0 Reserved.

Table 6.2 FCRO Fields

The revision number is a value of the form y.x, where:

e y is a major revision number held in bits 7:4.
e X is a minor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, there
is no guarantee that changes to the chip are necessarily reflected by the
revision number, or that changes to the revision number necessarily reflect
real chip changes. For this reason revision number values are not listed,
and software should not rely on the revision number to characterize the
chip.

Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status
information that can be accessed by instructions in either Kernel or User
mode. FCR31 also controls the arithmetic rounding mode and enables
User mode traps, as well as identifying any exceptions that may have
occurred in the most recently executed instruction, along with any
exceptions that may have occurred without being trapped.
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Figure 6.4 on page 6-5 shows the format of the Control/Status register,
and Table 6.3, which follows the figure, describes the Control/Status
register fields. Figure 6.5 on page 6-5 shows the Control/Status register
Cause, Flag, and Enable fields.

Control/Status Register (FCR31)

31 25 24 23 22 18 17 12 11 7 6 21 0
Cause Enables Flags RM
0 FS| C 0 EVZOUIl VZOUI | VZOUI
7 1 1 5 6 5 5 2

Figure 6.4 FP Control/Status Register Bit Assignments

Field Description

FS When set, denormalized results are flushed to O instead of causing
an unimplemented operation exception.

C Condition bit. See description of Control/Status register Condition
bit.

Cause Cause bits. See Figure 6.5 and the description of Control/Status
register Cause, Flag, and Enable bits.

Enables Enable bits. See Figure 6.5 and the description of Control/Status
register Cause, Flag, and Enable bits.

Flags Flag bits. See Figure 6.5 and the description of Control/Status reg-
ister Cause, Flag, and Enable bits.

RM Rounding mode bits. See Table 6.4 on page 7 and the description
of Control/Status register Rounding Mode Control bits.

Table 6.3 Control/Status Register Fields

Bit# 17 16 15 14 13 12
Cause
I E V Z O U | Bits
I I I I [
Bit # 11 10 9 8 7
Enable
\ Z ©) U | Bits
I I I I I
Bit # 6 5 4 3 2
Flag
\% Z @) U I Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation
Unimplemented Operation

Figure 6.5 Control/Status Register Cause, Flag, and Enable Fields
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Accessing the Control/Status Register

When the Control/Status register is read by a Move Control From
Coprocessor 1 (CFC1) instruction, all unfinished instructions in the
pipeline are completed before the contents of the register are moved to the
main processor. If a floating-point exception occurs as the pipeline
empties, the FP exception is taken and the CFC1 instruction is re-executed
after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing to
the register using a Move Control To Coprocessor 1 (CTC1) instruction.
CTC1 is not issued until all previous floating-point operations are
complete.

IEEE Standard 754

IEEE Standard 754 specifies that floating-point operations detect
certain exceptional cases, raise flags, and can invoke an exception handler
when an exception occurs. These features are implemented in the MIPS
architecture with the Cause, Enable, and Flag fields of the Control/Status
register. The Flag bits implement IEEE 754 exception status flags, and the
Cause and Enable bits implement exception handling.

Control/Status Register FS Bit

When the FS bit is set, denormalized results are flushed to O instead of
causing an unimplemented operation exception.

Control/Status Register Condition Bit

When a floating-point Compare operation takes place, the result is
stored at bit 23, the Condition bit, to save or restore the state of the
condition line. The C bit is set to 1 if the condition is true; the bit is cleared
to O if the condition is false. Bit 23 is affected only by compare and Move
Control To FPU instructions.

Control/Status Register Cause, Flag, and Enable Fields

Figure 6.5 on page 6-5 illustrates the Cause, Flag, and Enable fields of
the Control/Status register.

Cause Bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown
in Figure 6.5 on page 6-5, which reflect the results of the most recently
executed instruction. The Cause bits are a logical extension of the CPO
Cause register; they identify the exceptions raised by the last floating-point
operation and raise an interrupt or exception if the corresponding enable
bit is set. If more than one exception occurs on a single instruction, each
appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by
load, store, or move operations). The Unimplemented Operation (E) bit is
set to a 1 if software emulation is required, otherwise it remains 0. The
other bits are set to O or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception.

When a floating-point exception is taken, no results are stored, and the
only state affected is the Cause bits. Exceptions caused by an immediately
previous floating-point operation can be determined by reading the Cause
field.

Enable Bits

A floating-point operation that sets an enabled Cause bit forces an
immediate exception, as does setting both Cause and Enable bits with
CTC1. The floating-point exception or interrupt is enabled when the
corresponding enable be is set.

There is no enable for Unimplemented Operation (E). Setting
Unimplemented Operation always generates a floating-point exception.

6-6
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Before returning from a floating-point exception, or doing a CTC1,
software must first clear the enabled Cause bits to prevent a repeat of the
interrupt. Thus, User mode programs can never observe enabled Cause
bits set; if this information is required in a User mode handler, it must be
passed somewhere other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no
exception occurs and the default result defined by IEEE 754 is stored. In
this case, the exceptions that were caused by the immediately previous
floating-point operation can be determined by reading the Cause field.

Flag Bits

When an exception case is detected and the exception Enable is not set,
the corresponding flag bit is set. If an exception is taken, none of the flag
bits are modified. Note however that system software may set the flag bits
before invoking a user exception handler.

The Flag bits are cumulative and indicate that an exception was raised
by an operation that was executed since they were explicitly reset. Flag bits
are set to 1 if an IEEE 754 exception is raised, otherwise they remain
unchanged. The Flag bits are never cleared as a side effect of floating-point
operations; however, they can be set or cleared by writing a new value into
the Status register, using a Move To Coprocessor Control instruction.

Control/Status Register Rounding Mode Control Bits

Bits 1 and O in the Control/Status register constitute the Rounding Mode
(RM) field.

As shown in Table 6.4, these bits specify the rounding mode that the
FPU uses for all floating-point operations.

Rounding Mnemonic Description
Mode RM(1:0)

0 RN Round result to nearest representable value;
round to value with least-significant bit 0 when
the two nearest representable values are equally

near.

1 Rz Round toward O: round to value closest to and not
greater in magnitude than the infinitely precise
result.

2 RP Round toward +«: round to value closest to and

not less than the infinitely precise result.

3 RM Round toward — «: round to value closest to and
not greater than the infinitely precise result.

Table 6.4 Rounding Mode Bit Decoding

Floating-Point Formats

The FPU performs both 32-bit (single-precision) and 64-bit (double-
precision) IEEE standard floating-point operations. The 32-bit single-
precision format has a 24-bit signed-magnitude fraction field (f+s) and an
8-bit exponent (e), as shown in Figure 6.6.

31 30 23 22 0
f

Fraction

1 8 23

Eigure 6.6 Single-f’recision ﬁoating-l-joint Format
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The 64-bit double-precision format has a 53-bit signed-magnitude
fraction field (f+s) and an 11-bit exponent, as shown in Figure 6.7.

63 62 52 51 0
S e f
Sign Exponent Fraction
1 11 52

Eigure 6.7 Double-Precision Eloating-ﬁoint Format

As shown in the above figures, numbers in floating-point format are
composed of three fields:

e sign field, s

e biased exponent, e = E + bias

« fraction, f=.bybs....by 4

The range of the unbiased exponent E includes every integer between
the two values E,i, and E,ax inclusive, together with two other reserved
values:

* Enin -1 (to encode +0 and denormalized numbers)

e Emax t1 (to encode +° and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero
numerical value has just one encoding.

For single- and double-precision formats, the value of a number, v, is
determined by the equations shown in Table 6.5.

No. | Equation

(1) |if E=Emaxtland f#0, then vis NaN, regardless of s

(2) |IfFE=Epy+landf=0,then v=(-1)°w

(3) | if Emin < E < Emax then v = (=1)525(1.9

(4) |ifE=Emp;—1andf#0, then v= (—1)S2EM"(0.f
(5) |ifE=Empn—1andf=0,then v=(-1)%0

Table 6.5 Equations for Calculating Values in Single and
Double-Precision Floating-Point Format

For all floating-point formats, if v is NaN, the most-significant bit of f
determines whether the value is a signaling or quiet NaN: v is a signaling
NaN if the most-significant bit of f is set, otherwise, v is a quiet NaN.
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defines the values for the format parameters. Minimum and maximum
floating-point values are given in Table 6.7.

Format

Parameter Single Double
f 24 53
Emax +127 +1023
Enmin -126 -1022
Exponent bias +127 +1023
Exponent width in bits 8 11
Integer bit hidden hidden
Fraction width in bits 24 53
Format width in bits 32 64

Table 6.6 Floating-Point Format Parameter Values

Type Value

Float Minimum 1.40129846e-45

Float Minimum Norm 1.17549435e-38

Float Maximum 3.40282347e+38

Double Minimum 4.9406564584124654e-324
Double Minimum Norm | 2.2250738585072014e-308
Double Maximum 1.7976931348623157e+308

Table 6.7 Minimum and Maximum Floating-Point Values

Binary Fixed-Point Format

Binary fixed-point values are held in 2's complement format. Unsigned
fixed-point values are not directly provided by the floating-point
instruction set. Figure 6.8 illustrates binary fixed-point format; Table 6.8,
which follows the figure, lists the binary fixed-point format fields.

31 30 0
Sign Integer I
1 31

Figure 6.8 Binary Fixed-Point Format

Field Description
sign sign bit
integer integer value

Table 6.8 Binary Fixed-Point Format Fields
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Floating-Point Instruction Set Overview

All FPU instructions are 32-bits long, aligned on a word boundary. They
can be divided into the following groups:

e Load, Store, and Move instructions move data between memory, the

main processor, and the FPU General Purpose registers.

e Conversion instructions perform conversion operations between the

various data formats.

e Computational instructions perform arithmetic operations on float-

ing-point values in the FPU registers.

e Compare instructions perform comparisons of the contents of regis-

ters and set a conditional bit based on the results.

e Branch on FPU Condition instructions perform a branch to the spec-

ified target if the specified coprocessor condition is met.

Table 6.9 through Table 6.12 list the instruction set of the FPU. A
complete description of each instruction is provided in Appendix B.

In the instruction formats shown in Table 6.9 through Table 6.12, the
fmt appended to the instruction opcode specifies the data format: s
specifies single-precision binary floating-point, d specifies double-
precision binary floating-point, and w specifies binary fixed-point.

OpCode Description

LWC1 Load Word to FPU

SWC1 Store Word from FPU

LDC1 Load Doubleword to FPU
SDC1 Store Doubleword From FPU
MTC1 Move Word To FPU

MFC1 Move Word From FPU

CTC1 Move Control Word To FPU
CFC1 Move Control Word From FPU
DMTC1 Doubleword Move To FPU
DMFC1 Doubleword Move From FPU

Table 6.9 FPU Instruction Summary: Load, Move and Store Instructions

OpCode Description

CVT.S.fmt Floating-point Convert to Single FP
CVT.D.fmt Floating-point Convert to Double FP
CVT.W.fmt Floating-point Convert to Single Fixed Point
ROUND.w.fmt Floating-point Round

TRUNC.w.fmt Floating-point Truncate

CEIL.w.fmt Floating-point Ceiling

FLOOR.w.fmt Floating-point Floor

Table 6.10 FPU Instruction Summary: Conversion Instructions
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OpCode Description

ADD.fmt Floating-point Add

SUB.fmt Floating-point Subtract
MUL.fmt Floating-point Multiply
DIV.fmt Floating-point Divide
ABS.fmt Floating-point Absolute Value
MOV.fmt Floating-point Move

NEG.fmt Floating-point Negate
SQRT.fmt Floating-point Square Root

Table 6.11 FPU Instruction Summary: Computational Instructions

OpCode Description

C.cond.fmt Floating-point Compare
BC1T Branch on FPU True

BC1F Branch on FPU False
BC1TL Branch on FPU True Likely
BC1FL Branch on FPU False Likely

Table 6.12 FPU Instruction Summary: Compare and Branch Instructions

Floating-Point Load, Store, and Move Instructions

This section discusses the manner in which the FPU uses the load, store
and move instructions listed in Table 6.9 on page 10; Appendix B provides
a detailed description of each instruction.

Transfers Between FPU and Memory

All data movement between the FPU and memory is accomplished by
using one of the following instructions:

e Load Word To Coprocessor 1 (LWC1) or Store Word To Coprocessor 1
(SWC1) instructions, which reference a single 32-bit word of the FPU
general registers

e Load Doubleword (LDC1) or Store Doubleword (SDC1) instructions,
which reference a 64-bit doubleword.

These load and store operations are unformatted; no format conversions
are performed and therefore no floating-point exceptions can occur due to
these operations.

With the LDC1 and SDCL1 instructions the R4600/R4700 floating-point
unit can take advantage of the 64-bit wide data cache and issue a
coprocessor load or store double-word instruction with every cycle.

Transfers Between FPU and CPU

Data can also be moved directly between the FPU and the CPU by using
one of the following instructions:

e Move To Coprocessor 1 (MTC1)

e Move From Coprocessor 1 (MFC1)

e Doubleword Move To Coprocessor 1 (DMTC1)

e Doubleword Move From Coprocessor 1 (DMFC1)

Like the floating-point load and store operations, these operations
perform no format conversions and never cause floating-point exceptions.
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Load Delay and Hardware Interlocks

The instruction immediately following a load can use the contents of the
loaded register. In such cases the hardware interlocks, requiring
additional real cycles; for this reason, scheduling load delay slots is
desirable, although it is not required for functional code.

Data Alignment

All coprocessor loads and stores reference the following aligned data
items:
e For word loads and stores, the access type is always WORD, and the
low-order 2 bits of the address must always be 0.
e For doubleword loads and stores, the access type is always DOUBLE-
WORD, and the low-order 3 bits of the address must always be 0.

Endianness

Regardless of byte-numbering order (endianness) of the data, the
address specifies the byte that has the smallest byte address in the
addressed field. For a big-endian system, it is the leftmost byte; for a little-
endian system, it is the rightmost byte.

Floating-Point Conversion Instructions

Conversion instructions perform conversions between the various data
formats such as single- or double-precision, fixed- or floating-point
formats. Table 6.10 on page 10 lists conversion instructions; Appendix B
gives a detailed description of each instruction.

Floating-Point Computational Instructions
Computational instructions perform arithmetic operations on floating-
point values, in registers. Table 6.11 on page 11 lists the computational
instructions and Appendix B provides a detailed description of each
instruction. There are two categories of computational instructions:
e 3-Operand Register-Type instructions, which perform floating-point
addition, subtraction, multiplication, division, and square root.
e 2-Operand Register-Type instructions, which perform floating-point
absolute value, move, and negate.

Branch on FPU Condition Instructions

Table 6.12 on page 11 lists the Branch on FPU (coprocessor unit 1)
condition instructions that can test the result of the FPU compare (C.cond)
instructions. Appendix B gives a detailed description of each instruction.

Floating-Point Compare Operations

The floating-point compare (C.fmt.cond) instructions interpret the
contents of two FPU registers (fs, ft) in the specified format (fmt) and
arithmetically compare them. A result is determined based on the
comparison and conditions (cond) specified in the instruction.

Table 6.12 on page 11 lists the compare instructions; Appendix B gives
a detailed description of each instruction. Table 6.13 on page 13 lists the
mnemonics for the compare instruction conditions.
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Mnemonic | Definition Mnemonic | Definition

F False T True

UN Unordered OR Ordered

EQ Equal NEQ Not Equal

UEQ Unordered or Equal OLG Ordered or Less Than or Greater Than
OLT Ordered Less Than UGE Unordered or Greater Than or Equal
ULT Unordered or Less Than OGE Ordered Greater Than

OLE Ordered Less Than or Equal UGT Unordered or Greater Than

ULE Unordered or Less Than or Equal OGT Ordered Greater Than

SF Signaling False ST Signaling True

NGLE Not Greater Than or Less Than or Equal | GLE Greater Than, or Less Than or Equal
SEQ Signaling Equal SNE Signaling Not Equal

NGL Not Greater Than or Less Than GL Greater Than or Less Than

LT Less Than NLT Not Less Than

NGE Not Greater Than or Equal GE Greater Than or Equal

LE Less Than or Equal NLE Not Less Than or Equal

NGT Not Greater Than GT Greater Than

Table 6.13 Mnemonics and Definitions of Compare Instruction Conditions

FPU Instruction Pipeline Overview

The FPU provides an instruction pipeline that parallels the CPU
instruction pipeline. It shares the same five-stage pipeline architecture

with the CPU (see Chapter

Instruction Execution

3).

Figure 6.9 illustrates the 5-stage FPU pipeline. This is the same as that
of the integer pipeline but allows for the longer execution times of the
floating-point instructions.

| 11 | 21| 1R| 2R| 1A| 2A] 1D| 2D 1W| 2w
| 11 | 21| 1R| 2R| 1A] 2A| 1D| 2D 1W/| 2|
| 11 | 21| 1R| 2R| 1A] 2A| 1D| 2D 1w/| 2w|
| 11 | 21| 1R| 2R| 1A] 2A| 1D| 2D] 1w/| 2w|
11 | 21 | 1R| 2R]| 1A| 2A| 1D| 2D| 1w| 2w
|one cyclel

Eigure 6.9 FPU Instruction 5ipe|ine
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Figure 6.9 on page 6-13 assumes that one instruction is completed
every PCycle. Most FPU instructions, however, require more than one cycle
in the EX stage. This means the FPU must stall the pipeline if an
instruction execution cannot proceed because of register or resource
conflicts.

Floating-point operations proceed in parallel with non-floating-point
operations. Floating-point operations are not allowed to overlap each
other, with two exceptions:

 An add operation may start 2 cycles after the start of a multiply and

thus will be completely overlapped by the multiply.

« A multiply operation may overlap for up to 2 cycles, as follows:
R4600: A new multiply may start 6 cycles after another multiply.
R4700: A new multiply may start 4 cycles after another multiply

(for both single and double precision).

Non-floating-point operations as well as other integer operations may be
executed in parallel with the floating-point operations. All of this is
handled automatically by internal hardware in the R4600/R4700.

Instruction Execution Cycle Time

Unlike the CPU, which executes almost all instructions in a single cycle,
more time may be required to execute FPU instructions.

Table 6.14 gives the minimum latency of each floating-point operation.

Operation Pipeline Cycles | Operation Pipeline Cycles
Single | Double Single | Double
ADD.fmt 4 4 BC1T 1
SUB.fmt 4 4 BC1F 1
MUL.fmt BC1TL 1
R4600 8 8
R4700 4 5
DIV.fmt 32 61 BC1FL 1
SQRT.fmt 31 60 LWC1, LDC1 2
ABS.fmt 1 1 SWC1, SDC1 1
MOV.fmt 1 1 TRUNC.W.fmt 4 4
NEG.fmt 1 1 MTC1, DMTC1 2
ROUND.W.fmt 4 4 MFC1, DMFC1 2
CEIL.W.fmt 4 4 CTC1 3
FLOOR.W.fmt 4 4 CFC1 2
CVT.S.fmt @ 4 CMP
CVT.D.fmt 2 @ FIX 4 4
CVT.W.fmt 4 4 FLOAT
C.fmt.cond 3 3

Note: @ These operations are illegal.

Table 6.14 Floating-Point Operation Latencies
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Instruction Scheduling Constraints

The FPU resource scheduler only issues instructions to the FPU op units
(adder and multiplier) when no hardware use conflicts will occur. In
addition, some overlap possibilities are disallowed to keep the scheduler
simple (and/or increase performance).

FPU Multiplier Constraints

The FPU multiplier is partially pipelined in the R4600, allowing a new
multiply to begin every 6 cycles. It is more fully pipelined in the R4700,
allowing a new multiply to begin every 4 cycles.

FPU Adder Constraints

The FPU scheduler may issue an add operation (ADD.fmt or SUB.fmt) 2
cycles after a multiply (MUL.fmt).

Resource Scheduling Rules

The FPU Resource Scheduler issues instructions while adhering to the
rules described below. These scheduling rules optimize op unit executions;
if the rules are not followed, the hardware interlocks to guarantee correct
operation.

DIV.[S,D] can start only when all of the following conditions are met in
the 1A phase.

e The adder is idle (division is performed in the adder).

e The multiplier is idle.

MUL.[S,D] can start only when all of the following conditions are met in
the 1A phase.
e The multiplier is one of the following:
- idle.
- Started execution at least 6 cycles earlier on the current multiply
e The adder is idle.

SQRT.[S,D] can start when the following conditions are met in the 1A
phase.

e The adder is idle.

e The multiplier must be idle.

CVT.fmt instructions can only start when all of the following conditions
are met in the 1A phase.

e The adder is idle.

e The multiplier is idle.

ADD.[S,D] or SUB.[S,D] can start only when all of the following
conditions are met in the 1A phase.
e The adder is idle
e The multiplier is either:
- idle.
- started execution of the current multiply at least 2 cycles earlier.

NEG.[S,D] or ABS.[S,D] can start only when all of the following
conditions are met in the 1A phase.

e The adder is idle.

e The multiplier is idle.

C.COND.[S,D] can start only when all of the following conditions are met
in the 1A phase.

e The adder is idle.

e The multiplier is idle.
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This chapter describes FPU floating-point exceptions, including FPU
exception types, exception trap processing, exception flags, saving and
restoring state when handling an exception, and trap handlers for IEEE
Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle
either the operands or the results of a floating-point operation in its normal
way. The FPU responds by generating an exception to initiate a software
trap or by setting a status flag.

Exception Types

The FP Control/Status register described in Chapter 6 contains an
Enable bit for each exception type; exception Enable bits determine
whether an exception will cause the FPU to initiate a trap or set a status
flag.

e Ifatrap is taken, the FPU remains in the state found at the beginning

of the operation and a software exception handling routine executes.

« If no trap is taken, an appropriate value is written into the FPU des-

tination register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:

Inexact (1)
Underflow (U)
Overflow (O)
Division by Zero (2)
Invalid Operation (V)

Cause bits, Enables, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E).
This exception indicates the use of a software implementation. The
Unimplemented Operation exception has no Enable or Flag bit; whenever
this exception occurs, an unimplemented exception trap is taken.

Figure 7.1 illustrates the Control/Status register bits that support
exceptions.

Bit# 17 16 15 14 13 12
Cause
I E \ Z O ) | Bits
I I I I [
Bit # 11 10 9 8 7
| Enable
\ Z O ) | Bits
I I I I I
Bit# 6 5 4 3 2
Flag
Z O U I Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation
Unimplemented Operation

Flgure 7I COI’]tI’OD Status ﬁeglster Except|0n7FIag7 Irap7 EnaBIe BItS
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Each of the five IEEE Standard 754 exceptions (V, Z, O, U, I) is
associated with a trap under user control, and is enabled by setting one of
the five Enable bits. When an exception occurs and its corresponding
Enable bit is not set, both the corresponding Cause and Flag bits are set.
When an exception occurs and its corresponding Enable bit is set, the
corresponding Cause bit is set and the subsequent exception processing
allows a trap to be taken.

Exception Trap Processing

When a floating-point exception trap is taken, the Cause register
indicates the floating-point coprocessor is the cause of the exception trap.
The Floating-Point Exception (FPE) code is used, and the Cause bits of the
floating-point Control/Status register indicate the reason for the floating-
point exception. These bits are, in effect, an extension of the system
coprocessor Cause register.

Flags

A Flag bit is provided for each IEEE exception. This Flag bit is set to a
1 on the assertion of its corresponding exception, with no corresponding
exception trap signaled.

The Flag bit is reset by writing a new value into the Status register; flags
can be saved and restored by software either individually or as a group.

When no exception trap is signaled, the floating-point coprocessor takes
a default action, providing a substitute value for the exception-causing
result of the floating-point operation. The particular default action taken
depends upon the type of exception. Table 7.1 lists the default action
taken by the FPU for each of the IEEE exceptions.

Field Description Rounding Default action
Mode
| Inexact exception Any Supply a rounded result
U Underflow exception | Any Take unimplemented unless FCSR.FS bit is set.
Overflow exception RN Modify overflow values to 0 with the sign of the
intermediate result
RZ Modify overflow values to the format's largest finite
number with the sign of the intermediate result
RP Modify negative overflows to the format’'s most nega-
tive finite number; modify positive overflows to +
RM Modify positive overflows to the format's largest
finite number; modify negative overflows to —
z Division by zero Any Supply a properly signed
Invalid operation Any Supply a quiet Not a Number (NaN)

Table 7.1 Default FPU Exception Actions

The FPU detects the eight exception causes internally. When the FPU
encounters one of these unusual situations, it causes either an IEEE
exception or an Unimplemented Operation exception (E).
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lists the exception-causing conditions of the IEEE Standard 754.

FPA Internal IEEE Trap Trap Notes
Result Standard 754 | Enable | Disable

Inexact result | | | Loss of accuracy
Exponent overflow (@] o,l o,l Normalized exponent > E,5x
Division by zero z V4 z Zero is (exponent = E.,i,-1, mantissa = 0)
Overflow on convert \Y E E Source out of integer range
Signaling NaN source |V \ \ Signaling NaN source produces quiet NaN result
Invalid operation \V \Y \Y 0/0, etc.
Exponent underflow U E E Normalized exponent < Eqin
Denormalized source | None E E Exponent = E-1 and mantissa <> 0

Note: 2The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is disabled.

Table 7.2 FPU Exception-Causing Conditions

FPU Exceptions

The following sections describe the conditions that cause the FPU to
generate each of its exceptions, and details the FPU response to each
exception-causing condition.

Inexact Exception (I)

The FPU generates the Inexact exception if the rounded result of an
operation is not exact or if it overflows. The FPU usually examines the
operands of floating-point operations before execution actually begins, to
determine (based on the exponent values of the operands) if the operation
can possibly cause an exception. If there is a possibility of an instruction
causing an exception trap, the FPU uses a coprocessor stall to execute the
instruction.

It is impossible, however, for the FPU to predetermine if an instruction
will produce an inexact result. If Inexact exception traps are enabled, the
FPU uses the coprocessor stall mechanism to execute all floating-point
operations that require more than two cycles. Since this mode of execution
can impact performance, Inexact exception traps should be enabled only
when necessary.

Trap Enabled Results: If Inexact exception traps are enabled, the result
register is not modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to
the destination register if no other software trap occurs.

Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the
operands are invalid for an implemented operation. When the exception
occurs without a trap, the MIPS ISA defines the result as a quiet Not a
Number (NaN). The invalid operations are:

< Addition or subtraction: magnitude subtraction of infinities, such as:

(+ ) + (= ) or (= ®) — (= )
Multiplication: O times o, with any signs
Division: 0/0, or o/, with any signs

e Comparison of predicates involving < or > without?, when the oper-

ands are unordered

« Any arithmetic operation on a signaling NaN. A move (MOV) operation

is not considered to be an arithmetic operation, but absolute value
(ABS) and negate (NEG) are considered to be arithmetic operations
and cause this exception if one or both operands is a signaling NaN.

e Sguare root: vx, where x is less than zero
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Software can simulate the Invalid Operation exception for other
operations that are invalid for the given source operands. Examples of
these operations include IEEE Standard 754-specified functions
implemented in software, such as Remainder: x REM y, where y is O or x
is infinite; conversion of a floating-point number to a decimal format whose
value causes an overflow, is infinity, or is NaN; and transcendental
functions, such as In (-5) or cos-1(3). Refer to Appendix B for examples or
for routines to handle these cases.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: The FPU sets the Invalid Operation Exception
flag and a quiet NaN is delivered to the destination register.

Division-by-Zero Exception (2)

The Division-by-Zero exception is signaled on an implemented divide
operation if the divisor is zero and the dividend is a finite nonzero number.
Software can simulate this exception for other operations that produce a
signed infinity, such as In(0), sec(r/2), csc(0), or 01

Trap Enabled Results: The result register is not modified, and the
source registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly
signed infinity.

Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded
floating-point result, with an unbounded exponent range, is larger than
the largest finite number of the destination format. (This exception also
sets the Inexact exception and Flag bits.)

Trap Enabled Results: The result register is not modified, and the
source registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is determined
by the rounding mode and the sign of the intermediate result.

Underflow Exception (U)
Two related events contribute to the Underflow exception:

« creation of a tiny nonzero result between +2EM" which can cause
some later exception because it is so tiny

e extraordinary loss of accuracy during the approximation of such tiny
numbers by denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but

requires they be detected the same way for all operations.
Tinniness can be detected by one of the following methods:
e after rounding (when a nonzero result, computed as though the expo-

nent range were unbounded, would lie strictly between iZEm'”)

e before rounding (when a nonzero result, computed as though the ex-
ponent range and the precision were unbounded, would lie strictly be-
tween +2EMin,

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

e denormalization loss (when the delivered result differs from what
would have been computed if the exponent range were unbounded)

e inexact result (when the delivered result differs from what would have
been computed if the exponent range and precision were both un-
bounded).

The MIPS architecture requires that loss of accuracy be detected as an

inexact result.

Trap Enabled Results: When an underflow trap is enabled, underflow
is signaled when tininess is detected regardless of loss of accuracy. If
underflow traps are enabled, the result register is not modified, and the
source registers are preserved.
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Trap Disabled Results: When an underflow trap is not enabled and
FCSR.FS is clear, then take an unimplemented exception. When an
underflow traE is not enabled and FCSR.FS is set, raise Inexact and return
either 0 or +2=M"as appropriate for the current rounding mode.

Unimplemented Instruction Exception (E)

Any attempt to execute an instruction with an operation code or format
code that has been reserved for future definition sets the Unimplemented
bit in the Cause field in the FPU Control/Status register and traps. The
operand and destination registers remain undisturbed and the instruction
is emulated in software. Any of the IEEE Standard 754 exceptions can
arise from the emulated operation, and these exceptions in turn are
simulated.

The Unimplemented Instruction exception can also be signaled when
unusual operands or result conditions are detected that the implemented
hardware cannot handle properly. These include:

e Denormalized operand
Quiet NaN operand
Underflow
Reserved opcodes
Unimplemented formats
Conversion of a floating-point number to a fixed point format when an
overflow occurs or the source operand value is Infinity or a NaN.

e Operations which are invalid for their format (for instance, CVT.S.S)

Denormalized and NaN operands are only trapped if the instruction is a
convert or computational operation. Moves and compares do not trap if
their operands are either denormalized or NaNs.

The use of this exception for such conditions is optional; most of these
conditions are newly developed and are not expected to be widely used in
early implementations. Loopholes are provided in the architecture so that
these conditions can be implemented with assistance provided by
software, maintaining full compatibility with the IEEE Standard 754.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: This trap cannot be disabled.

Saving and Restoring State

Sixteen or thirty-two doubleword coprocessor load or store operations
save or restore the coprocessor floating-point register state in memory.
The remainder of control and status information can be saved or restored
through Move To/From Coprocessor Control Register instructions, and
saving and restoring the processor registers. Normally, the Control/Status
register is saved first and restored last.

When the coprocessor Control/Status register (FCR31) is read, and the
coprocessor is executing one or more floating-point instructions, the
instruction(s) in progress are either completed or reported as exceptions.
The architecture requires that no more than one of these pending
instructions can cause an exception. Information indicating the type of
exception is placed in the Control/Status register. When state is restored,
state information in the status word indicates that exceptions are pending.

Writing a zero value to the Cause field of Control/Status register clears
all pending exceptions, permitting normal processing to restart after the
floating-point register state is restored.

The Cause field of the Control/Status register holds the results of only
one instruction; the FPU examines source operands before an operation is
initiated to determine if this instruction can possibly cause an exception.
If an exception is possible, the FPU executes the instruction in stall mode
to ensure that no more than one instruction (that might cause an
exception) is executed at a time.
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Trap Handlers for IEEE Standard 754 Exceptions

The IEEE Standard 754 strongly recommends that users be allowed to
specify a trap handler for any of the five standard exceptions that can
compute; the trap handler can either compute or specify a substitute
result to be placed in the destination register of the operation.

By retrieving an instruction using the processor Exception Program
Counter (EPC) register, the trap handler determines:

e exceptions occurring during the operation

< the operation being performed

e the destination format

On Overflow or Underflow exceptions (except for conversions), and on
Inexact exceptions, the trap handler gains access to the correctly rounded
result by examining source registers and simulating the operation in
software.

On Overflow or Underflow exceptions encountered on floating-point
conversions, and on Invalid Operation and Divide-by-Zero exceptions, the
trap handler gains access to the operand values by examining the source
registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and
underflow traps take precedence over a separate inexact trap. This
prioritization is accomplished in software; hardware sets the bits for both
the Inexact exception and the Overflow or Underflow exception.
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Processor Signal Chapter 8

Descriptions

Introduction

This chapter describes the signals used by and in conjunction with the
R4600/R4700 processor. The signals include the System interface, the
Clock/Control interface, the Interrupt interface, the Joint Test Action
Group (JTAG) interface, and the Initialization interface.

Signals are listed in bold, and low active signhals have a trailing asterisk
— for instance, the low-active Read Ready signal is RdRdy*. The signal
description also tells if the signal is an input (the processor receives it) or
output (the processor sends it out).

Figure 8.1 illustrates the functional groupings of the processor signals.

Interface

Clock/Control Interface

JTAG

- ) 2 SysAD(63:0) |
TClock(1:0) <—5— SysADC(7:0)
RClock(1:0) <—+#— SysCmd(8:0)
MasterClock ——> SysCmdP o
MasterOut - Validln* §
SyncOut - ValidOut* E
Syncin —_— ExtRgst* %
I0Out - Release* 1
I0In — | R4600/ RdRdy* |7
Fault* <—| R4700 WrRdy*

VceP — »| Logic
VssP ____ | Symbol ModeClock | -

— ModelN 2 3

Y VCCOk % |5
1TDO ColdReset* =
ITMS Reset* |

| JTeK - Int(s:0)* | §§

NMI* | gg

Figure 8.1 RA600/RZA700 Processor signals
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System Interface Signals

System interface signals provide the connection between the R4600/
R4700 processor and the other components in the system. Table 8.1 lists
the system interface signals.

Name Definition Direction Description

ExtRgst* External request Input An external agent asserts ExtRqgst* to
request use of the System interface. The pro-
cessor grants the request by asserting
Release*.

Release* Release interface | Output In response to the assertion of ExtRqgst* or a
CPU read request, the processor asserts
Release*, signalling to the requesting device
that the System interface is available.

RdRdy* Read ready Input The external agent asserts RARdy* to indi-
cate that it can accept a processor read
request.

SysAD(63:0) | System address/ | Input/ A 64-bit address and data bus for communi-

data bus Output cation between the processor and an external
agent.

SysADC(7:0) | System address/ | Input/ An 8-bit bus containing check bits for the
data check bus Output SysAD bus.

SysCmd(8:0) | System com- Input/ A 9-bit bus for command and data identifier
mand/data identi- | Output transmission between the processor and an
fier external agent.

SysCmdP System com- Input/ A single, even-parity bit for the SysCmd bus.

mand/data identi- | Output
fier bus parity

ValidIn* Valid input Input The external agent asserts Validln* when it
is driving a valid address or data on the
SysAD bus and a valid command or data
identifier on the SysCmd bus.

ValidOut* Valid output Output The processor asserts ValidOut* when it is
driving a valid address or data on the SysAD
bus and a valid command or data identifier
on the SysCmd bus.

WrRdy* Write ready Input An external agent asserts WrRdy* when it
can accept a processor write request.

Table 8.1 System Interface Signals
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Clock/Control Interface Signals
The Clock/Control interface signals make up the interface for clocking
and maintenance.
Table 8.2 lists the Clock/Control interface signals.

Name Definition Direction Description

100ut 1/0 output Output Reserved for future output.
Always High.

I0In 170 input Input Reserved for future input.
Should be driven High.

MasterClock Master clock Input Master clock input that estab-
lishes the processor operating
frequency. It is 1/2 the pipeline
frequency.

MasterOut Master clock out Output Master clock output aligned with
MasterClock.

RClock(1:0) Receive clocks Output Two identical receive clocks that
establish the System interface
frequency.

SyncOut Synchronization Output SyncOut must be connected to

clock out Synclin through an interconnect
that models the interconnect
between MasterOut, TClock,
RClock, and the external agent.

Syncln Synchronization Input Synchronization clock input.

clock in

TClock(1:0) Transmit clocks Output Two identical transmit clocks
that establish the System inter-
face frequency.

Fault* Fault Output Reserved for future output.
Always High.

VccP Quiet Vcc for PLL Input Quiet Vcc for the internal phase
locked loop.

VssP Quiet Vss for PLL Input Quiet Vss for the internal phase
locked loop.

Table 8.2 Clock/Control Interface Signals
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Interrupt Interface Signals

The Interrupt interface signals make up the interface used by external
agents to interrupt the R4600/R4700 processor. Six hardware interrupts
(Int*(5:0)) and one NMI are available on the R4600/R4700. Table 8.3 lists
the Interrupt interface signals.

Name Definition Direction Description
Int*(5:0) | Interrupt Input Six general processor interrupts, bit-wise ORed
with bits 5:0 of the interrupt register.
NMI* Nonmaskable Input Nonmaskable interrupt, ORed with bit 6 of the
interrupt interrupt register.

Table 8.3 Interrupt Interface Signals

JTAG Interface Signals
The R4600/R4700 does not implement JTAG. The signals are provided
for compatibility with existing R4x00PC designs.

Table 8.4 lists the JTAG interface signals.

Name Definition Direction Description
JTDI JTAG data in Input Connected directly to JTDO. No JTAG imple-
mented. Should be pulled High.
JTCK TAG clock input Input Unused input. Should be pulled High.
JTDO JTAG data out Output Connected directly to JTDI. If no external
scan used, this is a no connect.
JTMS JTAG command Input Unused input. Should be pulled High.

Table 8.4 JTAG Interface Signals
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Initialization Interface Signals

The Initialization interface signals make up the interface by which an
external agent initializes the processor operating parameters. Table 8.5

lists the Initialization interface signals.

Name

Definition

Direction

Description

ColdReset*

Cold reset

Input

This signal must be asserted for a
power on reset or a cold reset. The
clocks SClock, TClock, and
RClock begin to cycle and are syn-
chronized with the deasserted edge
of ColdReset*. ColdReset* must
be deasserted synchronously with
MasterClock.

ModeClock

Boot mode clock

Output

Serial boot-mode data clock output;
runs at the Master Clock frequency
divided by 256: (MasterClock/
256).

Modeln

Boot mode data in

Input

Serial boot-mode data input.

Reset*

Reset

Input

This signal must be asserted for any
reset sequence. It can be asserted
synchronously or asynchronously
for a cold reset, or synchronously to
initiate a warm reset. Reset* must
be deasserted synchronously with
MasterClock.

VCCOk

Vcce is OK

Input

When asserted, this signal indicates
to the processor that Ve > Vecmin
for more than 100 milliseconds and
will remain stable. The assertion of
VCCOK initiates the initialization
sequence.

Table 8.5 Initialization Interface Signals
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Table 8.6 lists the R4600/R4700 processor signals and their possible

states.
Asserted Reset
Description Name 170 State 3-State State

System address/data bus SysAD(63:0) | I/0 High Yes a
System address/data check bus SysADC(7:0) | I/0 High Yes a
System command/data identifier bus SysCmd(8:0) | 170 High Yes a
System command/data identifier bus parity | SysCmdP 170 High Yes a
Valid input ValidIn* | Low No NA
Valid output ValidOut* 0] Low Yes b
External request ExtRgst* I Low No NA
Release interface Release* o Low Yes b
Read ready RdRdy* | Low No NA
Write ready WrRdy* | Low No NA
Interrupts Int*(5:0) | Low No NA
Nonmaskable interrupt NMI* | Low No NA
Boot mode data in Modeln | High No NA
Boot mode clock ModeClock (@) High No d
JTAG data in JTDI | High No NA
JTAG data out JTDO (@] High Yes b
JTAG command JTMS | High No NA
JTAG clock input JTCK | High No NA
Transmit clocks TClock(1:0) (0] High Yes c
Receive clocks RClock(1:0) (@) High Yes c
Master clock MasterClock | High No NA
Master clock out MasterOut (0] High Yes c
Synchronization clock out SyncOut @) High Yes c
Synchronization clock in Syncin | High No NA
1/0 output 100ut (0] High Yes b
170 input 10In | High No NA
Vcc is OK VCCOk | High No NA
Cold reset ColdReset* | Low No NA
Reset Reset* | Low No NA
Fault Fault* o Low Yes b

Key to Reset State Column:

a All 170 pins (SysAD[63:0], SysADCJ[7:0], etc.) remain 3-stated until the Reset* signal deasserts.

b All output only pins (ValidOut*, Release*, etc.), except the clocks, are 3-stated until the ColdReset*

signal deasserts.

c All clocks, except ModeClock, are 3-stated until VCCOKk asserts.

d ModeClock is always driven.

NA  Not applicable to input pins.

Table 8.6 R4600/R4700 Processor Signal Summary
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Introduction

This chapter describes the R4600/R4700 Initialization interface. This
includes the reset signal description and types, initialization sequence,
with signals and timing dependencies, and boot modes, which are set at
initialization time.

Signal names are listed in bold letters—for instance the signal VCCOk
indicates the Vcc voltage is stable. Low-active signals are indicated by an
asterisk at the end of the name, as in ColdReset*.

Functional Overview

The R4600/R4700 processor has the following three types of resets.
Refer to Figure 9.1 on page 9-4, Figure 9.2 on page 9-5, and Figure 9.3 on
page 9-6 for timing diagrams of these resets.

* Power-on reset: Starts when the power supply is turned on and
completely reinitializes the internal state machine of
the processor without saving any state information.

e Cold reset: Restarts all clocks, but the power supply remains
stable. A cold reset completely reinitializes the
internal state machine of the processor without
saving any state information.

e Warm reset: Restarts processor, but does not affect clocks. A
warm reset preserves the processor internal state.

These resets use the VCCOk, ColdReset*, and Reset* input signals,
which are summarized in the next subsection. Descriptions of each type
of reset operation is described

The Initialization interface is a serial interface that operates at the
frequency of the MasterClock divided by 256 (i.e. MasterClock/256). This
low-frequency operation allows the initialization information to be stored
in a low-cost EPROM or PLD.

Reset and Initialization Signal Descriptions
This section describes the three reset signals, VCCOKk, ColdReset*, and
Reset*, and the two initialization signals, Modeln and ModeClock.

VCCOk: When assertedl, VCCOKk indicates to the processor that the 5.0
(3.3) volt power supply (Vcc) has been above 4.75 (3.0) volts for
more than 100 milliseconds (ms) and is expected to remain
stable. The assertion of VCCOKk initiates the reading of the
boot-time mode control serial stream. This is described in the
subsection “Initialization Sequence” on page 9-4.

ColdReset*: The ColdReset* signal must be asserted (low) for either a
power-on reset or a cold reset. The clocks SClock, TClock, and
RClock begin to cycle and are synchronized with the
de-asserted edge (high) of ColdReset*. ColdReset* must be
de-asserted synchronously with MasterClock.

Reset*: The Reset* signal must be asserted for any reset sequence. It
can be asserted synchronously or asynchronously for a cold
reset, or synchronously to initiate a warm reset. Reset* must
be de-asserted synchronously with MasterClock.

Modeln: Serial boot mode data in.

ModeClock: Serial boot mode data out, at the MasterClock frequency
divided by 256 (MasterClock/256).

L Asserted meansthe signal istrue, or initsvalid state. For example, the low-
active Reset* signal issaid to be asserted when it isin alow (true) state; the high-
active VCCOKk signal istrue when it is asserted high.

9-1
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Table 9.1 lists the processor signals and their possible states.

Description Name 1/0 | Asserted State | 3-State | Reset State

System address/data bus SysAD(63:0) | I/0 High Yes a
System address/data check bus SysADC(7:0) | I/0 High Yes a
System command/data identifier bus SysCmd(8:0) | 170 High Yes a
System command/data identifier bus parity | SysCmdP 170 High Yes a
Valid input Validln* | Low No NA
Valid output ValidOut* (0] Low Yes b
External request ExtRgst* I Low No NA
Release interface Release* o Low Yes b
Read ready RdRdy* | Low No NA
Write ready WrRdy* | Low No NA
Interrupts Int*(5:0) | Low No NA
Nonmaskable interrupt NMI* | Low No NA
Boot mode data in Modeln | High No NA
Boot mode clock ModeClock @) High No d
JTAG data in JTDI | High No NA
JTAG data out JTDO (0] High Yes b
JTAG command JTMS | High No NA
JTAG clock input JTCK | High No NA
Transmit clocks TClock(1:0) @) High Yes c
Receive clocks RClock(1:0) @) High Yes c
Master clock MasterClock | High No NA
Master clock out MasterOut (@) High Yes c
Synchronization clock out SyncOut (0] High Yes c
Synchronization clock in Syncin | High No NA
1/0 output 100ut (@) High Yes b
170 input I0In | High No NA
Vcce is OK VCCOk | High No NA
Cold reset ColdReset* | Low No NA
Reset Reset* | Low No NA
Fault Fault* (@) Low Yes b

Key to Reset State Column:

a All 170 pins (SysAD[63:0], SysADC[7:0], etc.) remain 3-stated until the Reset* signal deasserts.

b All output only pins (ValidOut*, Release*, etc.), except the clocks, are 3-stated until the ColdReset* signal

deasserts.

c All clocks, except ModeClock, are 3-stated until VCCOKk asserts.

d ModeClock is always driven.
Not applicable to input pins.

Table 9.1 R4600/R4700 Processor Signal Summary
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Power-on Reset
Figure 9.1, Figure 9.2, and Figure 9.3 illustrate the power-on, warm,
and cold resets.

This is the sequence for a power-on reset:

1. Power-on reset applies a stable Vcc of at least 4.5 (3.0) volts from the
5.0 (3.3) volt power supply to the processor. During this time, VCCOK is
deasserted, ColdReset* and Reset* are asserted and the MasterClock
input oscillates.

2. After at least 100 ms of stable Vcc and MasterClock, the VCCOk
signal is asserted to the processor. The assertion of VCCOK begins the
initialization of the processor. After the mode bits have been read in, the
processor allows its internal phase locked loops to lock, stabilizing the
processor internal clock, PClock, the SyncOut-Syncln clock path
(described in Chapter 10), and the master clock output, MasterOut.

3. ColdReset* is asserted for at least 64K (or 21%) MasterClock cycles
after the assertion of VCCOKk. Once the processor reads the boot-time
mode control serial data stream, ColdReset* can be deasserted.
ColdReset* must be deasserted synchronously with MasterClock.

4. The deasserted edge of ColdReset* synchronizes the edges of SClock,
TClock, and RClock (to all processors, if in a multiprocessor system).

5. After ColdReset* is deasserted synchronously and SClock, TClock,
and RClock have stabilized, Reset* is deasserted to allow the processor to
begin running. (Reset* must be held asserted for at least 64 MasterClock
cycles after the deassertion of ColdReset*.) Reset* must be deasserted
synchronously with MasterClock.

Note: ColdReset* must be asserted when VCCOKk asserts. The behavior of the
processor is undefined if VCCOKk asserts while ColdReset* is deasserted.

Cold Reset

A cold reset can begin anytime after the processor has read the
initialization data stream, causing the processor to start with the Reset
exception.

A cold reset requires the same sequence as a power-on reset except that
the power is presumed to be stable before the assertion of the reset inputs
and the deassertion of VCCOK.

To begin the reset sequence, VCCOk must be deasserted for a minimum
of 100 ms before reassertion.

Warm Reset

To execute a warm reset, the Reset* input is asserted synchronously
with MasterClock. It is then held asserted for at least 64 MasterClock
cycles before being deasserted synchronously with MasterClock. The
processor internal clocks, PClock and SClock, and the System interface
clocks, TClock and RClock, are not affected by a warm reset. The boot-
time mode control serial data stream is not read by the processor on a
warm reset. A warm reset forces the processor to start with a Soft Reset
exception.

The master clock output, MasterOut, generates any reset-related
signals for the processor that must be synchronous with MasterClock.

After a power-on reset, cold reset, or warm reset, all processor internal
state machines are reset, and the processor begins execution at the reset
vector. All processor internal states are preserved during a warm reset,
although the precise state of the caches depends on whether or not a cache
miss sequence has been interrupted by resetting the processor state
machines.
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Initialization Sequence

The boot-mode initialization sequence begins immediately after VCCOk
is asserted. As the processor reads the serial stream of 256 bits through
the Modeln pin, the boot-mode bits initialize all fundamental processor
modes. (The signals used are described in Chapter 8).

This is the initialization sequence:

1. The system deasserts the VCCOKk signal. The ModeClock output
is held asserted.

2. The processor synchronizes the ModeClock output at the time
VCCOk is asserted. The first rising edge of ModeClock occurs at least 256
MasterClock cycles after VCCOK is asserted. There could be more clock
cycles due to internal delays on the VccOK signal. After the first rising
edge, each additional rising edge will be 256 master clock cycles.

3. Each bit of the initialization stream is presented at the Modeln pin
after each rising edge of the ModeClock. The processor samples 256
initialization bits from the Modeln input.
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TMDS®| -
_ TMDH _
BitoYBit1) (B!t
Modeln _ 25

-TDS Sl
-
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>
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-4TDS 4 TDS
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Figure 9.1 Power-on Reset
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Figure 9.3 Warm Reset

Boot-Mode Settings

Unlike the R4000, the speed of the R4600/R4700 output drivers is

statically controlled at boot time.
Table 9.2 lists the processor boot-mode settings.
apply to the boot-mode settings listed in the table:

Bit O of the stream is presented to the processor when VCCOk

is first asserted.

Selecting a reserved value results in undefined processor behav-

ior.

Bits 19 to 255 are reserved bits.
Zeros must be scanned in for all reserved bits.

The following rules
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Serial Value Mode Setting Serial Value Mode Setting
Bit Bit
0 Reserved (must be zero) 9:10 | Non-block Write: Selects the manner in
which non-block writes are handled, bit 10
is most significant
1:4 | XmitDatPat: System interface data rate for 0 R4x00 compatible
block writes only (bit 4 most significant)
0 DDDD 1 Reserved
1 DDxDDx 2 Pipelined Writes
2 DDxxDDxx 3 Write re-issue
3 DxDxDxDx 11 TmrintEn: Disables the timer interrupt on
Int*[5]
4 DDxxxDDxxx 0 Enabled Timer Interrupt
5 DDxxxxDDxxxx 1 Disabled Timer Interrupt
6 DxxDxxDxxDxx 12 Reserved (must be zero)
7 DDxxxxxXxDDxxxxxx|| 13:14 | Drv_Out: Output driver slew rate control.
Bit 14 is most significant. Affects only out-
puts that are not clocks.
8 DXXXDXXXDXXXDxXX 10 100% strength (fastest)
9-15 Reserved 11 83% strength
5:7 | SysCkRatio: PClock to SClock divisor, fre- 00 67% strength
quency relationship between SClock, RClock,
and TClock and PClock, bit 7 most significant.
0 Divide by 2 01 50% strength (slowest)
1 Divide by 3 15 Tclock[O]:
2 Divide by 4 [0] Enabled. [1] Disabled.
3 Divide by 5 16 Tclock[1]:
4 Divide by 6 [0] Enabled. [1] Disabled.
5 Divide by 7 17 Rclock]O0]:
6 Divide by 8 [0] Enabled. [1] Disabled.
7 Reserved 18 Rclock][1]:
8 EndBIt: Specifies byte ordering [0] Enabled. [1] Disabled.
0 Little-endian 19:255 | Reserved (must be zero)
ordering
1 Big-endian
ordering

Table 9.2 Boot-Mode Settings
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Introduction

This chapter describes the clock signals (“clocks”) used in the R4600/
R4700 processor and the processor status reporting mechanism.

The subject matter includes basic system clocks, system timing
parameters, connecting clocks to a phase-locked system, connecting
clocks to a system without phase locking, and processor status outputs.

Signal Terminology
The following terminology is used in this chapter (and book) when
describing signals:
» Rising edge indicates a low-to-high transition.
« Falling edge indicates a high-to-low transition.
e Clock-to-Q delay is the amount of time it takes for a signal to move
from the input of a device (clock) to the output of the device (Q).

Figure 10.1 and Figure 10.2 illustrate these terms.

single clock cycle
P

e
high-to-low \
transition low-to-high

transition

Figure 10.1 Signal Transitions

data out

data in

o) L

clock input

Clock-to-Q
delay
>

Figure 10.2 Clock-to-Q Delay

Basic System Clocks

The various clock signals used in the R4600/R4700 processor are
described below, starting with MasterClock, upon which the processor
bases all internal and external clocking. Note: All output clocks will have
approximately a 50% duty cycle + the jitter and any difference in rise and/
or fall times.

MasterClock

The processor bases all internal and external clocking on the single
MasterClock input signal. The processor generates the clock output
signal, MasterOut, at the same frequency as MasterClock and aligns
MasterOut with MasterClock, if Syncln is properly connected to
SyncOut.

10-1
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MasterOut

The processor generates the clock output signal, MasterOut, at the
same frequency as MasterClock and aligns MasterOut with MasterClock,
if Syncln is properly connected to SyncOut. MasterOut clocks certain
external logic, such as the reset logic.

Syncln/SyncOut

The processor generates SyncOut at the same frequency as
MasterClock and aligns Syncln with MasterClock.

SyncOut must be connected to Syncln either directly, or through an
external buffer. The processor can compensate for both output driver and
input buffer delays (and, when necessary, delay caused by an external
buffer according to the connections of TClock and RClock to the rest of
the system) when aligning Syncln with MasterClock. Figure 10.8 on
page 10-9 gives an illustration of SyncOut connected to Syncln through
an external buffer.

PClock

The processor generates an internal clock, PClock, at twice the
frequency of MasterClock and precisely aligns every other rising edge of
PClock with the rising edge of MasterClock.

All internal registers and latches use PClock, which is the pipeline clock
rate.

SClock

The R4600/R4700 processor divides PClock by 2, 3, 4, 5, 6, 7 or 8,
programmed at boot-mode initialization to generate the internal clock
signal, SClock. The processor uses SClock to sample data at the system
interface and to clock data into the processor system interface output
registers.

The first rising edge of SClock, after ColdReset* is deasserted, is
aligned with the first rising edge of MasterClock.

TClock
TClock (transmit clock) clocks the output registers of an external agent,
and can be a global system clock for any other logic in the external agent.
TClock is identical to SClock. The edges of TClock align precisely with
the edges of SClock and TClock can also be aligned with MasterClock,
when Syncln is properly connected to SyncOut.

RClock

The external agent uses RClock (receive clock) to clock its input
registers. The processor generates RClock at the same frequency as
SClock, although RClock leads TClock and SClock by 25 percent of
SClock cycle time.
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Figure 10.3 shows the clocks for a PClock-to-SClock division by 2.
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Figure 10.3 Processor Clocks, PClock-to-SClock Division by 2

System Timing Parameters
As shown in Figure 10.3, data provided to the processor must be stable
a minimum of tpg nanoseconds (ns) before the rising edge of SClock and

be held valid for a minimum of tp ns after the rising edge of SClock.

Alignment to SClock
Processor data becomes stable a minimum of tpy, Nns and a maximum of

tpo Nns after the rising edge of SClock. This drive-time is the sum of the

maximum delay through the processor output drivers together with the
maximum clock-to-Q delay of the processor output registers.

Alignment to MasterClock

Certain processor inputs (specifically VCCOk, ColdReset*, and Reset*)
are sampled based on MasterClock, while others are output based on
MasterClock. The same setup, hold, and drive-off parameters, tps, tpn,

tpm. and tpo, shown in Figure 10.3, apply to these inputs and outputs, but
they are measured relative to MasterClock instead of SClock.

Phase-Locked Loop (PLL)

The processor aligns SyncOut, PClock, SClock, TClock, and RClock
with internal phase-locked loop (PLL) circuits that generate aligned clocks
based on SyncOut/Synclin. By their nature, PLL circuits are only capable
of generating aligned clocks for MasterClock frequencies within a limited
range.
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Clocks generated using PLL circuits contain some inherent inaccuracy,
or jitter; a clock aligned with MasterClock by the PLL can lead or trail
MasterClock by as much as the related maximum jitter specified in the
data sheet.

PLL Components and Operation

The passive components required for the Phase Locked Loop circuit are
contained in the packages for the R4600 and R4700. There are no required
external passive components.

Passive Components

The Phase Locked Loop circuit requires several passive components for
proper operation, which are connected to PLLCapO, PLLCap1, VccP, and
VssP, as illustrated in Figure 10.4.

R4600/R4700
Vce
R
VeeP o 5
C1 C3 —_— C2
VssP ) O
R
RS Note: C1, C2, C3, Rs
and Ls are Board Caps

Figure 10.4 PLL Passive Components

It is essential to isolate the analog power and ground for the PLL circuit
(VeeP/VssP) from the regular power and ground (Vcc/Vss). Initial
evaluations have yielded good results with the following values:

R = 5 ohns
ClL =1nF

C2 = 82 nF
C3 = 10 pF
Cp = 470 pF

Since the optimum values for the filter components depend upon the
application and the system noise environment, these values should be
considered as starting points for further experimentation within your
specific application.
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Figure 10.5 shows the internal PLL and clock distribution network of the

R4600/R4700.
ColdResetB | SyncOut
Syncin pLL1/ | 2F 2F =2 J MasterOut
F Clock SF+90° _< o
+90c| Divide/
Doubler = 2F+90 Align TClock
=2 RClock

Masterin Mode bits]
DI L .

= ModeClock

PClock (2F)

-; FlpLL2/ Clock
_n_ Clock | 2F )— Distribution

Tree

Doubler | ogp4+gQo

Buffer PLLoff

E—

Figure 10.5 R4600/R4700 PLL Network

Connecting Clocks to a Phase-Locked System

When the processor is used in a phase-locked system, the external agent
must phase lock its operation to a common MasterClock. In such a
system, the delivery of data and data sampling have common
characteristics, even if the components have different delay values. For
example, transmission time (the amount of time a signal takes to move from
one component to another along a trace on the board) between any two
components A and B of a phase-locked system can be calculated from the
following equation:

Transmission Time = (SClock period) — (tpg for A) — (tpg for B) —
(Clock litter for A Max) — (Clock Jitter for B Max)
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Figure 10.6 shows a block-level diagram of a phase-locked system using
the R4600/R4700 processor.

MasterClock

R4600/R4700 External Agent
MasterClock MasterClock
SysCmd SysCmd
SysAD SysAD
SyncOut
Syncin
RClock
TClock

Figure 10.6 R4600/R4700Processor Phase-Locked System

Connecting Clocks to a System without Phase Locking
When the R4600/R4700 processor is used in a system in which the
external agent cannot lock its phase to a common MasterClock, the
output clocks RClock and TClock can clock the remainder of the system.
Two clocking methodologies are described in this section: connecting to a
gate-array device or connecting to discrete CMOS logic devices.

Connecting to a Gate-Array Device

When connecting to a gate-array device, both RClock and TClock are
used within the gate-array. The gate array internally buffers RClock and
uses this buffered version to clock registers that sample processor
outputs.

These sampling registers should be immediately followed by staging
registers clocked by an internally buffered version of TClock. This buffered
version of TClock should be the global system clock for the logic inside the
gate array and the clock for all registers that drive processor inputs.
Figure 10.7 on page 10-7 is a block diagram of this circuit.

Staging registers place a constraint on the sum of the clock-to-Q delay
of the sample registers and the setup time of the synchronizing registers
inside the gate arrays, as shown in the following equation:

Clock-to-Q Delay + Setup of Synch Register < 0.25 (RClock period)
— (Max Clock Jitter for RClock)
- (Max Delay Mismatch for Clock Buffers on RClock and TClock)
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Figure 10.7 is a block diagram of a system without phase lock, using the
R4600/R4700 processor with an external agent implemented as a gate
array.

Sampling Staging
MasterClock Gate Register Register

Array

R4600/R4700
MasterClock

SysCmd

SysAD

7\

SyncOut
Syncin

RClock
TClock

VV

C 1 1

CE
Sampling Staging
Register Register
CE

/I
N

Figure 10.7 Gate-Array System Without Phase Lock, Using the
R4600/R4700 Processor

In a system without phase lock, the transmission time for a signal from
the processor to an external agent composed of gate arrays can be
calculated from the following equation:

Transmission Time = (75 percent of TClock period) — (tpg for R4600/R4700)
+ (Min External Clock Buffer Delay)
— (External Sample Register Setup Time)
— (Max Clock Jitter for R4600/R4700 Internal Clocks)
— (Max Clock Jitter for RClock)
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The transmission time for a signal from an external agent composed of
gate arrays to the processor in a system without phase lock can be
calculated from the following equation:

Transmission Time = (TClock period) - (tpg for R4600/R4700)
— (Max External Clock Buffer Delay)
— (Max External Output Register Clock-to-Q Delay)
— (Max Clock Jitter for TClock)
— (Max Clock Jitter for R4600/R4700 Internal Clocks)

Connecting to a CMOS Logic System

The processor uses matched delay clock buffers to generate aligned
clocks to external CMOS logic. A matched delay clock buffer is inserted in
the SyncOut/Synclin alignment path of the processor, skewing SyncOut,
MasterOut, RClock, and TClock to lead MasterClock by the buffer delay
amount, while leaving PClock aligned with MasterClock.

The remaining matched delay clock buffers are available to generate a
buffered version of TClock aligned with MasterClock. Alignment error of
this buffered TClock is the sum of the maximum delay mismatch of the
matched delay clock buffers, and the maximum clock jitter of TClock.

As the global system clock for the discrete logic that forms the external
agent, the buffered version of TClock clocks registers that sample
processor outputs, as well as clocking the registers that drive the processor
inputs.

The transmission time for a signal from the processor to an external
agent composed of discrete CMOS logic devices can be calculated from the
following equation:

Transmission Time = (TClock period) - (tpg for R4600/R4700)
— (External Sample Register Setup Time)
— (Max External Clock Buffer Delay Mismatch)
— (Max Clock lJitter for R4600/R4700 Internal Clocks)
— (Max Clock Jitter for TClock)

10-8



Clock Interface Chapter 10

Figure 10.8 is a block diagram of a system without phase lock,
employing the R4600/R4700 processor and an external agent composed of
both a gate array and discrete CMOS logic devices.

MasterClock

R4600/R4700
MasterClock

SysCmd

X
i

Control
Gate
Array

SysAD

SyncOut
Syncin

RClock
TClock

Sample
Registers |T CEI | |

Memory

Figure 10.8 Gate Array and CMOS System Without Phase Lock, Us-
ing the R4600/R4700 Processor

The transmission time for a signal from an external agent composed of
discrete CMOS logic devices can be calculated from the following equation:

Transmission Time = (TClock period) - (tpg for R4600/R4700)
— (Max External Output Register Clock-to-Q Delay)
— (Max External Clock Buffer Delay Mismatch)
— (Max Clock Jitter for R4600/R4700 Internal Clocks)
— (Max Clock Jitter for TClock)

In this clocking methodology, the hold time of data driven from the
processor to an external sampling register is a critical parameter. To
guarantee hold time, the minimum output delay of the processor, tppy,

must be greater than the sum of the following:

Min hold time for the external sampling register
+ max clock jitter for R4600/R4700 internal clocks
+ max clock jitter for TClock
+ max delay mismatch of the external clock buffers
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Introduction

This chapter describes in detail the cache memory: its place in the
R4600/R4700 memory organization and individual operations of the
primary cache.

This chapter uses the following terminology:

e The primary cache may also be referred to as the P-cache.

e The primary data cache may also be referred to as the D-cache.

* The primary instruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

Memory Organization

Figure 11.1 shows the R4600/R4700 system memory hierarchy. In the
logical memory hierarchy, caches lie between the CPU and main memory.
They are designed to make the speedup of memory accesses transparent
to the user. Each functional block in Figure 11.1 has the capacity to hold
more data than the block above it. For instance, physical main memory
has a larger capacity than the primary cache. At the same time, each
functional block takes longer to access than any block above it. For
instance, it takes longer to access data in main memory than in the CPU
on-chip registers.

R4600/R4700

&
(]
k%)
Registers Registers §
[}
I-cache D-cache o
@
O
Primary Cache  J
Optional Faster Access  Increasing Data
Secondary — Time Capacity
Cache
. g A
Main Memory g
]
=

Disk, CD-ROM,

Tape, etc.

Peripherals

Eigure 11.1 Logical Hierarchy of Memory

The R4600/R4700 processor has two on-chip primary caches: one holds
instructions (the instruction cache), the other holds data (the data cache).
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Overview of Cache Operations
As described earlier, caches provide fast temporary data storage, and
they make the speedup of memory accesses transparent to the user. In
general, the processor accesses cache-resident instructions or data
through the following procedure:
1. The processor, through the on-chip cache controller, attempts to
access the next instruction or data in the primary cache.
2. The cache controller checks to see if this instruction or data is present
in the primary cache.
< If the instruction/data is present, the processor retrieves it. This is
called a primary-cache hit.
< If the instruction/data is not present in the primary cache, it is re-
trieved as a cache line from memory and is written into the primary
cache.

3. The processor retrieves the instruction/data from the primary cache
and operation continues. For a data cache miss, the processor can restart
the pipeline after the first doubleword (the one at the miss address) is
retrieved and continues the cache line refill in parallel.

It is possible for the same data to be in two places simultaneously: main
memory and the primary cache. This data is kept consistent through the
use of either a write-back or a write-through methodology. For a write-back
cache, the modified data is not written back to memory until the cache line
is replaced. In a write-through cache, the data is written to memory as the
cached data is modified (with a possible delay due to the write buffer).

R4600/R4700 Cache Description

This section describes the organization of on-chip primary caches. As
Figure 11.1 on page 1 shows, the R4600/R4700 contains separate primary
instruction and data caches.

Figure 11.2 provides block diagrams of the R4600/R4700 memory
model.

R4600/R4700

Cache Controller - Main Memory

I-cache
Primary

Caches

D-cache

Eigure 11.2 Cache Support in the R46007R4 700

Cache Line Size

A cache line is the smallest unit of information that can be fetched from
memory to be filled into the cache. A primary cache line is 8 words in
length, and is represented by a single tag.

Upon a cache miss in the primary cache, the missing cache line is
loaded from memory into the primary cache.

Cache Organization and Accessibility

This section describes the organization of the primary cache, including
the manner in which it is mapped, the addressing used to index the cache,
and composition of the cache lines. The primary instruction and data
caches are indexed with a virtual address (VA).
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Organization of the Primary Instruction Cache (I-Cache)

Each line of primary I-cache data (although it is actually an instruction,
it is referred to as data to distinguish it from its tag) has an associated 28-
bit tag that contains a 24-bit physical address, a single valid bit, a reserved
bit, a single parity bit and the FIFO replacement bit. Word parity is used
on I-cache data.

The R4600/R4700 processor primary I-cache has the following
characteristics:

« two-way set associative

e indexed with a virtual address

« checked with a physical tag

e organized with 8-word (32-byte) cache line.

Figure 11.3 shows the format of a primary I-cache line.

27 26 25 24 23 0
F|P|O]|V PTag
1 1 1 1 24
65 64 63 0
PTag Physical tag (bits 35:12 of the physical address)
\% Valid bit
F FIFO Replacement Bit. Complemented on refill.
P Even parity for the PTag and V fields
DataP Even parity; 1 parity bit per word of data
Data Cache data

Figure 11.3 R4600/R4700 Primary I-Cache Line Format

Organization of the Primary Data Cache (D-Cache)

Each line of primary D-cache data has an associated 30-bit tag that
contains a 24-bit physical address, 2-bit cache line state, a write-back bit,
a parity bit for the physical address and cache state fields, a parity bit for
the write-back bit and the FIFO replacement bit.

The R4600/R4700 processor primary D-cache has the following
characteristics:

< write-back or write-through on a per-page basis
two-way set associative
indexed with a virtual address
checked with a physical tag
organized with 8-word (32-byte) cache line.
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Figure 11.4shows the format of a primary D-cache line.

PTag
DataP
Data

29 28 27 26 25 24 23 0
FIW|W| P CS PTag
1 1 1 1 2 24
71 64 63 0

FIFO Replacement Bit

Even parity for the write-back bit

Write-back bit (set if cache line has been written)
Even parity for the PTag and CS fields

Primary cache state:
0 = Invalid, 1 = Shared,
2 = Clean Exclusive, 3 = Dirty Exclusive

Physical tag (bits 35:12 of the physical address)
Even parity for the data; 1-bit per byte
Cache data

Eigure 11.4 R4600/R4700 8-Word 5rimary Data Cache Line Format

In the R4600/R4700, the W (write-back) bit, not the cache state,
indicates whether or not the primary cache contains modified data that
must be written back to memory.

Note: There is no hardware support for cache coherency. Thus the only
cache states used are Dirty Exclusive and Invalid.

11-4



Cache Organization, Operation and Coherency Chapter 11

Accessing the Primary Caches
Figure 11.5 shows the virtual address (VA) index into the primary
caches. Each instruction and data cache size is 16 Kbytes.

A

Y

Data

Tags

Tag line VA(12:5)

Data line

\

Y

VA(12:5)

w W' State Tag P

64

Data

Eigure 11.5_Primary Cache Data and 7ag Organization

Cache States

The terms below are used to describe the state of a cache line:

« Exclusive: a cache line that is present in exactly one cache in the sys-
tem is exclusive. This is always the case for the R4600/R4700. All
cache lines are in an exclusive state.

e Dirty: a cache line that contains data that has changed since it was
loaded from memory is dirty.

e Clean: a cache line that contains data that has not changed since it
was loaded from memory is clean.

e Shared: a cache line that is present in more than one cache in the
system. The R4600/R4700 does not provide for hardware cache co-
herency. This state should never happen in normal operations.

The R4600/R4700 only supports the four cache states as shown in
Table 11.1 on page 6. The only states that will occur in the R4600/R4700,
under normal operations are the Dirty Exclusive and Invalid states.

Note: Even though valid data is in the Dirty Exclusive state, it may still
be consistent with memory. One must look at the dirty bit, W, to determine
if the cache line is to be written back to memory when it is replaced.
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Each primary cache line in the R4600/R4700 system is in one of the
states described in Table 11.1.

Cache Line

State Description
Invalid A cache line that does not contain valid information must be marked invalid, and cannot
be used. A cache line in any other state than invalid is assumed to contain valid informa-
tion.
Shared A cache line that is present in more than one cache in the system is shared. This state will

not occur for normal operations.

Clean Exclusive

A clean exclusive cache line contains valid information and this cache line is not present
in any other cache. The cache line is consistent with memory and is not owned by the pro-
cessor (see “Cache Line Ownership” on page 6 in this chapter). This state will not occur
for normal operations.

Dirty Exclusive

A dirty exclusive cache line contains valid information and is not present in any other
cache. The cache line may or may not be consistent with memory and is owned by the
processor (see “Cache Line Ownership” on page 6 in this chapter). Use the W bit to deter-
mine if the line must be written back on replacement.

Table 11.1 Cache States

Primary Cache States
Each primary data cache line is normally in one of the following states:
e invalid
e dirty exclusive
Each primary instruction cache line is in one of the following states:
e invalid
» valid

Cache Line Ownership

The processor is the owner of a cache line when it is in the dirty
exclusive state and is responsible for the contents of that line. There can
only be one owner for each cache line.

The ownership of a cache line is set and maintained through the rules

described below.

e A processor assumes ownership of the cache line if the state of the
primary cache line is dirty exclusive.

« A processor that owns a cache line is responsible for writing the cache
line back to memory if the line is replaced during the execution of a
Write-back or Write-back Invalidate cache instruction if the line is in
a write-back page. The Cache instruction is explained in Appendix A.

< Memory always owns clean cache lines

e The processor gives up ownership of a cache line when the state of the
cache line changes to invalid.

Therefore, based on these rules and that any valid data cache line is in

the Dirty Exclusive state (under normal operating conditions), the
processor is considered to be the owner of the cache line.

Cache Write Policy

The R4600/R4700 processor manages its primary data cache by using
either a write-back or a write-through policy on a per-page basis. In a
write-back cache, the data is not written back to memory until the cache
line is replaced. A write-through policy means the store data is written to
the cache and to memory. The write of the data to memory may not occur
at the same time as the write to cache due to the write buffer.

For a write-back entry, if the cache line is valid and has been modified
(the W bit is set), the processor writes this cache line back to memory when
the line is replaced, either in the course of satisfying a cache miss or during
the execution of a Write-back or Write-back Invalidate CACHE instruction.
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For a write-through entry, whenever a store hits in the cache line, the
data is also written to memory via the write buffer. The store will not set or
clear the W bit for a write-through cache line. This is to allow a different
virtual address that maps to the same physical address and with a write-
back policy to still set the W bit. For a miss to a write-through line, the
action taken will be determined by the write-allocation policy. For a write-
allocate entry, the cache line is first retrieved from memory and the store
will then continue. A no write-allocate entry will just post the write to the
system interface, via the write buffer, in the same manner as an uncached
write.

When the processor writes a cache line back to memory, it does not
ordinarily retain a copy of the cache line, and the state of the cache line is
changed to invalid. However, there are exceptions. For example, the
processor retains a copy of the cache line if a cache line is written back by
the Hit Write-back cache instruction. If the W bit is set, the cache line is
written back and the W bit is cleared. The processor signals this line
retention during a write by setting SysCmd(2) to a 1, as described in
Chapter 12.

Cache State Transition Diagrams

The following sections describe the cache state diagrams that illustrate
the cache state transitions for the primary cache. Figure 11.6 shows the
state diagram of the primary cache.

When an external agent supplies a cache line, it need not return the
initial state of the cache line, for normal operations (see Chapter 12 for a
definition of an external agent). This is because the only read request the
R4600/R4700 should issue are for non-coherent data and the lower three
bits for the data identifier are reserved. The initial state will automatically
be set to DE by the R4600/R4700. Otherwise, the processor changes the
state of the cache line during one of the following events:

e A store to a dirty exclusive line remains in a dirty exclusive state.
e The state is changed to invalid for:

- A Cache invalidate operation.

- If the line is replaced

Write hit
Read hit
—

Index Invalidate
Hit Invalidate

Invalid < Dirty Exclusive

Eigure 11.6 |-3rimary Data Cache State 5iagram

Cache Coherency Overview

Systems using more than one master must have a mechanism to
maintain data consistency throughout the system. This mechanism is
called a cache coherency protocol. The R4600/R4700 does not provide
any hardware cache coherency. Cache coherency must be handled with
software.

Cache Coherency Attributes
Cache coherency attributes are necessary to ensure the consistency of
data throughout the system.
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Bits in the translation look-aside buffer (TLB) control coherency on a
per-page basis. Specifically, the TLB contains 3 bits per entry that provide
two possible coherency attribute types; they are listed below and described
more fully in the following sections.

e uncached

* noncoherent (includes 3 attribute values)

Table 11.2 summarizes the behavior of the processor on load misses and
store misses for each of the coherency attribute types listed above. The
following sections describe in detail these coherency attribute types

Attribute Type Load Miss Store Miss
Uncached Main memory read Main memory write
Noncoherent Noncoherent read Noncoherent read (write-allocate page)
Main memory write (no write-allocate page)
Table 11.2 Coherency Attributes and Processor Behavior
Uncached

Lines within an uncached page are never in a cache. When a page has
the uncached coherency attribute, the processor issues a doubleword,
partial-doubleword, word, or partial-word read or write request directly to
main memory (bypassing the cache) for any load or store to a location
within that page.

Noncoherent

Lines with a noncoherent attribute type can reside in a cache; a load
miss causes the processor to issue a noncoherent block read request to a
location within the cached page. For a store miss to a write-allocate page,
the processor issues a noncoherent block read request to a location within
the cached page and then does the write-through. If the page has the no
write-allocate attribute, a store miss will generate a write to the memory as
in the uncached case.

Cache Operation Modes

The R4600/R4700 processor only supports the no-secondary-cache
mode (only uncached and noncoherent coherency attributes are
applicable) of R4x00 operation.

R4600/R4700 Processor Synchronization Support

In a multiprocessor system, it is essential that two or more processors
working on a common task execute without corrupting each other’s
subtasks. Synchronization, an operation that guarantees an orderly
access to shared memory, must be implemented for a properly functioning
multiprocessor system. Two of the more widely used methods are
discussed in this section: test-and-set, and counter. Even though the
R4600/R4700 does not support symmetric multi-processing (SMP), these
are useful for multi-master and heterogenous multi-processing.

Test-and-Set

Test-and-set uses a variable called the semaphore, which protects data
from being simultaneously modified by more than one processor. In other
words, a processor can lock out other processors from accessing shared
data when the processor is in a critical section, a part of program in which
no more than a fixed number of processors is allowed to execute. In the
case of test-and-set, only one processor can enter the critical section.
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Figure 11.7 illustrates a test-and-set synchronization procedure that
uses a semaphore; when the semaphore is set to 0, the shared data is
unlocked, and when the semaphore is set to 1, the shared data is locked.

3

1. Load semaphore

2. Unlocked?
(=0?)

Yes

3. Try locking
semaphore

e S

Yes

5. Execute critical section
(Access shared data)

'

6. Unlock semaphore

\A

Continue processing

Eigure 11.7 Synchronization with Test-and-Set

The processor begins by loading the semaphore and checking to see if it
is unlocked (set to 0) in steps 1 and 2. If the semaphore is not O, the
processor loops back to step 1. If the semaphore is O, indicating the shared
data is not locked, the processor next tries to lock out any other access to
the shared data (step 3). If not successful, the processor loops back to step
1, and reloads the semaphore.

If the processor is successful at setting the semaphore (step 4), it
executes the critical section of code (step 5) and gains access to the shared
data, completes its task, unlocks the semaphore (step 6), and continues
processing.

Counter

Another common synchronization technique uses a counter. A counter
is a designated memory location that can be incremented or decremented.

In the test-and-set method, only one processor at a time is permitted to
enter the critical section. Using a counter, up to N processors are allowed
to concurrently execute the critical section. All processors after the Nth
processor must wait until one of the N processors exits the critical section
and a space becomes available.

The counter works by not allowing more than one processor to modify it
at any given time. Conceptually, the counter can be viewed as a variable
that counts the number of limited resources (for example, the number of
processes, or software licenses, etc.).
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Figure 11.8 shows this process.

| |

Load counter

\

Execute critical section

No
@ K Y

Yes Load counter
Try decrementing +
counter
Try incrementing

counter

N0 No

Yes

Continue processing

Eigure 11.8 Synchronization Using a Counter

Load Linked and Store Conditional

The R4600/R4700 instructions Load Linked (LL) and Store Conditional
(SC) provide support for processor synchronization. These two
instructions work very much like their simpler counterparts, load and
store. The LL instruction, in addition to doing a simple load, has the side
effect of setting a bit called the link bit. This link bit forms a breakable link
between the LL instruction and the subsequent SC instruction. The SC
performs a simple store if the link bit is set when the store executes. If the
link bit is not set, then the store fails to execute. The success or failure of
the SC is indicated in the target register of the store.

The link is broken upon completion of an ERET (return from exception)

instruction.

The most important features of LL and SC are:

e They provide a mechanism for generating all of the common synchro-
nization primitives including test-and-set, counters, sequencers, etc.,
with no additional overhead.

< When they operate, bus traffic is generated only if the state of the
cache line changes; lock words stay in the cache until some other pro-
cessor takes ownership of that cache line.
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Examples Using LL and SC

Figure 11.9 shows how to implement test-and-set using LL and SC
instructions.

— |

Load semaphore Loop: LL r2,(r1)

No ORI r3,r2,1

Unlocked? BE(B r3,r2,Loop
NO

(=0?)
Yes

Try locking SC r3,(rl)
semaphore

BEQ r3,0,Loo
NO% k

Yes

Execute critical section
(Access shared data)

'

Unlock semaphore SWr2,(r1)

Eigure 11.0 Test-and-Set using LL and SC
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Figure 11.10 shows synchronization using a counter.

L

Load counter

No

g

Yes

Try decrementing
counter

No

Yes

Execute critical section

J

\/

Load counter

'

Try incrementing
counter

No

v

Yes

Continue processing

Loopl: LL r2,(r1)
BLEZ r2,Loopl
NOP

SUB r3,r2,1
SCr3,(r1)

BEQ r3,0,Loopl
NOP

Loop2: LL r2,(r1)

ADDr3,r2,1
SCr3,(rl)

BEQ r3,0,Loop2
NOP

Eigure 11.10 Counter Using LL and SC
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System Interface Chapter 12

Introduction
The System interface allows the processor to access external resources
needed to satisfy cache misses and uncached operations, while permit-
ting an external agent access to some of the processor internal resources.
This chapter describes the system interface from the point of view of
both the processor and the external agent.

Terminology

The following terms are used in this chapter:

An external agent is any logic device connected to the processor, over
the system interface, that allows the processor to issue requests.

A system event is an event that occurs within the processor and
requires access to external system resources.

Sequence refers to the precise series of requests that a processor gener-
ates to service a system event.

Protocol refers to the cycle-by-cycle signal transitions that occur on the
system interface pins to assert a processor or external request.

Syntax refers to the precise definition of bit patterns on encoded buses,
such as the command bus.

System Interface Description
The R4600/R4700 processor supports a 64-bit address/data interface
that can construct a simple uniprocessor with main memory. The System
interface consists of:
e 64-bit address and data bus, SysAD
e 8-bit SysAD check bus, SysADC (even parity only)
e 9-bit command bus, SysCmd
* six handshake signals:
- RdRdy*, WrRdy*
- ExtRgst*, Release*
- Validln*, ValidOut*
The processor uses the system interface to access external resources in
order to service processor requests such as cache misses, cache line
write-backs, write-through stores and uncached operations.
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Interface Buses

Figure 12.1 shows the primary communication paths for the system
interface: a 64-bit address and data bus, SysAD(63:0), and a 9-bit
command bus, SysCmd(8:0). These SysAD and the SysCmd buses are
bidirectional; that is, they are driven by the processor to issue a processor
request, and by the external agent to issue an external request (see
“Processor and External Request Protocols” on page 12-14 for more infor-
mation).

A request through the system interface consists of:

e an address

e a System interface command that specifies the precise nature of the

request
< aseries of data elements if the request is for a write or read response.

External Agent

SysAD(63:0)

R4600/R4700

SysCmd(8:0)

Figure 12.1 System Interface Buses

Address and Data Cycles

Cycles in which the SysAD bus contains a valid address are called
address cycles. Cycles in which the SysAD bus contains valid data are
called data cycles. Validity is determined by the state of the Validln* and
ValidOut* signals (described in “Interface Buses” on page 12-2).

The SysCmd bus identifies the contents of the SysAD bus during any
cycle in which it is valid. The most significant bit of the SysCmd bus is
always used to indicate whether the current cycle is an address cycle or a
data cycle.

e During address cycles [SysCmd(8) = 0], the remainder of the SysCmd
bus, SysCmd(7:0), contains a System interface command (the encod-
ing of system interface commands is detailed in “System Interface
Commands and Data ldentifiers” on page 12-32).

e During data cycles [SysCmd(8) = 1], the remainder of the SysCmd
bus, SysCmd(7:0), contains a data identifier (the encoding of data
identifiers is detailed later in this chapter).
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Issue Cycles
There are two types of processor issue cycles:
e processor read request issue cycles
e processor write request issue cycles.

The processor samples the signal RARdy* to determine the issue cycle
for a processor read request; the processor samples the signal WrRdy* to
determine the issue cycle of a processor write request.

As shown in Figure 12.2, RdRdy* must be asserted for one clock cycle,
two cycles prior to the address cycle of the processor read request to
define the address cycle as the issue cycle (cycle 5 in Figure 12.2).
RdRdy* does not need to be asserted during the issue cycle.

soyde |l 12 s |4afs]6]
scock |\
SysAD Bus |  Addr X

RdRdy* | \ /

Note: RdRdy* must be sampled LOW at the end of cycle 3,
which is marked with an asterisk.

Figure 12.2 State of RdRdy* Signal for Read Requests

As shown in Figure 12.3, WrRdy* must be asserted for one clock cycle,
two cycles prior to the first address cycle of the processor write request to
define the address cycle as the issue cycle (cycle 5 in Figure 12.3).
WrRdy* does not need to be asserted during the issue cycle.

scyee || 123 ]a]s |6 |
seec | U
SysAD Bus | \ Adr )( Data

WrRdy* | \ /

Note: WrRdy* must be sampled LOW at the end of cycle 3,
which is marked with an asterisk.

Figure 12.3 State of WrRdy* Signal for Write Requests

The processor repeats the address cycle for the request until the condi-
tions for a valid issue cycle are met. After the issue cycle, if the processor
request requires data to be sent, the data transmission begins. There is
only one issue cycle for any processor request.

The processor accepts external requests, even while attempting to issue
a processor request, by releasing the system interface to slave state in
response to an assertion of ExtRqgst* by the external agent.
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Note that the rules governing the issue cycle of a processor request are
strictly applied to determine the action the processor takes. The
processor either:

« completes the issuance of the processor request in its entirety before

the external request is accepted, or

* releases the system interface to slave state without completing the is-

suance of the processor request.

In the latter case, the processor issues the processor request (provided
the processor request is still necessary) after the external request is
complete. The rules governing an issue cycle again apply to the processor
request.

Handshake Signals

The processor manages the flow of requests through the following six

control signals:

e RdRdy*, WrRdy* are used by the external agent to indicate when it
can accept a new read (RdRdy*) or write (WrRdy*) transaction.

e ExtRgst*, Release* are used to transfer control of the SysAD and
SysCmd buses. ExtRqgst* is used by an external agent to indicate a
need to control the interface. Release* is asserted by the processor
when it transfers the mastership of the system interface to the exter-
nal agent.

e The R4600/R4700 processor uses ValidOut* and the external agent
uses Validln* to indicate valid command/data on the SysCmd/
SysAD buses.

System Interface Protocols

Figure 12.4 shows the system interface operates from register to
register. That is, processor outputs come directly from output registers
and begin to change with the rising edge of SClock.!

Processor inputs are fed directly to input registers that latch these
input signals with the rising edge of SClock. This allows the system
interface to run at the highest possible clock frequency.

R4600/R4700
_ Output data
>
Input data
- -
SClock

Figure 12.4 System Interface Register-to-Register Operation

1. sClock isan internal clock used by the processor to sample data at the system
interface and to clock datainto the processor system interface output registers;
see Chapter 10 for more details.
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Master and Slave States

When the R4600/R4700 processor is driving the SysAD and SysCmd
buses, the system interface is in master state. When the external agent is
driving the SysAD and SysCmd buses, the system interface is in slave
state.

In master state, the processor drives the SysAD and SysCmd buses and
will assert the signal ValidOut* whenever these buses are valid.

In slave state, the external agent drives the SysAD and SysCmd buses
and asserts the signal Validin* whenever these buses are valid.

Moving from Master to Slave State
The system interface remains in master state unless one of the following
OCCUrS:
e The external agent requests and is granted the system interface (ex-
ternal arbitration).
e The processor issues a read request and performs an uncompelled
change to slave state.

External Arbitration

The system interface must be in slave state for the external agent to
issue an external request through the system interface. The transition
from master state to slave state is arbitrated by the processor using the
system interface handshake signals ExtRgst* and Release*. This transi-
tion is described by the following procedure:

1. An external agent signals that it wishes to issue an external request
by asserting ExtRqgst*.

2. When the processor is ready to accept an external request, it releases
the system interface from master to slave state by asserting Release* for
one cycle.

3. The system interface returns to master state as soon as the issue of
the external request is complete.

This process is described in “External Arbitration Protocol” on page 12-
24,

Uncompelled Change to Slave State

An uncompelled change to slave state is the transition of the system
interface from master state to slave state, initiated by the processor when
a processor read request is pending. Release* is asserted automatically
after a read request. An uncompelled change to slave state occurs during
the issue cycle of a read request.

After an uncompelled change to slave state, the processor returns to
master state at the end of the next external request. This can be a read
response, or some other type of external request.

An external agent must note that the processor has performed an
uncompelled change to slave state and begin driving the SysAD bus along
with the SysCmd bus. As long as the system interface is in slave state,
the external agent can begin a single external request without arbitrating
for the system interface; that is, without asserting ExtRqst*.

After the external request, the system interface returns to master state.

Whenever a processor read request is pending, after the issue of a read
request, the processor automatically switches the system interface to
slave state, even though the external agent is not arbitrating to issue an
external request. This transition to slave state allows the external agent
to quickly return read response data.
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Processor and External Requests

There are two broad categories of requests: processor requests and
external requests. These two categories are described in this section.

When a system event occurs, the processor issues either a single
request or a series of requests—called processor requests—through the
system interface, to access an external resource and service the event.
For this to work, the processor system interface must be connected to an
external agent that is compatible with the system interface protocol, and
can coordinate access to system resources.

An external agent requesting access to a processor status register
generates an external request. This access request passes through the
system interface. System events and request cycles are shown in
Figure 12.5.

R4600/R4700 External Agent

Processor Requests

* Read

o Write External Requests
¢ Read
o Write
e Null

System Events

* Load Miss
Store Miss
Store Hit on write-through
Uncached Load/Store
CACHE operations

Figure 12.5 Requests and System Events

Rules for Processor Requests

The following rules apply to processor requests.

e After issuing a processor read request, the processor cannot issue a
subsequent read request until it has received a read response.

e After the processor has issued a write request in R4x00 compatible
write mode (set at boot time), the processor cannot issue a subsequent re-
quest until at least four cycles after the issue cycle of the write request.
This means back-to-back write requests with a single data cycle are sepa-
rated by two unused system cycles, as shown in Figure 12.6.

e After the processor has issued a write request in either of the two new
write modes, write reissue and pipelined writes, the processor can issue a
subsequent write immediately provided the WrRdy* requirement is meet.
This is discussed in more detail later in this chapter.
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scyde |l 1l 23 ]als[ef7][8]o]n]

SClock I_\_/_\_/_\_/_\_/_\_/_\_/_\_/_\_/_\_/_\_/

Cycles 1 2 3
SysAD Bus | X XAddr X Data XAddr XData

Write #1 Write #2

wiray [\ / \/

Figure 12.6 Back-to-Back Write Cycle Timing
(R4000 compatible mode)

Processor Requests
A processor request is a request or a series of requests, through the

system interface, to access some external resource. As shown in
Figure 12.7, processor requests include only reads and writes.

R4600/R4700 External Agent

Processor Requests
* Read

* Write

Figure 12.7 Processor Requests

Read request asks for a block, doubleword, partial doubleword, word, or
partial word of data either from main memory or from another system
resource.

Write request provides a block, doubleword, partial doubleword, word,
or partial word of data to be written either to main memory or to another
system resource.

Processor requests are managed by the processor in the equivalent of
the R4000/R4400 no-secondary-cache mode.

In no-secondary-cache mode, the processor issues requests in a strict
sequential fashion; that is, the processor is only allowed to have one
request pending at any time. For example, the processor issues a read
request and waits for a read response before issuing any subsequent
requests. The processor submits a write request only if there are no read
requests pending.

The processor has the input signals RdRdy* and WrRdy* to allow an
external agent to manage the flow of processor requests. RdRdy*
controls the flow of processor read requests, while WrRdy* controls the
flow of processor write requests.

The processor request cycle sequence is shown in Figure 12.8.
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R4600/R4700 External Agent

1. Processor issues read or

write request >

| 2. External system controls
acceptance of requests by
asserting RARdy* or WrRdy*

Figure 12.8 Processor Request

Processor Read Request

When a processor issues a read request, the external agent must access
the specified resource and return the requested data. (Processor read
requests are described in this section; external read requests are
described in “External Requests” on page 12-9.)

A processor read request can be split from the external agent’s return of
the requested data; in other words, the external agent can initiate an
unrelated external request before it returns the response data for a
processor read. A processor read request is completed after the last word
of response data has been received from the external agent.

Note that the data identifier (see “System Interface Commands and Data
Identifiers” on page 12-32) associated with the response data can signal
that the returned data is erroneous, causing the processor to take a bus
error.

Processor read requests that have been issued, but for which data has
not yet been returned, are said to be pending. A read remains pending
until the requested read data is returned.

In no-secondary-cache mode, the external agent must be capable of
accepting a processor read request any time the following two conditions
are met:

e There is no processor read request pending.

e The signal RdRdy* has been asserted for one clock cycle, two cycles

before the issue cycle.

Processor Write Request

When a processor issues a write request, the specified resource is
accessed and the data is written to it. (Processor write requests are
described in this section; external write requests are described in
“External Requests” on page 12-9.)

A processor write request is complete after the last word of data has
been transmitted to the external agent.

In no-secondary-cache mode, the external agent must be capable of
accepting a processor write request any time the following two conditions
are met:

« No processor read request is pending.

e The signal WrRdy* has been asserted for one clock cycle, two cycles

before the issue cycle.
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The R4600/R4700 has added two new modes to enhance the
throughput of non-block writes. These modes allow for 2 cycle throughput
on back-to-back non-block writes. The actual protocol is discussed in the
write protocol section of this chapter. The external agent must be capable
of accepting a processor write request in these modes under the same
conditions as for the R4x00 compatibility mode (except as explained in
the protocol section.

External Requests

External requests include read, write and null requests, as shown in
Figure 12.9. This section also includes a description of read response, a
special case of an external request.

R4600/R4700 External Agent

External Requests
* Read
» Write
o Null

Figure 12.9 External Requests

Read request asks for a word of data from the processor’s internal
resource.

Write request provides a word of data to be written to the processor’s
internal resource.

Null request requires no action by the processor; it provides a mecha-
nism for the external agent to return control of the system interface to the
master state without affecting the processor.

The processor controls the flow of external requests through the arbi-
tration signals ExtRgst* and Release*, as shown in Figure 12.10. The
external agent must acquire mastership of the system interface before it
is allowed to issue an external request; the external agent arbitrates for
mastership of the system interface by asserting ExtRqst* and then
waiting for the processor to assert Release* for one cycle.

R4600/R4700 External Agent

| 1. External system requests bus
mastership by asserting ExtRgst*

2. Processor grants mastership by
asserting Release* >

3. External system issues an
External Request

4. Processor regains bus mastership

Figure 12.10 External Request
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Mastership of the system interface always returns to the processor after
an external request is issued. The processor does not accept a subse-
quent external request until it has completed the current request.

If there are no processor requests pending, the processor decides, based
on its internal state, whether to accept the external request, or to issue a
new processor request. The processor can issue a new processor request
even if the external agent is requesting access to the system interface.

The external agent asserts ExtRgst* indicating that it wishes to begin
an external request. The external agent then waits for the processor to
signal that it is ready to accept this request by asserting Release*. The
processor signals that it is ready to accept an external request based on
the criteria listed below.

e The processor completes any processor request that is in progress.

« While waiting for the assertion of RdARdy* to issue a processor read
request, the processor can accept an external request if the request is
delivered to the processor one or more cycles before RdARdy* is assert-
ed.

* While waiting for the assertion of WrRdy* to issue a processor write
request, the processor can accept an external request provided the re-
quest is delivered to the processor one or more cycles before WrRdy*
is asserted.

< If waiting for the response to a read request after the processor has
made an uncompelled change to a slave state, the external agent can
issue an external request before providing the read response data.

External Read Request

In contrast to a processor read request, data is returned directly in
response to an external read request; no other requests can be issued
until the processor returns the requested data. An external read request
is complete after the processor returns the requested word of data.

The data identifier (see “System Interface Commands and Data ldenti-
fiers” on page 12-32) associated with the response data can signal that
the returned data is erroneous, causing the processor to take a bus error.

Note: The R4600/R4700 does not contain any resources that are
readable by an external read request; in response to an external read
request the processor returns undefined data and a data identifier with
its Erroneous Data bit, SysCmd(5), set.

External Write Request
When an external agent issues a write request, the specified resource is
accessed and the data is written to it. An external write request is
complete after the word of data has been transmitted to the processor.
The only processor resource available to an external write request is the
IP field of the Cause register.

Read Response

A read response returns data in response to a processor read request,
as shown in Figure 12.11. While a read response is technically an
external request, it has one characteristic that differentiates it from all
other external requests—it does not perform system interface arbitration.
For this reason, read responses are handled separately from all other
external requests, and are simply called read responses. When a read
response comes back with bad parity for the first datum, a cache error
exception results.
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R4600/R4700 External Agent

1. Read request

2. Read response

Figure 12.11 Read Response

Handling Requests
This section details the sequence, protocol, and syntax (see “Termi-
nology” on page 12-1 for definitions of these terms) of both processor and
external requests. The following system events are discussed:
¢ load miss (no-secondary-cache mode)
e store miss (no-secondary-cache mode)
store hit
uncached loads/stores
CACHE operations
load linked store conditional.

Load Miss

When a processor load misses in the primary cache, before the
processor can proceed it must obtain the cache line that contains the
data element to be loaded from the external agent.

If the new cache line replaces a current cache line with a W bit set, the
current cache line must be written back.

The processor examines the coherency attribute (cache coherency
attributes are described in Chapter 11) in the TLB entry for the page that
contains the requested cache line, and executes the following request:

 The coherency attribute is noncoherent, the processor issues a non-

coherent read request.

Table 12.1 shows the actions taken on a load miss to primary cache.

Page Attribute State of Data Cache Line Being Replaced

Clean/Invalid Dirty (W=1)

Noncoherent NCR NCR/W

NCR Processor noncoherent block read request
NCR/W Processor noncoherent block read request followed by processor
block write request

Table 12.1 Load Miss to Primary Cache
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No-Secondary-Cache Mode — Load Miss

In no-secondary-cache mode, if the cache line must be written back on
a load miss, the read request is issued and completed before the write
request is handled. The processor takes the following steps:

1. The processor issues a noncoherent read request for the cache line
that contains the data element to be loaded.

2. The processor then waits for an external agent to provide the read
response.

3. The processor will restart the pipeline after the first doubleword (the
data that missed is fetched first). The rest of the data cache line will be
placed into the cache in parallel.

If the current cache line must be written back, the processor issues a
write request to save the dirty cache line in memory.

Store Miss
When a processor store misses in the primary cache, the processor may
request, from the external agent, the cache line that contains the target
location of the store for pages that are either write-back or write-through
with write-allocate only. The processor examines the coherency attribute
in the TLB entry for the page (TLB page coherency attributes are listed in
Chapter 4) that contains the requested cache line to see if the line is
write-allocate or no-write-allocate.
The processor then executes one of the following requests:
< |f the coherency attribute is noncoherent, write-back or noncoherent,
write-through with write-allocate, a noncoherent block read request
is issued.
e If the coherency attribute is noncoherent, write-through with no
write-allocate, the processor issues a non-block write request.
Table 12.1 shows the actions taken on a store miss to the primary
cache.

Page Attribute State of Data Cache Line Being Replaced
Clean/Invalid Dirty (W=1)
Noncoherent, write-back or NCR NCR/W

Noncoherent, write-through with
write-allocate

Noncoherent, write-through with NCW NA
no write-allocate

NCR Processor noncoherent block read request

NCR/W Processor noncoherent block read request followed by processor
block write request

NCW Processor noncoherent write request

Table 12.2 Store Miss to Primary Cache

No-Secondary-Cache Mode — Store Miss

If the coherency attribute is write-back or write-through with write-allo-
cate, the processor issues a read request for the cache line that contains
the data element to be loaded, then awaits the external agent to provide
read data in response to the read request. Then, if the current cache line
must be written back, the processor issues a write request for the current
cache line. For a write-through, no write-allocate store miss, the
processor issues a write request only.
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In no-secondary-cache mode, if the new cache line replaces a current
cache line whose Write back (W) bit is set, the current cache line moves to
an internal write buffer before the new cache line is loaded in the primary
cache.

Store Hit
This section describes store hits in no-secondary-cache mode for both
write-back and write-through lines.

No-Secondary-Cache Mode — Store Hit

In no-secondary-cache mode, the action on the system interface will be
determined by whether the line is write-back or write-through. All lines
that use a write-back policy are set to the dirty exclusive cache state and
there is no bus transactions generated. For lines with a write-through
policy, the store will also generate a processor write request for the store
data.

Uncached Loads or Stores

When the processor performs an uncached load, it issues a nonco-
herent word read request (the actual access can be for a doubleword,
word, partial word or byte, but the request is called a word read request
to differentiate it from the block read request). When the processor
performs an uncached store, it issues a doubleword, partial doubleword,
word, or partial word write request.

The CPU expects valid parity and data in the full SysAD bus (all 64
bits), even if it is looking for less than a double word. Even if you do not
want to return the full double word, you still must tell it not to check the
parity if you are not using all 64 bits. In other words, either return 64
bits with parity, or tell it not to check parity.

All writes by the processor will be buffered from the system interface by
the 4-deep write buffer. The write requests are sent to the system inter-
face when there are no other requests in progress. If the write buffer
contains any entries when a block request is needed, the write buffer is
first flushed before any read request will occur (cache miss or uncached
load).

Both a data cache miss and an uncached data load will flush the write
buffer.

CACHE Operations

The processor provides a variety of CACHE operations to maintain the
state and contents of the primary cache. During the execution of the
CACHE operation instructions, the processor can issue write requests.
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Load Linked/Store Conditional Operation

Generally, the execution of a Load Linked/Store Conditional instruction
sequence is not visible at the system interface; that is, no special requests
are generated due to the execution of this instruction sequence.

There is, however, one situation in which the execution of a Load
Linked/Store Conditional instruction sequence is visible, as indicated by
the link address retained bit during a processor read request, as
programmed by the SysCmd(2) bit. This situation occurs when the data
location targeted by a Load-Linked-Store-Conditional instruction
sequence maps to the same cache line to which the instruction area
containing the Load Linked/Store Conditional code sequence is mapped.
In this case, immediately after executing the Load Linked instruction, the
cache line that contains the link location is replaced by the instruction
line containing the code. The link address is kept in a register separate
from the cache, and remains active as long as the link bit, set by the Load
Linked instruction, is set.

The link bit, which is set by the load linked instruction, is cleared by a
change of cache state for the line containing the link address, or by a
Return From Exception.

For more information, refer to Chapter 11, or see the specific Load
Linked and Store Conditional instructions described in Appendix A.

Processor and External Request Protocols

The following sections contain a cycle-by-cycle description of the bus
arbitration protocols for each type of processor and external request.
Table 12.3 lists the abbreviations and definitions for each of the buses
that are used in the timing diagrams that follow.

Scope Abbreviation Meaning
Global Unsd Unused
SysAD bus Addr Physical address
Data<n> Data element number n of a block of data
SysCmd bus | Cmd An unspecified system interface command
Read A processor or external read request command
Write A processor or external write request command
SINull A system interface release external null request
command
NData A noncoherent data identifier for a data element
other than the last data element
NEOD A noncoherent data identifier for the last data
element

Table 12.3 System Interface Requests

Processor Request Protocols

Processor request protocols described in this section include:

e read

e write

Note: In the timing diagrams, the two closely spaced, wavy vertical
lines (see SCycle 2 in Figure 12.20 on page 12-24) indicate one or more
identical cycles.
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Processor Read Request Protocol Steps

The following sequence describes the protocol for a processor read
request (the numbered steps below correspond to the numbers in
Figure 12.12 on page 12-16).

1. RdRdy* is asserted low, indicating the external agent is ready to
accept a read request.

2. With the system interface in master state, a processor read request is
issued by driving a read command on the SysCmd bus and a read address
on the SysAD bus.

3. At the same time, the processor asserts ValidOut* for one cycle,
indicating valid data is present on the SysCmd and the SysAD buses.

Note: Only one processor read request can be pending at a time.

4. The processor makes an uncompelled change to slave state at the
issue cycle of the read request by asserting the Release* signal for one
cycle.

Note: The external agent must not assert the signal ExtRgst* for the
purposes of returning a read response, but rather must wait for the
uncompelled change to slave state. The signal ExtRqgst* can be asserted
before or during a read response to perform an external request other than
a read response.

5. The processor releases the SysCmd and the SysAD buses one SCycle
after the assertion of Release*.

6. The external agent drives the SysCmd and the SysAD buses within
two cycles after the assertion of Release*.

Once in slave state (starting at cycle 5 in Figure 12.12), the external
agent can return the requested data through a read response. The read
response can return the requested data or, if the requested data could not
be successfully retrieved, an indication that the returned data is erro-
neous. If the returned data is erroneous, the processor takes a bus error
exception.

Note: The R4600/R4700 only check the error bit for the first
doubleword of read response data, all other error bits are ignored.

12 - 15



System Interface

Chapter 12

Figure 12.12 illustrates a processor read request, coupled with an
uncompelled change to slave state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

SCycle
SClock
SysAD Bus |
SysCmd Bus |
ValidOut*
Validin*
RdRdy*
WrRdy*

Release*

Figure Note:

~«—— Master —>» | - Slave >

| 1] 2]s]|a|s5]e6]| 7|8 |9 |10]1n]|1]
RYAYAYAWAYAYAYAWANAYAWAN
\ Addr ——
4 B @
/XRead>—<

| \4

Numbers in boxes correspond to numbered steps in preceding text.

Figure 12.12 Processor Read Request Protocol

The assertion of Release* indicates either an uncompelled change to
slave state, or a response to the assertion of ExtRgst*, whereupon the
processor accepts either a read response, or any other external request.
If any external request other than a read response is issued, the
processor performs another uncompelled change to slave state after
processing the external request.

The actual read response, where the external agent returns the
requested data, is shown later in this chapter.

External Instruction Read Response Time

The R4600/R4700 accesses the external bus due to instruction cache
miss or an uncached reference. The length of time for an external read is
based on the overhead at the beginning and end of the read along with the
time to drive the address and get the response data.
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Instruction Read Latency Steps for System Clock
The read latency for a system clock in the divide-by-two mode is as
follows:

1. The startup overhead is one to two pipeline cycles (PCycle) for the CPU
to transfer the address to the pads to be output. The second PCycle is
needed if the miss is detected on a PCycle not aligned with the rising edge
of SClock.

2. The CPU drives the address on the SysAD bus for two PCycles.

3. The CPU tri-states the SysAD bus for two PCycles.

4. The CPU waits for the main memory to return the data. This is
expressed as n x 2 PCycles.

5. The first double word is driven in the SysAD from the main memory
for two PCycles.

6. The remaining three double words of instruction are driven on
SysAD for 3*2 PCycles.

Notes on the Instruction Read Latency Steps:

a.For instruction misses the pipeline starts after all the instructions are
returned.

b.n is the total number of idle cycles (even between double word
instruction). For zero wait state systems, n = 0.

Example of Instruction Block Read With Zero Wait State

The following example shows an instruction block read with a zero wait
state:

StepDescriptionPCycles

1. CPU overhead for cache miss detection:1-2

2. Address driven on SysAD bus:2

3. SysAD bus tri-stated:2

4. Memory latency to return the data:0*2

5. First double word driven on SysAD bus:2

6. Remaining three instructions returned:2*3=6

Total PCycles:13-14

External Data Read Response Time

The R4600/R4700 accesses the external bus due to data cache miss or
an uncached reference. The length of time for an external read is based
on the overhead at the beginning and end of the read along with the time
to drive the address and get the response data.
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Data Read Latency Steps for System Clock

The read latency for a system clock in the divide-by-two mode is as

follows:

1. The startup overhead is one to two pipeline cycles (PCycle) for the
CPU to generate the parity for the address to be output. The second PCycle
is needed if the miss is detected or a PCycle not aligned with the rising edge
of SClock.

2. The CPU drives the address on the SysAD bus for two PCycles.

3. The CPU tri-states the SysAD bus for two PCycles.

4. The CPU waits for the main memory to return the data. This is
expressed as n x 2 PCycles where n is the number of SClock cycles for the
first data to be returned in a block read, or the latency for the single read.
For zero wait state memory system n should be zero.

5. The first double word is driven in the SysAD from the main memory
for two PCycles.

6. The end of the overhead is two PCycles: one to transfer the data from
the pads and generate the parity, and one to write to the register (or cache,
if it is cacheable data).

Notes on the Data Read Latency Steps:

a. If n=0 and the line being replaced is dirty, the CPU takes one to two
additional PCycles of overhead to move the dirty data into the write
buffer.

b. The additional latency for returning the remaining three data
elements should be added in a similar fashion.

c. If cache line needs to be written back the read request is posted first,
then the write is completed.

Example of Data Single Read With Zero Wait State
The following example shows a data block read with a zero wait state:
StepDescriptionPCycles

CPU overhead for cache miss detection:1-2

Address driven on SysAD bus:2

SysAD bus tri-stated:2

Memory latency to return the data:0*2

First double word driven on SysAD bus:2

. CPU overhead to write the data cache,

do the fixup, and then restart:2
Total PCycles:9-10

N N

External Cycles for Read Latency
The external cycles to get the response data will look similar to Figure
12.13. For a larger “divide by” it will take longer to get the response data.

PClk

NaVaVaVaWaWaly
sowk | NSNS\

Figure 12.13 Uncached Read—External Cycles
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The same operation is shown in greater detail in Figure 12.14. These
figures assume the following:

1. Data is returned immediately after the Release* is asserted, and after
the bus turn-around cycle (when the CPU tri-states the bus to allow the
external agent to drive it).

2. The data meets the setup and hold requirements for the rising edge
of the SClock that is identified in the preceding and following figures with
an asterisk.

<«——  Master— 3 |<. Slave .>|<7 Master — 3

scyde || 1|23 |a]s|e|7]8 |9 |10]1]12]
YAV AAYaARAVANANAYAVAN
SysAD Bus | \ Addr ——(pata0 ——{
Syscmd Bus | J(Read }——(nEOD}——

ValidOut* | \
validin® | ]
ExtRgst* |
Release* | \_/
RdRdy* | —\_/

Figure 12.14 Processor Read Cycle

Processor Write Request Protocol

Processor write requests are issued using one of two protocols.

e Doubleword, partial doubleword, word, or partial word writes use a

word! write request protocol.

« Block writes use a block write request protocol.

Processor word write requests are issued with the system interface in
master state, as described in the following steps. Figure 12.15 shows a
processor noncoherent word write request cycle.

1. A processor single word write request is issued by driving a write
command on the SysCmd bus and a write address on the SysAD bus.

2. The processor asserts ValidOut*.

3. The processor drives a data identifier on the SysCmd bus and data
on the SysAD bus.

4. The data identifier associated with the data cycle must contain a last
data cycle indication. At the end of the cycle, ValidOut* is deasserted.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

L called word to disti nguish it from block request protocol. Datatransferred can
actually be doubleword, partial doubleword, word, or partial word.
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Master >
SCycle || |2 |3 |a]s|e|7]8]9o|10]1]12]
scock |\
SysAD Bus | 1>< Addr ) Data0 |
SysCmd Bus | vXWriteXNEODX
validout | . 2 E
validin® | 3

raray | X NG
WrRdy* | \ /

Release* |

Figure 12.15 Processor Noncoherent Word Write Request Protocol

The R4600/R4700 interface requires that WrRdy* be asserted two
system cycles prior to the issue of a write, for one clock cycle. An external
agent that deasserts WrRdy* immediately upon receiving the write that
fills its buffer will stop a subsequent write for four system cycles in R4000
non-block write compatible mode. This leaves two null system cycles after
a write address/data pair to give the external agent time to stop the next
write. This is illustrated in Figure 12.6 on page 12-7.

An Address/data pair every four system cycles is not sufficiently high
performance for all applications. For this reason, the R4600/R4700
provides two new protocol options that modify the R4000 back-to-back
write protocol to allow an address/data pair every two system cycles. The
first protocol, called write re-issue, allows WrRdy* to be deasserted during
the address cycle and forces a write to be re-issued. The second, called
pipelined writes, leaves the sample point of WrRdy* unchanged and
requires that the external agent accept one more write than the R4000
protocol.
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The write re-issue protocol is shown in Figure 12.16. Writes issue when
WrRdy* is asserted both two cycles prior to the address cycle and during
the address cycle.

SCycle | | | | Issue| |Is§8e| | 19806 | 19406 | IsN58e| Issue| | |
S VAV AVARAYAVAVAYEAWAWEAY RN
SysAD Bus | \ Addro ) Data0 { Addr1 ) Data1 J Addr1 { Data1 |
SysCmd Bus | { write J NEODJ write \NEOD) Write {NEOD]
WrRdy* | / \
Figure 12.16 Write re-issue
The pipelined write protocol is shown in Figure 12.17. This protocol
maintains the R4000 write issue rule (issue if WrRdy* asserted two cycles
prior to the address cycle, for one clock cycle), but simply eliminates the
two null cycles between writes. The external agent is then required to
accept one more write after it deasserts WrRdy*.
SCycle | | | | |55U9| | 'SSU9| | 1450e | 1950e | 1450e | '55U9| | |
S VAV AYAYAYAYAVAYAWAWEAWAE
SysAD Bus | \ Adaro )} Data0 | Addr1 ) Data ) Addr2 { Data2 )
SysCmd Bus | X write \NEOD) Write NEOD) Write {nEODY
WrRdy* | / \

Figure 12.17 Pipelined Writes

All three write protocols apply for both single write and block writes.
This means that in pipeline write, for example, a single write can be
followed immediately by a block write that the external agent must
accept.

Processor block write requests are issued with the system interface in
master state, as described below; a processor noncoherent block request
for eight words of data is illustrated in Figure 12.18 on page 12-22.

1. The processor issues a write command on the SysCmd bus and a
write address on the SysAD bus

2. The processor asserts ValidOut*.

3. The processor drives a data identifier on the SysCmd bus and data
on the SysAD bus.

4. The processor asserts ValidOut* for a number of cycles sufficient to
transmit the block of data.

5. The data identifier associated with the last data cycle must contain a
last data cycle indication.
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Figure 12.18 illustrate a processor noncoherent block request for eight
words of data with a data pattern of DDDD.

- Master >
sCycle | 1|23 |a]ls|e|7]8]|9|10]1]1]
e VAV AVAYAVAVAVAWAWAWAWAE
SysAD Bus | X Adar XDataO XDatal X Data2 XDataS X
SysCmd Bus | \ write/{ NData \NData NData \NEOD ),

E]
validout* | g 2 8
i
validine | @/
rardy | X pd
WrRdy* N\
Release* |

Figure 12.18 Processor Noncoherent Block Write Request Protocol

Processor Request and Flow Control

The external agent uses RdRdy* to control the flow of processor read
requests. Figure 12.19 on page 12-23 illustrates this flow control, as
described in the steps below.

1. The processor samples the signal RARdy* to determine if the external
agent is capable of accepting a read request.

2. The signal WrRdy* controls the flow of a processor write request.

3. The processor does not complete the issue of a read request, until it
issues an address cycle in response to the request for which the signal
RdRdy* was asserted two cycles earlier.

4. The processor does not complete the issue of a write request until it
issues an address cycle in response to the write request for which the
signal WrRdy* was asserted two cycles earlier.

12 - 22



System Interface

Chapter 12

Figure 12.19 illustrates two processor write requests in which the issue
of the second is delayed for the assertion of WrRdy*.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

scyee || 1 [2]s|als|e|7]8]o[]u]a]
S VAV AVAYAVAYAVAWAWAWAWAE
SysAD Bus | \ Addr ) Data0 ) \ Addr  Datao )
SysCmd Bus | \ write NEOD) X Write \ NEOD)
vaidour |\ [\ [
validin® | a

rardy | X pd
wRdyr |\ “ [
Release* |

Figure 12.19 Two Processor Write Requests, Second Write Delayed for the Assertion of
WrRdy*

External Request Protocols

External requests can only be issued with the system interface in slave
state. An external agent asserts ExtRqst* to arbitrate (see “External
Arbitration Protocol” on page 12-24) for the system interface, then waits
for the processor to release the system interface to slave state by
asserting Release* before the external agent issues an external request.
If the system interface is already in slave state—that is, the processor has
previously performed an uncompelled change to slave state—the external
agent can begin an external request immediately.

After issuing an external request, the external agent must return the
system interface to master state. If the external agent does not have any
additional external requests to perform, ExtRgst* must be deasserted
two cycles after the cycle in which Release* was asserted. For a string of
external requests, the ExtRqgst* signal is asserted until the last request
cycle, whereupon it is deasserted two cycles after the cycle in which
Release* was asserted.

The processor continues to handle external requests as long as
ExtRqst* is asserted; however, the processor cannot release the system
interface to slave state for a subsequent external request until it has
completed the current request. As long as ExtRqgst* is asserted, the
string of external requests is not interrupted by a processor request.

This section describes the following external request protocols:
read
null
write
read response
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External Arbitration Protocol

System interface arbitration uses the signals ExtRqgst* and Release* as
described above. Figure 12.20 is a timing diagram of the arbitration
protocol, in which slave and master states are shown.

The arbitration cycle consists of the following steps:

1. The external agent asserts ExtRgst* when it wishes to submit an
external request.

2. The processor waits until it is ready to handle an external request,
whereupon it asserts Release* for one cycle.

3. The processor sets the SysAD and SysCmd buses to tri-state.

4. The external agent must begin driving the SysAD bus and the
SysCmd bus two cycles after the assertion of Release*.

5. The external agent deasserts ExtRgst* two cycles after the assertion
of Release*, unless the external agent wishes to perform an additional
external request.

6. The external agent sets the SysAD and the SysCmd buses to tri-state
at the completion of an external request.

The processor can start issuing a processor request one cycle after the
external agent sets the bus to tri-state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

<—Master—>|<— Slave —>|<— Master ———»
sCycle s |a|s|e| 7|8 |9 w0
Hﬂwwm
SysAD Bus | >> )—(Addr \ Datao)—(
SysCmd Bus | \/\/ )—(Cmd )(NEOD)—(
Validin* \ /
ExtRgst* |‘E\T\_é>\ /5
Release*
RdRdy* |—\ /

Figure 12.20 Arbitration Protocol for External Requests

External Read Request Protocol

External reads are requests for a word of data from a processor internal
resource, such as a register. External read requests cannot be split; that
is, no other request can occur between the external read request and its
read response.
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Figure 12.21 shows a timing diagram of an external read request, which
consists of the following steps:

1. An external agent asserts ExtRqgst* to arbitrate for the system
interface.

2. The processor releases the system interface to slave state by asserting
Release* for one cycle and then deasserting Release*.

3. After Release* is deasserted, the SysAD and SysCmd buses are set
to a tri-state for one cycle.

4. The external agent drives a read request command on the SysCmd
bus and a read request address on the SysAD bus and asserts ValidIn* for
one cycle.

5. After the address and command are sent, the external agent releases
the SysCmd and SysAD buses by setting them to tri-state and allowing the
processor to drive them. The processor, having accessed the data that is
the target of the read, returns this data to the external agent. The
processor accomplishes this by driving a data identifier on the SysCmd
bus, the response data on the SysAD bus, and asserting ValidOut* for one
cycle. The data identifier indicates that this is last-data-cycle response
data.

6. The system interface is in master state. The processor continues
driving the SysCmd and SysAD buses after the read response is returned.
Note: Timings for the SysADC and SysCmdP buses are the same as

those of the SysAD and SysCmd buses, respectively.

External read requests are only allowed to read a word of data from the
processor. The processor response to external read requests for any data
element other than a word is undefined.

SCycle

SClock

ValidOut*
ValidIn*
ExtRgst*

Release*

Note:

SysAD Bus |

SysCmd Bus |

The processor does not contain any resources that are readable by an external read
request; in response to an external read request the processor returns undefined data and
a data identifier with its Erroneous Data bit, SysCmd(5), set.
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Figure 12.21 External Read Request, System Interface in Master State

External Null Request Protocol

The R4600/R4700 only supports one external null request. A system
interface release external null request returns the system interface to
master state from slave state without otherwise affecting the processor.

12 - 25



System Interface

Chapter 12

External null requests require no action from the processor other than
to return the system interface to master state.

Figure 12.22 show timing diagram of the external null request cycle,
which consist of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the system
interface.

2. The processor releases the system interface to slave state by asserting
Release™*.

3. The external agent drives a system interface release external null
request command on the SysCmd bus, and asserts Validln* for one cycle
to return the system interface back to master state.

4. The SysAD bus is unused (does not contain valid data) during the
address cycle associated with an external null request.

5. After the address cycle is issued, the null request is complete.

For a system interface release external null request, the external agent
releases the SysCmd and SysAD buses, and expects the system interface
to return to master state.

SCycle

SClock

SysAD Bus | X Unsd >—E<
SysCmd Bus | XSINU")—(

ValidOut*
Validin*
ExtRgst*

Release*

-« Master »

1 | 12 |

| 3

Figure 12.22 System Interface Release External Null Request

External Write Request Protocol

External write requests use a protocol identical to the processor single
word write protocol except the Validin* signal is asserted instead of
ValidOut*. Figure 12.23 on page 12-27 shows a timing diagram of an
external write request, which consists of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the system
interface.

2. The processor releases the system interface to slave state by asserting
Release*.

3. The external agent drives a write command on the SysCmd bus, a
write address on the SysAD bus, and asserts Validln*.

4. The external agent drives a data identifier on the SysCmd bus, data
on the SysAD bus, and asserts Validln*.

5. The data identifier associated with the data cycle must contain a
coherent or noncoherent last data cycle indication.

6. After the data cycle is issued, the write request is complete and the
external agent sets the SysCmd and SysAD buses to a tri-state, allowing
the system interface to return to master state. Timings for the SysADC
and SysCmdP buses are the same as those of the SysAD and SysCmd
buses, respectively.
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External write requests are only allowed to write a word of data to the
processor. Processor behavior in response to an external write request for
any data element other than a word is undefined.

sCycle
e VAV AYARAVAVAVAWAWAYAWAN
SysAD Bus | ——{ Addr Data0 ——

SysCmd Bus | ) /\ Wite NEOD)@—@(

validout | Ef :

validin® | \ El

ExtRqst* | —\ 1 /

Release* | \@_/

<—Master—>|<— Slave —>|<— Master ———»

||1|2|3|4|5|6|7|8|9|10|11|12|

Figure 12.23 External Write Request, with System Interface initially Master State

Read Response Protocol

An external agent must return data to the processor in response to a
processor read request by using a read response protocol. A read
response protocol consists of the following steps:

1. The external agent waits for the processor to perform an uncompelled
change to slave state.

2. The external agent returns the data through a single data cycle or a
series of data cycles.

3. After the last data cycle is issued, the read response is complete and
the external agent sets the SysCmd and SysAD buses to a tri-state.

4. The system interface returns to master state.

Note: The processor always performs an uncompelled change to slave
state in the same cycle that it issues a read request.

5. The data identifier for data cycles must indicate the fact that this data
is response data.

6. The data identifier associated with the last data cycle must contain a
last data cycle indication.

For read responses to non-coherent block read requests (which is the
only read request for normal operations of the R4600/R4700,) the
response data will not need to identify an initial cache state. The cache
state will automatically be assigned as dirty exclusive by the R4600/
R4700.

The data identifier associated with a data cycle can indicate that the
data transmitted during that cycle is erroneous; however, an external
agent must return a data block of the correct size regardless of the fact
that the data may be in error. The R4600/R4700 only checks the error bit
for the first doubleword of a block, the other error bits for the block of
data are ignored If an initial erroneous data cycle is detected, the
processor takes a bus error at the completion of the data transfer.
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Read response data must only be delivered to the processor when a
processor read request is pending. The behavior of the processor is unde-
fined when a read response is presented to it and there is no processor
read pending.

Figure 12.24 illustrates a processor word read request followed by a
word read response. Figure 12.25 illustrates a read response for a
processor block read with the system interface already in slave state.
Figure 12.26 illustrates a block read transaction with one wait state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

- Master—> | - Slave > |« Master
sCycle 10 | 11
sClock | WMW\J_L
SysAD Bus | \ Addr —— XDatao

4 5
\_J

SysCmd Bus | XRead )—(
ValidOut* | \ /

ValidIn* |

ExtRgst* |

Release* | \ = /
RdRdy* | \ /

é\/\/\//\//\\/
N T—T ~—1 ~—rT 7—]

Figure 12.24 Processor Word Read Request, followed by a Word Read Response

< Master > | < Slave > |« Master —»
scyde || 123 |a|s|e | 7|8 |9 |10]11]2]
S W AVAVAVAVAYAYAWAWAWAWAE
SysAD Bus | \ Adar HDataOX%aEXDataZ Datad )=

|
SysCmd Bus | XRead >—<NData><NDataXNData}(NEOD>—<
LI 3
validout | \_ 5 5
\ J

ValidIn*

|
ExtRgst* |
|

Y

Release*

RdRdy* | \ /

Figure 12.25 Block Read Response With Zero Wait State
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SCycle

SClock

ValidOut*
ValidIn*
ExtRqgst*

Release*

RdRdy*

SysAD Bus |

SysCmd Bus |

[\

Master | Slave P Master

1l2]slaefsfel7]s]ofwf[n]rn]is]

VAVAWAVAVAYAWAWAWAWAWAWAN

g

X Adar >—< Data0 > <Data1 > (Dataz > (Data3 >

—

{ Read ——(Npata) (NData } (NData)}——{NEOD)

Figure 12.26 Block Read Transaction With One Wait State

Data Rate Control

The system interface supports a maximum data rate of one doubleword
per cycle. The data rate the processor can support is directly related to
the rate at which the external agent can accept data.

Read Data Pattern

The rate at which data is delivered to the processor can be determined
by the external agent—for example, the external agent can drive data and
assert Validln* every n cycles, instead of every cycle. An external agent
can deliver data at any rate it chooses, but must not deliver data to the
processor any faster than the processor is capable of receiving it.

The processor only accepts cycles as valid when Validln* is asserted
and the SysCmd bus contains a data identifier. If the external agent
sends more data items then requested (e.g., a fifth doubleword of read
response data with Validln* asserted) or the last data (i.e., the fourth
doubleword) of a block read is not tagged as the last data item, it is an
error and the resulting actions of the processor for these cases will be
undefined.
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Figure 12.27 shows a read response with reduced data rate and with
the system interface in slave state.

SCycle

SClock

SysAD Bus | {pata0 \Data1)  JData2 } Data3 ———

SysCmd Bus | YNData\NData)  J(NData \NEOD ——
validout |

validin® | \ [\ /
ExtRgst |

Release* |

| 2|23 |a|s]e]7]8]9 1w]n]i]

BVAVAVAWAVAVAVAWRWAWAWAN

Figure 12.27 Read Response, Reduced Data Rate, System Interface in Slave State

Write Data Transfer Patterns

The write data pattern specifies the pattern the R4600/R4700 uses
when writing a block to the external agent. This pattern is specified
through the mode bits.

A data pattern is a sequence of letters indicating the data and unused
cycles that repeat to provide the appropriate data rate. For example, the
data pattern DDxx specifies a repeatable data rate of two doublewords
every four cycles, with the last two cycles unused.

Table 12.4 lists the maximum processor data rate and the data pattern
for each data rate.

Maximum Data Transmit Rate Block writes Data Pattern
1 Double/1 SClock Cycle DDDD
2 Doubles/3 SClock Cycles DDxDDx
1 Double/2 SClock Cycles DDxxDDxx
1 Double/2 SClock Cycles DxDxDxDx
2 Doubles/5 SClock Cycles DDxxxDDxxx
1 Double/3 SClock Cycles DDxxxXDDxxxx
1 Double/3 SClock Cycles DxxDxxDxxDxx
1 Double/4 SClock Cycles D DXXXXXXDDXXXXXX
1 Double/4 SClock Cycles DXXXDXXXDXXXDxxX

Table 12.4 Transmit Data Rates and Patterns

In Table 12.4 data patterns are specified using the letters D and x; D
indicates a data cycle and x indicates an unused cycle. During the
unused cycles, the data bus will maintain the last data value (D).
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Independent Transmissions on the SysAD Bus

In most applications, the SysAD bus is a point-to-point connection,
running from the processor to a bidirectional registered transceiver
residing in an external agent. For these applications, the SysAD bus has
only two possible drivers, the processor or the external agent.

Certain applications may require connection of additional drivers and
receivers to the SysAD bus, to allow transmissions over the SysAD bus
that the processor is not involved in. These are called independent trans-
missions. To effect an independent transmission, the external agent must
coordinate control of the SysAD bus by using arbitration handshake
signals and external null requests.

An independent transmission on the SysAD bus follows this procedure:

1. The external agent requests mastership of the SysAD bus, to issue an
external request.

2. The processor releases the system interface to slave state.

3. The external agent then allows the independent transmission to take
place on the SysAD bus, making sure that Validln* is not asserted while
the transmission is occurring.

4. When the transmission is complete, the external agent must issue a
system interface release external null request to return the system interface
to master state.

System Interface Endianness

The endianness of the system interface is programmed at boot time
through the boot-time mode control interface (see chapter 9, Initialization
Interface), and remains fixed until the next time the processor boot-time
mode bits are read. Software cannot change the endianness of the system
interface and the external system; software can set the reverse endian bit
to reverse the interpretation of endianness inside the processor, but the
endianness of the system interface remains unchanged.

System Interface Cycle Time
The processor specifies minimum and maximum cycle counts for
various processor transactions and for the processor response time to
external requests. Processor requests themselves are constrained by the
system interface request protocol, and request cycle counts can be deter-
mined by examining the protocol. The following system interface interac-
tions can vary within minimum and maximum cycle counts:
e waiting period for the processor to release the system interface to
slave state in response to an external request (release latency)
e response time for an external request that requires a response (exter-
nal response latency).
The remainder of this section describes and tabulates the minimum and
maximum cycle counts for these system interface interactions.
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Release Latency

Release latency is generally defined as the number of cycles the
processor can wait to release the system interface to slave state for an
external request. When no processor requests are in progress, internal
activity can cause the processor to wait some number of cycles before
releasing the system interface. Release latency is therefore more specifi-
cally defined as the number of cycles that occur between the assertion of
ExtRqgst* and the assertion of Release*.

There are three categories of release latency:

e Category 1: when the external request signal is asserted two cycles
before the last cycle of a processor request.

e Category 2: when the external request signal is not asserted during a
processor request, or is asserted during the last cycle of a processor
request.

e Category 3: when the processor makes an uncompelled change to
slave state.

Table 12.5 summarizes the minimum and maximum release latencies

for requests that fall into categories 1, 2 and 3. Note that the maximum
and minimum cycle count values are subject to change.

Category Minimum PCycles Maximum PCycles
1 4 6
2 4 24
3 0 0

Table 12.5 Release Latency for External Requests

The differences in the minimum and maximum times are due to
internal conditions not readily observable externally.

System Interface Commands and Data ldentifiers

System interface commands specify the nature and attributes of any
system interface request; this specification is made during the address
cycle for the request. System interface data identifiers specify the
attributes of data transmitted during a system interface data cycle.

The following sections describe the syntax, that is, the bitwise encoding
of system interface commands and data identifiers.

Reserved bits and reserved fields in the command or data identifier
should be set to 1 for system interface commands and data identifiers
associated with external requests. For system interface commands and
data identifiers associated with processor requests, reserved bits and
reserved fields in the command and data identifier are undefined.

Command and Data ldentifier Syntax

System interface commands and data identifiers are encoded in 9 bits
and are transmitted on the SysCmd bus from the processor to an
external agent, or from an external agent to the processor, during address
and data cycles. Bit 8 (the most-significant bit) of the SysCmd bus deter-
mines whether the current content of the SysCmd bus is a command or a
data identifier and, therefore, whether the current cycle is an address
cycle or a data cycle. For system interface commands, SysCmd(8) must
be set to 0. For system interface data identifiers, SysCmd(8) must be set
to 1.
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System Interface Command Syntax

This section describes the SysCmd bus encoding for system interface
commands. Figure 12.28 shows a common encoding used for all system
interface commands.

0 Request Type Request Specific

Figure 12.28 System Interface Command Syntax Bit Definition

SysCmd(8) must be set to O for all system interface commands.

SysCmd(7:5) specify the system interface request type which may be
read, write or null; Table 12.6 lists the encoding of SysCmd(7:5).

Table 12.6 shows the types of requests encoded by the SysCmd(7:5)

bits.
SysCmd(7:5) Command
0 Read Request
1 Reserved
2 Write Request
3 Null Request
4-7 Reserved

Table 12.6 Encoding of SysCmd(7:5) for System Interface Commands

SysCmd(4:0) are specific to each type of request and are defined in
each of the following sections.

Read Requests
Figure 12.29 shows the format of a SysCmd read request.

8 7 5 4 3 2 1 0

000 Read Reqlljest SLecific
(see tables)

Figure 12.29 Read Request SysCmd Bus Bit Definition
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Table 12.7, Table 12.8, and Table 12.9 list the encoding of SysCmd(4:0)
for read requests.

SysCmd(4:3) Read Attributes

0-1 Reserved

2 Noncoherent block read

3 Doubleword, partial doubleword, word, or partial word

Table 12.7 Encoding of SysCmd(4:3) for Read Requests

SysCmd(2) Link Address Retained Indication

0] Link address not retained

1 Link address retained

SysCmd(1:0)

Read Block Size

0 Reserved
1 8 words
2-3 Reserved

Table 12.8 Encoding of SysCmd(2:0) for Block Read Request

SysCmd(2:0) Read Data Size

1 byte valid (Byte)

2 bytes valid (Halfword)
3 bytes valid (Tribyte)
4 bytes valid (Word)

5 bytes valid (Quintibyte)

6 bytes valid (Sextibyte)

7 bytes valid (Septibyte)

N[ ool A W] N| | O

8 bytes valid (Doubleword)

Table 12.9 Doubleword, Word, or Partial-word Read Request Data Size
Encoding of SysCmd(2:0)

Write Requests
Figure 12.30 shows the format of a SysCmd write request.

0 010 Write Request Specific
(see tables)

Figure 12.30 Write Request SysCmd Bus Bit Definition
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Table 12.10 lists the write attributes encoded in bits SysCmd(4:3).
Table 12.11 lists the block write replacement attributes encoded in bits
SysCmd(2:0). Table 12.12 lists the write request bit encoding in
SysCmd(2:0).

SysCmd(4:3) Write Attributes

Reserved

Reserved

Block write

W[ N[ | O

Doubleword, partial doubleword, word, or partial word

Table 12.10 Write Request Encoding of SysCmd(4:3)

SysCmd(2) Cache Line Replacement Attributes

0 Cache line replaced

[

Cache line retained

SysCmd(1:0) Write Block Size

Reserved

8 words

N| k| O

-3 Reserved

Table 12.11 Block Write Request Encoding of SysCmd(2:0)

SysCmd(2:0) Write Data Size

1 byte valid (Byte)

2 bytes valid (Halfword)
3 bytes valid (Tribyte)
4 bytes valid (Word)

5 bytes valid (Quintibyte)

6 bytes valid (Sextibyte)

7 bytes valid (Septibyte)

N ol Al W N| PO

8 bytes valid (Doubleword)

Table 12.12 Doubleword, Word, or Partial-word Write Request Data Size
Encoding of SysCmd(2:0)
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Null Requests
Figure 12.31 shows the format of a SysCmd null request.

8 7 5 4 3 2 1 0
0 011 Null Request Specific
(see table)
| |

Figure 12.31 Null Request SysCmd Bus Bit Definition

System interface release external null requests use the null request
command. Table 12.13 lists the encoding of SysCmd(4:3) for external
null requests. SysCmd(2:0) are reserved for both instances of null

requests.
SysCmd(4:3) Null Attributes
0 System Interface release
1-3 Reserved

Table 12.13 External Null Request Encoding of SysCmd(4:3)

System Interface Data ldentifier Syntax

This section defines the encoding of the SysCmd bus for system inter-
face data identifiers. Figure 12.32 shows a common encoding scheme
used for all system interface data identifiers.

8 7 6 5 4 3 > 0
1 Last Resp | Good | Data
Data Data | Data | Check Reserved

Figure 12.32 Data ldentifier SysCmd Bus Bit Definition

SysCmd(8) must be set to 1 for all system interface data identifiers.
system interface data identifiers use the format for noncoherent data.

Noncoherent Data

Noncoherent data is defined as follows:

e data that is associated with processor block write requests and pro-
cessor doubleword, partial doubleword, word, or partial word write re-
quests

e data that is returned in response to a processor noncoherent block
read request or a processor doubleword, partial doubleword, word, or
partial word read request

e data that is associated with external write requests

e data that is returned in response to an external read request
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Data Identifier Bit Definitions

SysCmd(7) marks the last data element and SysCmd(6) indicates
whether or not the data is response data, for both processor and external
coherent and noncoherent data identifiers. Response data is data
returned in response to a read request.

SysCmd(5) indicates whether or not the data element is error free. Erro-
neous data contains an uncorrectable error and is returned to the
processor, forcing a bus error. The processor delivers data with the good
data bit deasserted if a primary parity error is detected for a transmitted
data item.

SysCmd(4) indicates to the processor whether to check the data and
check bits for this data element.

SysCmd(3) is reserved for external data identifiers.

SysCmd(4:3) are reserved for noncoherent processor data identifiers.

SysCmd(2:0) are reserved for noncoherent data identifiers.

Table 12.14 lists the encoding of SysCmd(7:3) for processor data identi-
fiers.

SysCmd(7) Last Data Element Indication
0] Last data element
1 Not the last data element
SysCmd(6) Response Data Indication
0 Data is response data
1 Data is not response data
SysCmd(5) Good Data Indication
0 Data is error free
1 Data is erroneous
SysCmd(4:3) | Reserved

Table 12.14 Processor Data Identifier Encoding of SysCmd(7:3)
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Table 12.15 lists the encoding of SysCmd(7:3) for external data identi-
fiers.

SysCmd(7) Last Data Element Indication

0 Last data element

Not the last data element

SysCmd(6) Response Data Indication

0 Data is response data

Data is not response data

SysCmd(5) Good Data Indication
0] Data is error free
1 Data is erroneous

SysCmd(4) Data Checking Enable
0 Check the data and check bits

Do not check the data and check bits

SysCmd(3) | Reserved

Table 12.15 External Data ldentifier Encoding of SysCmd(7:3)

System Interface Addresses

System interface addresses are full 36-bit physical addresses presented
on the least-significant 36 bits (bits 35 through 0) of the SysAD bus
during address cycles; the remaining bits of the SysAD bus are unused
during address cycles.

Addressing Conventions

Addresses associated with doubleword, partial doubleword, word, or
partial word transactions, are aligned for the size of the data element.
The system uses the following address conventions:

e Addresses associated with block requests are aligned to double-word
boundaries; that is, the low-order 3 bits of address are O.
Doubleword requests set the low-order 3 bits of address to O.

Word requests set the low-order 2 bits of address to O.

Halfword requests set the low-order bit of address to 0.

Byte, tribyte, quintibyte, sextibyte, and septibyte requests use the
byte address.

Subblock Ordering

The order in which data is returned in response to a processor block
read request is subblock ordering. In subblock ordering, the processor
delivers the address of the requested doubleword within the block. An
external agent must return the block of data using subblock ordering,
starting with the addressed doubleword.

A block of data elements (whether bytes, halfwords, words, or double-
words) can be retrieved from storage in two ways: in sequential order, or
using a subblock order. This section describes these retrieval methods,
with an emphasis on subblock ordering. Note that the R4600/R4700 only
uses subblock ordering for block reads.
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Example of Sequential Ordering

Sequential ordering retrieves the data elements of a block in serial, or
sequential, order.

Figure 12.33 shows a sequential order in which DWO is taken first and
DWa3 is taken last.

| DWO | DW1 | DW2 | DW3|

/

DWO
taken first DW3
taken fourth
DW1
taken second DW2

taken third

Figure 12.33 Retrieving a Data Block in Sequential Order

Example of Subblock Ordering
Subblock ordering allows the system to define the order in which the

data elements are retrieved. The smallest data element of a block transfer
for the R4600/R4700 is a doubleword, and Figure 12.34 shows the
retrieval of a block of data that consists of 4 doublewords (the cache line
size is 8 words), in which DW2 is taken first.

octalword
A
quadword
Order of retrieval 2 3 0 1

| DWO | Dw1 | Dw2 | DW3 |

/

DWO
taken third DW3
taken second
DW1
taken fourth DW2

taken first

Figure 12.34 Retrieving Data in a Subblock Order

Using the subblock ordering shown in Figure 12.34, the doubleword at
the target address is retrieved first (DW2), followed by the remaining
doubleword (DW3) in this quadword. Next, the quadword that fills out the
octalword are retrieved in the same order as the prior quadword (in this
case DWO is followed by DW1).
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It may be easier way to understand subblock ordering by taking a look
at the method used for generating the address of each doubleword as it is
retrieved. The subblock ordering logic generates this address by
executing a bit-wise exclusive-OR (XOR) of the starting block address with
the output of a binary counter that increments with each doubleword,
starting at doubleword zero (00,).

Using this scheme, Table 12.16, Table 12.17, and Table 12.18 list the
subblock ordering of doublewords for an 8-word block, based on three
different starting-block addresses: 10,, 11,, and 01,. The subblock
ordering is generated by an XOR of the subblock address (either 105, 11,,
or 01,) with the binary count of the doubleword (00, through 11,). Thus,
the third doubleword retrieved from a block of data with a starting
address of 10, is found by taking the XOR of address 10, with the binary
count of DW2, 10,. The result is 00,5, or DWO (shown in Table 12.16).

Cycle | StartingBlock | Binary Count Double Word
Address Retrieved
1 10 00 10
2 10 01 11
3 10 10 00
4 10 11 01

Table 12.16 Sequence of Doublewords Transferred Using Subblock
Ordering: Address 10,

Cycle | StartingBlock | Binary Count Double Word
Address Retrieved
1 11 00 11
2 11 01 10
3 11 10 01
4 11 11 00

Table 12.17 Sequence of Doublewords Transferred Using Subblock
Ordering: Address 11,

Cycle | StartingBlock | Binary Count Double Word
Address Retrieved
1 01 00 01
2 01 01 00
3 01 10 11
4 01 11 10

Table 12.18 Sequence of Doublewords Transferred Using Subblock
Ordering: Address 01,

For block write requests, the processor always delivers the address of
the doubleword at the beginning of the block; the processor delivers data
beginning with the doubleword at the beginning of the block and
progresses sequentially through the doublewords that form the block.

12 - 40



System Interface

Chapter 12

During data cycles, the valid byte lines depend upon the position of the
data with respect to the aligned doubleword (this may be a byte, halfword,
tribyte, quadbyte/word, quintibyte, sextibyte, septibyte, or an octalbyte/
doubleword). For example, in little-endian mode, on a byte request where
the address modulo 8 is 0, SysAD(7:0) are valid during the data cycles.

Table 12.19 shows the byte lanes used for partial word transfers for
both little and big endian.

# Bytes Address SysAD byte lanes used (big endian)
SysCmd(2:0) Mod 8 | 63:56 | 55:48 | 47:40 | 39:32 | 31:24 | 23:16 | 15:8 7:0
0 -
1 -
2 -
1 3 -
(000) 4 -
5 -
6 -
7 -
0 - -
2 2 - -
(001) 4 - -
6 - -
0 - - -
3 1 - - -
(010) 4 - - -
5 - - -
4 0 - - - -
(011) 4 - - - -
5 0 - - - - -
(100) 3 - - - - -
6 0 < < < < < <
(101) 2 - - - - - -
7 0 - - - - - - -
(110) 1 - - - - - - -
8 (111) 0 - - - - - - - -
7:0 15:8 | 23:16 | 31:24 | 39:32 | 47:40 | 55:48 | 63:56
SysAD byte lanes used (little endian)

Table 12.19 Partial Word Transfer Byte Lane Usage
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Processor Internal Address Map

External reads and writes provide access to processor internal
resources that may be of interest to an external agent. The processor
decodes bits SysAD(6:0) of the address associated with an external read
or write request to determine which processor internal resource is the
target.

However, the R4600/R4700 does not contain any resources that are
readable through an external read request. Therefore, in response to an
external read request the processor returns undefined data and a data
identifier with its Erroneous Data bit, SysCmd(5), set.

The Interrupt register is the only processor internal resource available
for write access by an external request. The Interrupt register is accessed
by an external write request with an address of 000, on bits 6:4 of the
SysAD bus.

The interrupt register is described in detail in Chapter 13,
“R4600/R4700 Processor Interrupts.”
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R4600/R4700 Processor Chapter 13
Interrupts

Introduction

The R4600/R4700 processor supports the following interrupts: six
hardware interrupts, one internal “timer interrupt,” two software
interrupts, and one nonmaskable interrupt. The processor takes an
exception on any interrupt.

This chapter describes the six hardware and single nonmaskable
interrupts. A description of the software and the timer interrupts can be
found in Chapter 5. CPU exception processing is also described in Chapter
5. Floating-point exception processing is described in Chapter 6.

Hardware Interrupts

The six CPU hardware interrupts can be caused by external write
requests to the R4600/R4700, or can be caused through dedicated
interrupt pins. These pins are latched into an internal register by the rising
edge of SClock.

Nonmaskable Interrupt (NMI)

The nonmaskable interrupt is caused either by an external write request
to the R4600/R4700 or by a dedicated pin in the R4600/R4700. This pin
is latched into an internal register by the rising edge of SClock.

Asserting Interrupts

External writes to the CPU are directed to various internal resources,
based on an internal address map of the processor. When SysAD[6:0] =0
during an ADDR cycle of external write request, an external write to any
address writes to an architecturally transparent register called the
Interrupt register; this register is available for external write cycles, but not
for external reads.

During a data cycle, SysAD[22:16] are the write enables for the seven
individual Interrupt register bits (O = disabled, 1 = enabled) and SysAD[6:0]
are the values to be written into these bits (0O = no interrupt, 1 = interrupt).
This allows any subset of the Interrupt register to be set or cleared with a
single write request. Figure 13.1 shows the mechanics of an external write
to the Interrupt register.

nterrupt register
SysAD(6:0) Interrupt Value

See Figure 13.2
and Figure 13.3.

22 21‘20 19‘18 17‘16'

SysAD(22:16) Write Enables

Figure 13.1 Interrupt Register Bits and Enables
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Figure 13.2 shows how the R4600/R4700 interrupts are readable
through the Cause register. The interrupt bits, Int*(5:0), are latched into
the internal register by the rising edge of SClock.

e Bit 5 of the Interrupt register in the R4600/R4700 is ORed with the
Int*(5) pin and then multiplexed with the internal Timerlnterrupt
signal. This result is directly readable as bit 15 of the Cause register.

e Bits 4:0 of the Interrupt register are bit-wise ORed with the current
value of the interrupt pins Int*[4:0] and the result is directly readable
as bits 14:10 of the Cause register.

5/ 413 (2|10 [interrupt register (5:0)

\ﬂ)iﬁ

L IP3
D IP4

ﬁ) See

_(D iP5 > Figure 13.4

12 11 10

o
—
— =15
P72
Timer Ca_use
Interrupt register
SClock—>»| 5 41 31211 (Int_ernal OR gate D
register) .
A A T 17 multlplexerjbf
Int*(5) Int*(3) Int*(1)

Int*(4)  Int*(2)  Int*(0)

Figure 13.2 R4600/R4700 Interrupt Signals

Figure 13.3 shows the internal derivation of the NMI signal, for the
R4600/R4700 processor.

The NMI* pin is latched into an internal register by the rising edge of
SClock. Bit 6 of the Interrupt register is then ORed with the inverted value
of NMI* to form the nonmaskable interrupt. Only the one falling edge of the
latched signal will cause the NMI.

Interrupt register (6)

(Internal
register)
(Internal) o

NMI

Inverter OR gate

SClock

Figure 13.3 R4600/R4700 Nonmaskable Interrupt Signal

13-2



R4600/R4700 Processor Interrupts Chapter 13

Figure 13.4 shows the masking of the R4600/R4700 interrupt signal.

e Cause register bits 15:8 (IP7-1P0) are AND-ORed with Status register
interrupt mask bits 15:8 (IM7-IMO0) to mask individual interrupts.

e Status register bit O is a global Interrupt Enable (IE). It is ANDed with
the output of the AND-OR logic to produce the R4600/R4700 inter-
rupt signal.

Status register SR(0)

Eli

Status register SR(15:8)

IMO
M1
IM2
M3} 8
i

>
IM6 R4600/R4700
IMZ Interrupt

iy, 1

Y

T
=)

T
=

3
~

T
=

8 AND
7Z> function
AND-OR
7 function

%
~

33
| U

|
Cause register (15:8)

o

Figure 13.4 Masking of the R4600/R4700 Interrupts
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Introduction

This chapter describes the Error Checking mechanism used in the
R4600/R4700 processor.

Error Checking in the Processor
Error checking codes allow the processor to detect and sometimes
correct errors made when moving data from one place to another.
Two major types of data errors can occur in data transmission:
e hard errors, which are permanent, arise from broken interconnects,
internal shorts, or open leads
« soft errors, which are transient, are caused by system noise, power
surges, and alpha particles.
Hard errors must be corrected by physical repair of the damaged
equipment and restoration of data from backup. Soft errors can be
corrected by using error checking and correcting codes.

Types of Error Checking
The R4600/R4700 uses parity (error detection only).

Parity Error Detection
Parity is the simplest error detection scheme. By appending a bit to the
end of an item of data—called a parity bit—single bit errors can be
detected; however, these errors cannot be corrected.
There are two types of parity:
e Odd Parity adds 1 to any even number of 1s in the data, making the
total number of 1s odd (including the parity bit).
e Even Parity adds 1 to any odd number of 1s in the data, making the
total number of 1s even (including the parity bit).
Odd and even parity are shown in the example below:

Data(3:0) Odd Parity Bit Even Parity Bit
0010 0 1

The example above shows a single bit in Data(3:0) with a value of 1; this
bit is Data(1).
* In even parity, the parity bit is set to 1. This makes 2 (an even num-
ber) the total number of bits with a value of 1.
e Odd parity makes the parity bit a O to keep the total number of 1-val-
ue bits an odd number—in the case shown above, the single bit Da-

ta(1).
The example below shows odd and even parity bits for various data
values:
Data(3:0) Odd Parity Bit Even Parity Bit
0110 1 0
00O00O 1 0
1111 1 0
1101 0 1

Parity allows single-bit error detection, but it does not indicate which bit
is in error—for example, suppose an odd-parity value of 00011 arrives.
The last bit is the parity bit, and since odd parity demands an odd number
(1,3,5) of 1s, this data is in error: it has an even number of 1s. However it
is impossible to tell which bit is in error.

14 -1
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Error Checking Operation
The processor verifies data correctness by using parity as it passes data
from/to the system interface to/from the primary caches.

System Interface

The processor generates correct check bits for doubleword, word, or
partial-word data transmitted to the system interface. As it checks for data
correctness, the processor passes data check bits from the primary cache,
directly without changing the bits, to the system interface.

The processor does not check data received from the system interface for
external writes. By setting the NChck bit in the data identifier, it is possible
to prevent the processor from checking read response data from the
system interface.

For cache refill, if the NChck bit is set, the CPU will generally correct
parity before placing data into the cache. The R4600/R4700 only checks
parity for the first double word returned on a block instruction fetch, that
is, for the double word that contains the instruction that was missed on
in the cache. This double word is checked just as if it had been read out
of the ICache. This parity check is done as a byte parity check. For single
read, and with the NChck bit set, the CPU will check parity for all 64-bit,
even if the transfer size is less than that.

When the R4600/R4700 is checking parity it does not actually
regenerate the word parity, but rather turns the byte parity supplied by the
system into word parity. It XORS the bits in groups of four. As a result, if
bad byte parity is supplied by the system, bad word parity will get written
into the cache. This is done to be consistent with what happens in the
DCache.

The processor does not check addresses received from the system
interface and does not generate correct check bits for addresses
transmitted to the system interface.

The processor does not contain a data corrector; instead, the processor
takes a cache error exception when it detects an error based on data check
bits. Software is responsible for error handling.

System Interface Command Bus

In the R4600/R4700 processor, the system interface command bus has
no parity. SysCmdP always drives zero out for CPU valid cycles and is not
checked when the system interface is in slave state.

14 -2
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Summary of Error Checking Operations
Error Checking operations are summarized in Table 14.1 and

Data Check Bits

Trap on Error

Error

Cache

Table 14.2.
Primary Cache Primary Cache
Uncached Uncached Load from System | Write to System | Cache
Bus Load Store Interface Interface Instruction
Processor Data From System | Not From System Inter- | Checked; Trap Check on
Interface Checked face unchanged on Error cache write-
back; Trap on
Error
System Interface Not Not Not Generated Not Generated Not Generated
Address/Com- Generated Generated
mand and Check
Bits: Transmit
System Interface Not Checked | NA Not Checked NA NA
Address/Com-
mand and Check
Bits: Receive
System Interface Checked; From Pro- Checked; Trap on From Primary From Primary
Data Trap on Error | cessor Error Cache Cache
System Interface Checked; Generated Checked; Trap on From Primary From Primary

Cache

Table 14.1 Error Checking and Correcting Summary for Internal Transactions

mit

Read
Bus Request Write Request
Processor Data NA NA
System Interface Address, Command, and Check Bits: Trans- | Generated NA

System Interface Address, Command, and Check Bits: Receive

Not Checked

Not Checked

System Interface Data

From Processor

Checked; Trap on Error

System Interface Data Check Bits

Generated

Checked; Trap on Error

Table 14.2 Error Checking and Correcting Summary for External Transactions
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Introduction

This appendix provides a detailed description of the operation of each
R4600/R4700 instruction. The instructions are listed in alphabetical
order.

Exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate cause and manner of handling exceptions are omitted from the
instruction descriptions in this appendix.

Figures at the end of this appendix list the bit encoding for the constant
fields of each instruction, and the bit encoding for each individual
instruction is included with that instruction.

Instruction Classes
CPU instructions are divided into the following classes:

e Load and Store instructions move data between memory and general
registers. They are all I-type instructions, since the only addressing
mode supported is base register + 16-bit immediate offset.

e Computational instructions perform arithmetic, logical and shift op-

erations on values in registers. They occur in both R-type (both
operands are registers) and I-type (one operand is a 16-bit immediate)
formats.

e Jump and Branch instructions change the control flow of a program.
Jumps are always made to absolute 26-bit word addresses (J-type
format), or register addresses (R-type), for returns and dispatches.
Branches have 16-bit offsets relative to the program counter (I-type).
Jump and Link instructions save their return address in register 31.

* Coprocessor instructions perform operations in the coprocessors.
Coprocessor loads and stores are I-type. Coprocessor computational
instructions have coprocessor-dependent formats (see the FPU in-
structions in Appendix B). Coprocessor zero (CPO) instructions ma-
nipulate the memory management and exception handling facilities of
the processor.

* Special instructions perform a variety of tasks, including movement
of data between special and general registers, trap, and breakpoint.
They are always R-type.
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Instruction Formats
Every CPU instruction consists of a single word (32 bits) aligned on a
word boundary and the major instruction formats are shown in Figure A.1.

I-Type (Immediate)
31 2625 21 20 16 15 0

op rs rt immediate

J-Type (Jump)

31 26 25 0
op target
R-Type (Register)
31 26 25 21 20 16 15 1110 65 0
op rs rt rd shamt | funct
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) or branch condition

immediate  16-bit immediate, branch displacement or address
displacement

target 26-bit jump target address

rd 5-bit destination register specifier
shamt 5-bit shift amount

funct 6-bit function field

Figure A.1 CPU Instruction rormats

Instruction Notation Conventions

In this appendix, all variable subfields in an instruction format (such
as rs, rt, immediate, etc.) are shown in lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield
in the formats of specific instructions. For example, we use rs = base in
the format for load and store instructions. Such an alias is always lower
case, since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located
at the end of this Appendix, and the bit encoding also accompanies each
instruction.

In the instruction descriptions that follow, the Operation section
describes the operation performed by each instruction using a high-level
language notation.
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Special symbols used in the notation are described in Table A.1

Symbol Meaning

- Assignment.
Il Bit string concatenation.
Replication of bit value x into a y-bit string. Note: x is always a single-bit

Xy
Xy:2 Selection _of bits y through_z of bit str_ing_x. Little-endian bit notation_is aI_vvays
used. If y is less than z, this expression is an empty (zero length) bit string.
+ 2's complement or floating-point addition.
- 2's complement or floating-point subtraction.
. 2's complement or floating-point multiplication.
div 2's complement integer division.
mod 2's complement modulo.
/ Floating-point division.
< 2's complement less than comparison.
and Bit-wise logical AND.
or Bit-wise logical OR.
xor Bit-wise logical XOR.
nor Bit-wise logical NOR.
GPR[A] General-Register x. The content of GPR[O] is always zero. Attempts to alter the
content of GPR[0] have no effect.
CPR[z,X] Coprocessor unit z, general register x.
CCR[z,] Coprocessor unit z, control register x.
COC[Z] Coprocessor unit z condition signal.

BigEndianMem | Big-endian mode as configured at reset (0 — Little, 1 — Big). Specifies the endi-
anness of the memory interface (see LoadMemory and StoreMemory), and the en-
dianness of Kernel and Supervisor mode execution.

ReverseEndian | Signal to reverse the endianness of load and store instructions in User mode;
effected by setting the RE bit of the Status register. Thus, ReverseEndian may be
computed as (SR,5 and User mode).

BigEndianCPU | The endianness for load and store instructions (0 — Little, 1 — Big). In User

mode, this endianness may be reversed by setting SR,5. Thus, BigEndianCPU
may be computed as BigEndianMem XOR ReverseEndian.

LLbit Bit of state to specify synchronization instructions. Set by LL, cleared by ERET and
Invalidate and read by SC.
T+i: Indicates the time steps between operations. Each of the statements within a time

step are defined to be executed in sequential order (as modified by conditional and
loop constructs). Operations which are marked T+i: are executed at instruction cy-
cle irelative to the start of execution of the instruction. Thus, an instruction which
starts at time j executes operations marked T+i: at time

i + j. The interpretation of the order of execution between two instructions or two
operations which execute at the same time should be pessimistic; the order is not
defined.

Table A.1 CPU Instruction Operation Notations
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Instruction Notation Examples
The following examples illustrate the application of some of the
instruction notation conventions:

Example #1:
GPR[rt] — immediate || 0®
Sixteen zero bits are concatenated with an immediate value

(typically 16 bits), and the 32-bit string (with the lower 16 buts
set to zero) is assigned to General-Purpose Register rt.

Example #2:
(immediate;5)*® | | immediate;s g

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

Load and Store Instructions

In the R4600/R4700, as in the case of processors, the instruction
immediately following a load may use the loaded contents of the register.
In such cases, the hardware interlocks, requiring additional real cycles, so
scheduling load delay slots is still desirable, although not required for
functional code.

Two special instructions are provided in the R4600/R4700
implementation of the MIPS ISA, Load Linked and Store Conditional.
These instructions are used in carefully coded sequences to provide one of
several synchronization primitives, including test-and-set, bit-level locks,
semaphores, and sequencers/event counts.

In the load and store descriptions, the functions listed in Table A.2 are
used to summarize the handling of virtual addresses and physical
memory.

Function Meaning

AddressTranslation | Uses the TLB to find the physical address given the virtual
address. The function fails and an exception is taken if the
required translation is not present in the TLB.

LoadMemory Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory Uses the cache, write buffer, and main memory to store
the word or part of word specified as data in the word con-
taining the specified physical address. The low-order two
bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

Table A.2 Load and Store Common Functions
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As shown in Table A.2, the Access Type field indicates the size of the
data item to be loaded or stored. Regardless of access type or byte-
numbering order (endianness), the address specifies the byte which has
the smallest byte address in the addressed field. For a big-endian
machine, this is the leftmost byte and contains the sign for a 2's
complement number; for a little-endian machine, this is the rightmost

byte.

Access Type Mnemonic Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

Table A.3 Access Type Specifications for Loads/Stores

The bytes within the addressed doubleword which are used can be
determined directly from the access type and the three low-order bits of the
address.

Jump and Branch Instructions

All jump and branch instructions have an architectural delay of exactly
one instruction. That is, the instruction immediately following a jump or
branch (that is, occupying the delay slot) is always executed while the
target instruction is being fetched from storage. A delay slot may not itself
be occupied by a jump or branch instruction; however, this error is not
detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal
instruction during a delay slot, the hardware sets the EPC register to point
at the jump or branch instruction that precedes it. When the code is
restarted, both the jump or branch instructions and the instruction in the
delay slot are reexecuted.

Because jump and branch instructions may be restarted after
exceptions or interrupts, they must be restartable. Therefore, when a
jump or branch instruction stores a return link value, register 31 (the
register in which the link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump
and Link Register instruction must use a register whose two low-order
bits are zero. If these low-order bits are not zero, an address exception will
occur when the jump target instruction is subsequently fetched.
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Coprocessor Instructions

Coprocessors are alternate execution units, which have register files
separate from the CPU. The R4600/R4700 architecture (MIPS Ill) provides
three coprocessor units, or classes, and these coprocessors have two
register spaces, each space containing thirty-two registers. These registers
may be either 32-bits or 64-bits wide.

e The first space, coprocessor general registers, may be directly loaded
from memory and stored into memory, and their contents may be
transferred between the coprocessor and processor.

e The second space, coprocessor control registers, may only have their
contents transferred directly between the coprocessor and the proces-
sor. Coprocessor instructions may alter registers in either space.

System Control Coprocessor (CPO) Instructions

There are some special limitations imposed on operations involving
CPO that is incorporated within the CPU. The move to/from coprocessor
instructions are the only valid mechanism for writing to and reading from
the CPO registers.

Several CPO instructions are defined to directly read, write, and probe
TLB entries and to modify the operating modes in preparation for returning
to User mode or interrupt-enabled states.
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ADD Add ADD
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 ADD
000000 00000 100000
6 5 5 5 5 6
Format:

ADD rd, rs, rt

Description:
The contents of general register rs and the contents of general register
rt are added to form the result. The result is placed into general register
rd. The operands must be valid sign-extended, 32-bit values.
An overflow exception occurs if the carries out of bits 30 and 31 differ
(2's complement overflow). The destination register rd is not modified when
an integer overflow exception occurs.

Operation:

T:

temp — GPR][rs] + GPRJrt]
GPRIrd] « (temps;)®? || tempa; o

Exceptions:
Integer overflow exception
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ADDI

Add Immediate

ADDI

31 26 25 21 20 16 15 0
ADDI rs rt immediate
001000
6 5 5 16
Format:

ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of
general register rs to form the result. The result is placed into general
register rt. The rs operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2's
complement overflow). The destination register rt is not modified when an
integer overflow exception occurs.

Operation:

T:

temp « GPR[rs] + (immediate15)48 | | immediate;s g

GPRIr] — (temps;)*? || tempa; o

Exceptions:
Integer overflow exception




CPU Instruction Set Details Appendix A

ADDIU Add Immediate Unsigned ~ ADDIU

31 26 25 21 20 16 15 0
ADDIU s rt immediate
001001
6 5 5 16
Format:

ADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of
general register rs to form the result. The result is placed into general
register rt. No integer overflow exception occurs under any circumstances.
The rs operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction
is that ADDIU never causes an overflow exception.

Operation:

T: temp — GPR[rs] + (immediate;5)*® | | immediate;s o
GPRIrt] — (temp3;)®? || temps; o

Exceptions:
None
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A

DDU Add Unsigned ADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 ADDU
000000 00000 100001
6 5 5 5 5 6

Format:

ADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register
rt are added to form the result. The result is placed into general register rd.
No overflow exception occurs under any circumstances. The source
operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction
is that ADDU never causes an overflow exception.

Operation:

T: temp — GPRJ[rs] + GPR]r]
GPRIrd] — (tempgy)* || tempay o

Exceptions:
None
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AND And AND

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 AND
000000 00000 100100
6 5 5 5 5 6
Format:

AND rd, rs, rt

Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical AND operation. The result is placed
into general register rd.

Operation:

T: GPR[rd] —~ GPR]rs] and GPR]rt]

Exceptions:
None
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ANDI And Immediate ANDI

31 26 25 21 20 16 15 0
ANDI rs rt immediate
001100
6 5 5 16
Format:

ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents
of general register rs in a bit-wise logical AND operation. The result is
placed into general register rt.

Operation:

T:  GPR[rt] — 0% || (immediate and GPR{rs];5 o)

Exceptions:
None
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BCzF Branch On Coprocessor z False BCzF

31 26 25 21 20 16 15 0
COPz BC BCF offset
0100xx* 01000 00000
6 5 5 16
Format:

BCzF offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If coprocessor z's condition signal (CpCond), as
sampled during the previous instruction, is false, then the program
branches to the target address with a delay of one instruction.

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation:

T-1: condition ~ not COC[z]
T:  target  (offset;5)*® || offset || 02
T+1: if condition then
PC — PC + target
endif

Note: *See the table “Opcode Bit Encoding” on next page, or “CPU
Instruction Opcode Bit Encoding” at the end of Appendix A.

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCz[F Bit# 3130 2028 27 262524 2322 2120 1918 17 16 0
scoe| 0/ 1| 0jo|o|ofo|1|ofo|o|o|o|o|0]|O
Bit# 3130 29 28 27 26 25 24 2322 2120 1918 17 16 0
BciF| 0/ 1] 0fojo|1|o|1|o|o|o|o|o|0|0]|O
Bit# 3130 29 28 27 26 2524 2322 2120 19 18 17 16 0
scop| 0] 1/ 0|0 |1]ofo|1|ofo|o|o|o|o|0]|0

N N /
'

Opcode BC sub-opcode Branch condition
Coprocessor Unit Number
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Branch On Coprocessor z
BCZFI— False Likely BCZF

31 26 25 21 20 16 15 0
COPz BC BCFL offset
0100xx* 01000 00010
6 5 5 16
Format:

BCzFL offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of coprocessor z's condition signal, as
sampled during the previous instruction, is false, the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

NOTE: *See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

Operation:
T-1: condition — not COC|z]
T:  target — (offset;5)*° || offset || 02
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

BCzFL Bit# 31302928 27 26 2524 2322 21 20 1918 17 16 0
BcoeL| 0] 1{0f0O|O|OfO|1/0{0|0|0|0|0|1]|O

Bit# 3130 29 28 27 26 2524 2322 21201918 17 16 0
BciFL| 0/ 1{0(0|0|1/0f1/0|0|0[{0|0|0O|1]|0O

Bit# 3130 29 28 27 26 2524 2322 21201918 17 16 0
Bc2eL| 0] 1{0f0|1/0f0|1/0{0|0|0|0]0O|1]|O
hd - hd -

Opcode

Coprocessor Unit Number

BC sub-opcode Branch condition
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BCzT BranchonCoprocessorzTrue BCzT

31 26 25 21 20 16 15 0
COPz BC BCT offset
0100xx* 01000 00001
6 5 5 16
Format:

BCzT offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the coprocessor z's condition signal (CpCond) is
true, then the program branches to the target address, with a delay of one
instruction.

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation:

T-1: condition COC[ZIS
T:  target — (offset;5)*® || offset || 02
T+1: if condition then
PC ~ PC + target
endif

NOTE: *See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:
BCZT Bit# 3130 29 28 27 26 25 24 2322 21 201918 17 16 0
i/o0/0|0|0O|0Of2|0|0O|0O|O|O|O|O|1

BcoT| ©
Bit# 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0
scir| 0| 1/ ofofo|1|o|1|olo|ofo|o|o0]0|1

Bit# 3130 29 28 27 26 25 24 2322 21 20 19 18 17 16 0
o/1/ofo|1|o|o|1|0lo|0f0|0|O|O|1

"
]

BC2T

Opcode
Coprocessor Unit Number

BC sub-opcode Branch condition
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BCZTL Branch_l_?l?e(l:_(i)l?éloycessor z BCZTL

31 26 25 21 20 16 15 0
COPz BC BCTL offset
0100 xx* 01000 00011
6 5 5 16
Format:

BCzTL offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of coprocessor z's condition signal, as
sampled during the previous instruction, is true, the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation:

T-1: condition COC[ZL
T:  target — (offset;5)*°|| offset || 02
T+1: if condition then
PC — PC + target
else
NullifyCurrentinstruction

endif

NOTE: *See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzTL Bit# 3130 29 28 27 26 25 24 2322 2120 19 18 17 16 0
scotL| 0] 1| 0jo|o|ofo|1|0lo|o|ofo|o0|1]1

Bit# 3130 29 28 27 26 2524 2322 21 20 1918 17 16 0
sc1TL| 0] 1[ojo|o|1]|o|1|0lo|o|ofo|o0|1]1

Bit# 3130 29 28 27 26 2524 2322 21 20 1918 17 16 0
scotL| 0] 1/ 0o |1{o0|o|1|0|0|0|0f0|O|1]1
N ~—

Opcode BC sub-opcode Branch condition
Coprocessor Unit Number
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BEQ Branch On Equal BEQ

31 26 25 21 20 16 15 0
BEQ rs rt offset
000100
6 5 5 16
Format:

BEQ rs, rt, offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, then the
program branches to the target address, with a delay of one instruction.

Operation:
T:  target — (offset;s)*® || offset || 0
condition — (GPR[rs] = GPR]rt])
T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None
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B EQL Branch On Equal Likely

BEQL

BEQL rs, rt, offset

Description:

31 26 25 21 20 16 15
BEQL rs rt offset
010100
6 5 5 16
Format:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, the target
address is branched to, with a delay of one instruction. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

T:  target — (offset;5)*® || offset || 02
condition —~ (GPR][rs] = GPRJrt])
T+1: if condition then
PC ~ PC +target
else
NullifyCurrentinstruction
endif

Exceptions:
None
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Branch On Greater Than
BGEZ Or Equal To Zero BGEZ

31 26 25 21 20 16 15 0
REGIMM rs BGEZ offset
000001 00001
6 5 5 16
Format:

BGEZ rs, offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction.

Operation:
T:  target — (offset;5)*®|| offset || 02
condition — (GPR]rs]g3z = 0)
T+1: if condition then
PC « PC + target
endif
Exceptions:
None
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Branch On Greater Than
BGEZAI— Or Equal To Zero And Link BGEZAI—

31 26 25 21 20 16 15 0
REGIMM rs BGEZAL offset
000001 10001
6 5 5 16
Format:

BGEZAL rs, offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction is not
trapped, however.

Operation:

T:  target  (offset;s)*® || offset || 02
condition —~ (GPR]rs]gz = 0)
GPR[31] — PC +8

T+1: if condition then
PC — PC + target
endif

Exceptions:
None
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BGEZALL b e BGEZALL

And Link Likely

31 26 25 21 20 16 15 0
REGIMM rs BGEZALL offset
000001 10011
6 5 5 16
Format:

BGEZALL rs, offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction. General register rs may not
be general register 31, because such an instruction is not restartable. An
attempt to execute this instruction is not trapped, however. If the
conditional branch is not taken, the instruction in the branch delay slot is

nullified.
Operation:
T:  target — (offset;s)*® || offset || 0°
condition — (GPR][rs]gz = 0)
GPR[31] -« PC+8
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
Exceptions:
None
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BGEZL

Branch On Greater

Than Or Equal To Zero Likely

BGEZL

31 26 25 21 20 16 15 0
REGIMM rs BGEZL offset
000001 00011
6 5 5 16
Format:

BGEZL rs, offset

Description:

A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
If the conditional branch is not taken, the instruction in
the branch delay slot is nullified.

one instruction.

Operation:
T:  target — (offset;5)*® || offset || 0
condition — (GPR][rs]gz = 0)
T+1: if condition then
PC —~ PC + target
else
NullifyCurrentinstruction
endif
Exceptions:
None
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BGTZ Branch On Greater Than Zero BGTZ

31 26 25 21 20 16 15 0
BGTZ rs 0 offset
000111 00000
6 5 5 16
Format:

BGTZ rs, offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs are compared to
zero. If the contents of general register rs have the sign bit cleared and are
not equal to zero, then the program branches to the target address, with a
delay of one instruction.

Operation:
T: target  (offset;5)*® || offset || 0
condition — (GPR[rs]gz = 0) and (GPR(rs] # 0%
T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None
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BGTZL

Branch On Greater
Than Zero Likely

BGTZL

31 26 25 21 20 16 15 0
BGTZL rs 0 offset
010111 00000
6 5 5 16
Format:

Description:
A branch target address is computed from the sum of the address of

BGTZL rs, offset

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs are compared to
zero. If the contents of general register rs have the sign bit cleared and are
not equal to zero, then the program branches to the target address, with a

delay of one instruction.

If the conditional branch is not taken, the

instruction in the branch delay slot is nullified.

Operation:

T:

target — (offset;5)*® || offset || 02
condition — (GPR]rs]g3 = 0) and (GPR]rs] # 054

T+1: if condition then

PC ~ PC + target

else

NullifyCurrentinstruction

endif

Exceptions:

None
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Branch on Less Than
B I— EZ Or Equal To Zero B I— EZ

31 26 25 21 20 16 15 0
BLEZ rs 0 offset
000110 00000
6 5 5 16
Format:

BLEZ rs, offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs are compared to
zero. If the contents of general register rs have the sign bit set, or are equal
to zero, then the program branches to the target address, with a delay of
one instruction.

Operation:

T:  target  (offset;5)*® || offset || 02
condition — (GPR[rs]gz = 1) and (GPR[rs] = 054
T+1: if condition then
PC ~ PC + target
endif

Exceptions:
None
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BLEZL

Branch on Less Than
Or Equal To Zero Likely

BLEZL

BLEZL rs, offset

Description

31 26 25 21 20 16 15 0
BLEZL rs 0 offset
010110 00000
6 5 5 16
Format:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs is compared to zero.
If the contents of general register rs have the sign bit set, or are equal to
zero, then the program branches to the target address, with a delay of one

instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Operation:
T:  target — (offset;5)*® || offset || 02
condition — (GPR[rs]gz = 1) and (GPR[rs] = 0%%)
T+1: if condition then
PC — PC + target
else
NullifyCurrentinstruction
endif
Exceptions:
None
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BLTZ

Branch On Less Than Zero

BLTZ

BLTZ rs, offset

Description

31 26 25 21 20 16 15 0
REGIMM rs BLTZ offset
000001 00000
6 5 5 16
Format:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of general register rs have the sign bit
set, then the program branches to the target address, with a delay of one

instruction.

Operation:
target — (offset;s)*® || offset || 02
condition ~ (GPR][rs]lgz = 1)

T+1: if condition then
PC — PC + target

endif

Exceptions:

None
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Branch On Less
Than Zero And Link

BLTZAL

BLTZAL

31 26 25 21 20 16 15 0
REGIMM rs BLTZAL offset
000001 10000
6 5 5 16
Format:

BLTZAL rs, offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit set, then the program branches to the target

address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however.

Operation:
T: target — (offsetls)“6 || offset || 02
condition — (GPR[rs]g3=1)
GPR[31] -« PC+8
T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None
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BLTZALL than zero anatink tikety BLTZALL

31 26 25 21 20 16 15 0
REGIMM rs BLTZALL offset
000001 10010
6 5 5 16
Format:

BLTZALL rs, offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:
T: target — (0ffset15)46 || offset || 02
condition — (GPR][rs]g3 = 1)
GPR[31] - PC+8
T+1: if condition then
PC ~ PC +target
else
NullifyCurrentinstruction
endif
Exceptions:
None
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B LTZL Branch On Less Than Zero Likely B LTZ |

31 26 25 21 20 16 15 0
REGIMM rs BLTZL offset
000001 00010
6 5 5 16
Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of general register rs have the sign bit
set, then the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

Operation:
T:  target  (offset;5)*® || offset || 02
condition — (GPR[rs]lgz = 1)
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
Exceptions:
None
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B NE Branch On Not Equal B N E

31 26 25 21 20 16 15 0
BNE rs rt offset
000101
6 5 5 16
Format:

BNE rs, rt, offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction.

Operation:
T: target — (offset;5)*® || offset || 02
condition — (GPR[rs] # GPR]rt])
T+1: if condition then
PC —~ PC + target
endif
Exceptions:
None
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BNEL

Branch On Not Equal Likely

BNEL

BNEL rs, rt, offset

Description:

31 26 25 21 20 16 15 0
BNEL rs rt offset
010101
6 5 5 16
Format:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs and the contents of

general register rt are compared.

If the two registers are not equal, then

the program branches to the target address, with a delay of one

instruction.

If the conditional branch is not taken, the instruction in the branch

delay slot is nullified.

Operation:
T:  target  (offset;5)*® || offset || 02
condition — (GPR[rs] # GPR]rt])
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
Exceptions:
None
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BREAK Breakpoint BREAK

31 26 25 65 0
SPECIAL code BREAK
000000 001101
6 20 6

Format:
BREAK

Description:

A breakpoint trap occurs, immediately and unconditionally
transferring control to the exception handler.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T:  BreakpointException

Exceptions:
Breakpoint exception
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CACHE Cache CACHE

31 26 25 21 20 16 15 0
CACHE base op offset
101111
6 5 5 16
Format:

CACHE op, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The virtual address is translated
to a physical address using the TLB, and the 5-bit sub-opcode specifies a
cache operation for that address.

If CPO is not usable (User or Supervisor mode) the CPO enable bit in the
Status register is clear, and a coprocessor unusable exception is taken.
The operation of this instruction on any operation/cache combination not
listed below is undefined. The operation of this instruction on uncached
addresses is also undefined.

The R4600/R4700 uses only the tag comparisons, not the valid bits, to
choose which data it supplies to the instruction unit. This makes it
important that the tags of the A and B sets are never the same.

The Index operation uses part of the virtual address to specify a cache
block, with vAddr, 3 selecting the set to access.

For a primary cache of 16KB with 32 bytes per tag, vAddr,, 5 specifies
the block.

Index Load Tag also uses vAddr,_ 3 to select the doubleword for reading
parity. When the CE bit of the Status register is set, Hit WriteBack, Hit
WriteBack Invalidate, Index WriteBack Invalidate, and Fill also use
VvAddr, 5 to select the doubleword that has its parity modified. This
operation is performed unconditionally.

The Hit operation accesses the specified cache as normal data
references, and performs the specified operation if the cache block
contains valid data with the specified physical address (a hit). If both sets
are invalid or contain different addresses (a miss), no operation is
performed.

Write back from a primary cache goes to memory. The address to be
written is specified by the cache tag and not the translated physical
address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For
Index operations (where the physical address is used to index the cache
but need not match the cache tag) unmapped addresses may be used to
avoid TLB exceptions. This operation never causes TLB Modified or Virtual
Coherency exceptions.

Bits 17..16 of the instruction specify the cache as follows:

Code Name Cache
0] | primary instruction
1 D primary data

2-3 NA Undefined
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Bits 20..18 (this value is listed under the Code column) of the
instruction specify the operation as follows:

Code | Caches | Name Operation

0 | Index Invalidate | Set the cache state of the cache block to Invalid.
Index_Invalidate_| writes the physical address of the
cache op into the tag when it clears the valid bit, which
is different from the R4000.

0 D Index Write- Examine the cache state and W bit of the primary data
Back Invalidate | cache block at the index specified by the virtual
address. If the state is not Invalid and the W bit is set,
then write back the block to memory. The address to
write is taken from the primary cache tag. Set cache
state of primary cache block to Invalid.

1 I, D Index Load Tag | Read the tag for the cache block at the specified index
and place it into the TagLo CPO registers, ignoring par-
ity errors. Also load the data parity bits into the ECC

register.
2 I, D Index Store Tag | Write the tag for the cache block at the specified index
from the TagLo and TagHi CPO registers.
3 D Create Dirty This operation is used to avoid loading data needlessly
Exclusive from memory when writing new contents into an entire

cache block. If the cache block does not contain the
specified address, and the block is dirty, write it back
to the memory. In all cases, set the cache block tag to
the specified physical address, set the cache state to
Dirty Exclusive.

4 I, D Hit Invalidate If the cache block contains the specified address, mark
the cache block invalid.
5 D Hit WriteBack If the cache block contains the specified address, write
Invalidate back the data if it is dirty, and mark the cache block
invalid.
5 | Fill Fill the primary instruction cache block from memory.

If the CE bit of the Status register is set, the contents of
the ECC register is used instead of the computed parity
bits for addressed doubleword when written to the
instruction cache. Uses bit 13 to pick the set.

6 D Hit WriteBack If the cache block contains the specified address, and
the W bit is set, write back the data to memory and
clear the W bit.

6 | Hit WriteBack If the cache block contains the specified address, write
back the data unconditionally.

Operation:

T:  VvAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
CacheOp (op, vAddr, pAddr)

Exceptions:
Coprocessor unusable exception
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M Control F
CFCz O\é%pfoncégsoﬁom CFCz

31 26 25 21 20 16 15 11 10 0
COPz CF rt rd 0
0100xx* 00010 00000
6 5 5 5 11
Format:
CFCzrt, rd

Description:
The contents of coprocessor control register rd of coprocessor unit z are

loaded into general register rt.
This instruction is not valid for CPO.

Operation:

T: data — (CCR[z,rd]3;)%? || CCRIz,rd]
T+1: GPR[rt] ~ data

Exceptions:
Coprocessor unusable exception

*Opcode Bit Encoding:

CFCZ Bit#31 30 29 28 27 26 25 24 23 22 21 0
crerl 0 1]ofofof1jofofofr]of |
Bit#31 30 29 28 27 26 25 24 23 22 21 0
crea| 021 ]0fol1fojofofof1fo] |

- _

N
Opcode | Coprocessor Suboperation
Coprocessor Unit Number
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COPz

Coprocessor Operation CO PZ

31 26 25 24 0
COPz CcO cofun
0100xx*| 1
6 1 25
Format:
COPz cofun

Description:

A coprocessor operation is performed. The operation may specify and
reference internal coprocessor registers, and may change the state of the
coprocessor condition line, but does not modify state within the processor
or the cache/memory system. Details of coprocessor operations are
contained in Appendix B.

Operation:

T: CoprocessorOperation (z, cofun)

Exceptions:
Coprocessor unusable exception
Coprocessor interrupt or Floating-Point Exception

*Opcode Bit Encoding:

CopP2

COP2z gijt# 3130 29 28 27 26 25 0

copoL 0] 1] 0]0 [0] 0] |

Bit # 3130 29 28 27 26 25 0

cop1| 0] 1] 0]ofo]1]1 |

Bit# 3130 29 28 27 26 25 0

0| 1]0]o

1]0

1 |

%/—/

Opcode

=

|_ t CO sub-opcode (see end of Appendix A)
C

oprocessor Unit Number
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CTCz

Move Control to Coprocessor

CTCz

Description:

31 26 25 21 20 16 15 11 10 0
COPz CT rt rd 0
0100xx* 00110 000 0000O0O0O0O
6 5 5 5 11
Format:
CTCzrt, rd

The contents of general register rt are loaded into control register rd of
coprocessor unit z.
This instruction is not valid for CPO.

Operation:

T:

data — GPR]rt]

T+ 1: CCR[z,rd] - data

Exceptions:

Coprocessor unusable
NOTE: *See “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.
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DADD

Doubleword Add

DADD

DADD rd, rs, rt

Description:

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs it rd 0 DADD
000000 00000 101100

6 5 5 5 5 6
Format:

The contents of general register rs and the contents of general register
rt are added to form the result. The result is placed into general register rd.
An overflow exception occurs if the carries out of bits 62 and 63 differ
The destination register rd is not modified
when an integer overflow exception occurs.

(2's complement overflow).

Operation:

T:

GPR[rd] —~ GPR[rs] + GPR]rt]

Exceptions:

Integer overflow exception
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DADD| Doubleword Add Immediate DADDI

31 26 25 21 20 16 15 0
DADDI s r immediate
011000
6 5 5 16
Format:

DADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of
general register rs to form the result. The result is placed into general
register rt.

An overflow exception occurs if carries out of bits 62 and 63 differ (2's
complement overflow). The destination register rt is not modified when an
integer overflow exception occurs.

Operation:

T:  GPRIr] — GPR]rs] + (immediate;5)*® || immediate;s o

Exceptions:
Integer overflow exception
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DADDIU

Doubleword Add
Immediate Unsigned

DADDIU

DADDIU rt, rs, immediate

Description

31 26 25 21 20 16 15 0
DADDIU rs rt immediate
011001
6 5 5 16
Format:

The 16-bit immediate is sign-extended and added to the contents of
general register rs to form the result. The result is placed into general
register rt. No integer overflow exception occurs under any circumstances.

The only difference between this

instruction and the DADDI

instruction is that DADDIU never causes an overflow exception.

Operation:

T:

GPR [r] —« GPR[rs] + (immediate;5)*® || immediate;s

Exceptions:
None
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DADDU Doubleword Add Unsigned

DADDU

DADDU rd, rs, rt

Description:

31 26 25 21 20 16 15 11 10 6 0
SPECIAL rs rt rd 0 DADDU
000000 00000 101101
6 5 5 5 5 6

Format:

The contents of general register rs and the contents of general register
rt are added to form the result. The result is placed into general register rd.
No overflow exception occurs under any circumstances.
The only difference between this instruction and the DADD instruction
is that DADDU never causes an overflow exception.

Operation:

T:

GPR[rd] - GPR][rs] + GPR]rt]

Exceptions:

None
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DDIV Doubleword Divide DDIV

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DDIV
000000 00 0000 00O0O 011110
6 5 5 10 6
Format:
DDIV rs, rt

Description:

The contents of general register rs are divided by the contents of
general register rt, treating both operands as 2's complement values. No
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to
check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result
is loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

Operation:
T-2: LO « undefined
HI  « undefined
T-1: LO < undefined
HI < undefined
T: LO < GPRJrs] div GPRJrt]
HI <« GPR[rs] mod GPR]rt]
Exceptions:
None
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DDIVU

Doubleword Divide Unsigned

DDIVU

31 26 25 21 20 16 15 5 0
SPECIAL rs rt 0 DDIVU
000000 000000 O0O0O0O 011111
6 5 5 10 6

Format:
DDIVU rs, rt

Description:

The contents of general register rs are divided by the contents of
general register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to
check for a zero divisor.

When the operation completes, the quotient word of the double result
is loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

Operation:
T-2: LO < undefined
HI  « undefined
T-1: LO < undefined
HI  « undefined
T: LO < (0] GPR[rs]) div (0 || GPR[rt])
HI  « (0 ]| GPR[rs]) mod (O || GPR]rt])
Exceptions:
None
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DIV Divide DIV

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DIV
000000 00 0000O0O0O0O 011010
6 5 5 10 6
Format:
DIV rs, rt

Description:

The contents of general register rs are divided by the contents of
general register rt, treating both operands as 2's complement values. No
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

The operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to
check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result
is loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

Operation:
T-2: LO ~ undefined
HI ~ undefined
T-1: LO ~ undefined
HI ~ undefined
T: q ~ GPR]rs]3; o div GPR]rt]3; g
r ~ GPR |'25]3l__0 mod GPR[rt]31__0
LO - (‘131)32 | d31..0
HI < (r31)°° Il r31.0
Exceptions:
None
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DIVU

Divide Unsigned D|VU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DIVU
000000 000000 O0O0O0O 011011
6 5 5 10 6
Format:
DIVU rs, rt

Description:

The contents of general register rs are divided by the contents of
general register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

The operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to
check for a zero divisor.

When the operation completes, the quotient word of the double result
is loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

Operation:
T-2: LO < undefined
HlI  « undefined
T-1: LO < undefined
HlI < undefined

T. g < (0| GPRIrs]z; ) div (O || GPR]rt]31 o)
e A (?%ZPR[fS]sl..o) mod (0 || GPR]rt]3; o)
LO « (gz1) Il d31.0
HIE (1307 [l r31.0

Exceptions:
None
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Doubleword Move From
DMFCO System Control Coprocessor DMFCO

31 26 25 21 20 16 15 11 10 0
COPO DMF rt rd 0
010000 00001 000 0000 0OO0OO0
6 5 5 5 11
Format:
DMFCO rt, rd

Description:

The contents of coprocessor register rd of the CPO are loaded into
general register rt.

This operation is defined in kernel mode regardless of the setting of the
Status.KX bit. Execution of this instruction with in supervisor mode with
Status.SX = 0 or in user mode with UX = 0, causes a reserved instruction
exception. All 64-bits of the general register destination are written from
the coprocessor register source. The operation of DMFCO on a 32-bit
coprocessor O register is undefined.

Operation:

T: data — CPR[O0,rd]
T+1: GPR][rt] — data

Exceptions:

Coprocessor unusable exception

Reserved instruction exception for supervisor mode with Status.SX =0
or user mode with Status.UX = 0.
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Doubleword Move To
DMTCO System Control Coprocessor DMTCO

31 26 25 21 20 16 15 11 10 0
COPO DMT rt rd 0
010000 00101 000 0000 OOOO
5 5 5 11
Format:
DMTCO rt, rd

Description:

The contents of general register rt are loaded into coprocessor register
rd of the CPO.

This operation is defined in kernel mode regardless of the setting of the
Status.KX bit. Execution of this instruction with in supervisor mode with
Status.SX = 0 or in user mode with UX = 0O, causes a reserved instruction
exception.

All 64-bits of the coprocessor O register are written from the general
register source. The operation of DMTCO on a 32-bit coprocessor O register
is undefined.

Because the state of the virtual address translation system may be
altered by this instruction, the operation of load instructions, store
instructions, and TLB operations immediately prior to and after this
instruction are undefined.

Operation:

T: data — GPRJrt]
T+1: CPRI[O,rd] — data

Exceptions:
Reserved instruction exception for supervisor mode with Status.SX =0
or user mode with Status.UX = 0.
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DOMULT Doubleword Multiply DMULT
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DMULT
000000 00 0000O0O0O0O 011100
6 5 5 10 6
Format:
DMULT rs, rt

Description:
The contents of general registers rs and rt are multiplied, treating both
operands as 2's complement values. No integer overflow exception occurs

under any circumstances.

When the operation completes, the low-order word of the double result
is loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.

Operation:

T-2: LO
HI

HI

LO
Hl

undefined
undefined
undefined
undefined
GPR(rs] * GPR]rt]
— tg3.0

< 1127, 64

Tt

1

Exceptions:
None
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DMULTU  PUPigngrs Mitey DMULTU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DMULTU
000000 00 0000O0O0O0O 011101
6 5 5 10 6
Format:

DMULTU rs, rt

Description:

The contents of general register rs and the contents of general register
rt are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances.

When the operation completes, the low-order word of the double result
is loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two instructions.

Operation:

T-2: LO « undefined
HIl — undefined
T-1: LO ~ undefined
HI — undefined
T: t « (0] GPRJrs]) * (0 || GPR[rt])
O « t63.0
HI 1157 64

Exceptions:
None
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DSLL Doubleword Shift Left Logical DSLL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSLL
000000 00000 111000
6 5 5 5 5 6

Format:

DSLL rd, rt, sa
Description:

The contents of general register rt are shifted left by sa bits, inserting
zeros into the low-order bits. The result is placed in register rd.

Operation:

T. s<0]sa
GPR[rd] - GPR[rt](63_S)__O ” 0°

Exceptions:
None
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DSLLV

Doubleword Shift Left

Logical Variable

DSLLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSLLV
000000 00000 010100
6 5 5 5 5

Format:
DSLLV rd, rt, rs
Description:

The contents of general register rt are shifted left by the number of bits
specified by the low-order six bits contained in general register rs, inserting
zeros into the low-order bits. The result is placed in register rd.

Operation:
T: s « GPR[rsls g
GPR[rd]<— GPR[I’t](63_S)“0 ” OS
Exceptions:
None
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DSLL32

Doubleword Shift Left

DSLL32

Description:

Logical + 32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSLL32
000000 00000 111100
6 5 5 5 5 6
Format:
DSLL32 rd, rt, sa

The contents of general register rt are shifted left by 32+sa bits,
inserting zeros into the low-order bits. The result is placed in register rd.

Operation:
T: s« 1| sa
GPR[rd] — GPR[I’t](Gg_S)“O ” oS
Exceptions:
None
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Doubleword
DSRA Shift Right Arithmetic DSRA
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRA
0000O00O 00000 111011
6 5 5 5 5 6
Format:

DSRA rd, rt, sa

Description:
The contents of general register rt are shifted right by sa bits, sign-
extending the high-order bits. The result is placed in register rd.

Operation:
T: s 0]l sa
GPR[rd] « (GPRIrt]g3)° || GPRI[rt] 63 s
Exceptions:
None
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DSRAV

Doubleword Shift Right
Arithmetic Variable

DSRAV

DSRAV rd, rt, rs

Description

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSRAV
000000 00000 010111
6 5 5 5 5 6
Format:

The contents of general register rt are shifted right by the number of
bits specified by the low-order six bits of general register rs, sign-extending
the high-order bits. The result is placed in register rd.

Operation:

T: s < GPRIrs]5 o
GPR[rd] ~ (GPR(rt]g3)° || GPRIrile3_s

Exceptions:
None
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DSRA32 oo " DSRA32

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRA32
000000 00000 111111
6 5 5 5 5 6
Format:

DSRA32 rd, rt, sa

Description:
The contents of general register rt are shifted right by 32+sa bits, sign-
extending the high-order bits. The result is placed in register rd.

Operation:
T: s 1| sa
GPR[rd] - (GPR[rt]63)S ” GPR[rt] 63..S
Exceptions:
None
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DSRL Doubleword DSRL
Shift Right Logical
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRL
000000 00000 111010
6 5 5 5 5 6
Format:

DSRL rd, rt, sa
Description:

The contents of general register rt are shifted right by sa bits, inserting
zeros into the high-order bits. The result is placed in register rd.

Operation:

T: s < 0]l sa
GPR[rd] « 0° || GPR]rt]g3

Exceptions:
None
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Doubleword Shift Right
:)SRLV Logical Variable DSRLV
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSRLV
000000 00000 010110
6 5 5 5 5 6
Format:

DSRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of
bits specified by the low-order six bits of general register rs, inserting zeros
into the high-order bits. The result is placed in register rd.

Operation:

T: S « GPRJrs]s g
GPR[rd] « 0° || GPR[rtls3 s

Exceptions:
None
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Doubl d Shift Right
DSRL32 "ogicairz2 ° DSRL32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRL32
000000 00000 111110
6 5 5 5 5 6
Format:

DSRL32 rd, rt, sa

Description:
The contents of general register rt are shifted right by 32+sa bits,
inserting zeros into the high-order bits. The result is placed in register rd.

Operation:
T: s« 1| sa
GPRI[rd] « 0° || GPR{rtls3_s
Exceptions:
None
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DSUB Doubleword Subtract DSUB

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSUB
000000 00000 101110
6 5 5 5 5 6

Format:

DSUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd.

The only difference between this instruction and the DSUBU
instruction is that DSUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 62
and 63 differ (2's complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.

Operation:

T: GPRJ[rd] —~ GPR]rs] — GPR]rt]

Exceptions:
Integer overflow exception
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DSU BlJ Doubleword Subtract Unsigned )SU B U

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSUBU
000000 00000 101111

6 5 5 5 5
Format:

DSUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd.

The only difference between this instruction and the DSUB instruction
is that DSUBU never traps on overflow. No integer overflow exception
occurs under any circumstances.

Operation:

T: GPR[rd] —~ GPR][rs] — GPR][rt]

Exceptions:
None
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ERET Exception Return ERE
31 26 2524 65 0
COPO CcO 0 ERET
010000 1 000 000000000000 O0OO0O0OO 011000
6 1 19 6

Format:
ERET

Description:

ERET is the R4600 instruction for returning from an interrupt,
exception, or error trap. Unlike a branch or jump instruction, ERET does
not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR, = 1), then load the PC
from the ErrorEPC and clear the ERL bit of the Status register (SR,).
Otherwise (SR, = 0), load the PC from the EPC, and clear the EXL bit of the
Status register (SR,).

An ERET executed between a LL and SC also causes the SC to fail.

Operation:

T: if SRy, =1then

PC ~ ErrorEPC

SR « SR3; 31| 0] SRy o
else

PC - EPC

SR« SRa1. 211011 SRo
endif
LLbit « O

Exceptions:
Coprocessor unusable exception
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J Jump J
31 26 25 0
J target
000010
6 26
Format:
J target

Description:

The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction.

Operation:

T: temp ~ target
T+1: PC « PCG3..28 || temp ” 02

Exceptions:
None
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JAL

Jump And Link JAL

31 26 25 0
JAL target
000011
6 26
Format:
JAL target

Description:

The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction. The address of the instruction after the delay slot is placed in
the link register, r31.

Operation:

T: temp ~ target
GPR[31] - PC +8
T+l: PC « PC g3 og || temp || 07

Exceptions:
None
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JALR Jump And Link Register JALR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs 0 rd 0 JALR
000000 00000 00000 001001
6 5 5 5 5 6

Format:
JALR rs
JALR rd, rs

Description:

The program unconditionally jumps to the address contained in
general register rs, with a delay of one instruction. The address of the
instruction after the delay slot is placed in general register rd. The default
value of rd, if omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an
instruction does not have the same effect when re-executed. However, an
attempt to execute this instruction is not trapped, and the result of
executing such an instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register
instruction must specify a target register (rs) whose two low-order bits are
zero. If these low-order bits are not zero, an address exception will occur
when the jump target instruction is subsequently fetched.

Operation:
T: temp — GPR [rs]
GPR[rd] -« PC +8
T+1: PC ~ temp
Exceptions:
None
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JR Jump Register JR

31 26 25 2120 65 0
SPECIAL rs 0 JR
000000 000 0000 O0OO0OOOOOO 001000
6 5 15 6
Format:
JR rs

Description:

The program unconditionally jumps to the address contained in
general register rs, with a delay of one instruction.

Since instructions must be word-aligned, a Jump Register instruction
must specify a target register (rs) whose two low-order bits are zero. If these
low-order bits are not zero, an address exception will occur when the jump
target instruction is subsequently fetched.

Operation:
T: temp —~ GPR]rs]
T+1: PC  temp
Exceptions:
None
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B Load Byte LB
31 26 25 21 20 16 15 0
LB base rt offset
100000
6 5 5 16
Format:

LB rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are sign-extended and
loaded into general register rt.

Operation:

T:  VvAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze _1 3|l (PAddr, o xor ReverseEndian®)
mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, (xor BigEndianCPU?

GPR[rt] (mem7+8*byte)56 I memz.gsbyte. g*byte

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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LBU rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are zero-extended and

loaded into general register rt.

Operation:

Appendix A
_BU Load Byte Unsigned LBU
31 26 25 21 20 16 15
LBU base rt offset
100100
6 5 5 16
Format:

vAddr — ((offset;5)*® || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpsze _ 1 3 || (PAddr, o xor ReverseEndian®)
mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte — vAddr, ¢ xor BigEndianCPU3
GPRIrt] — 0%6 [| memz.g« pyte. 8 byte

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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LD Load Doubleword LD
31 26 25 21 20 16 15 0
LD base rt offset
110111
6 5 5 16
Format:

LD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the 64-bit
doubleword at the memory location specified by the effective address are
loaded into general register rt.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception occurs.

Operation:

T:  vAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] - mem

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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| DCz Load Doubleword To Coprocessor | _.[DCzZ
31 2625 2120 16 15 0
LDCz base rt offset
1101xx*
6 5 5 16
Format:

LDCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The processor reads a doubleword
from the addressed memory location and makes the data available to
coprocessor unit z. The manner in which each coprocessor uses the data
is defined by the individual coprocessor specifications.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This instruction is not valid for use with CPO.

This instruction is undefined when the least-significant bit of the
rt field is non-zero.

Execution of the instruction referencing coprocessor 3 causes a
reserved instruction exception, not a coprocessor unusable exception.

NOTE: *See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

Operation:

VAddr — ((offset;5)*8 || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COPzLD (rt, mem)

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Coprocessor unusable exception
Reserved instruction exception (coprocessor 3)

Opcode Bit Encoding:

LDCz

Bit#31 30 29 28 27 26 0

el L] 1]of1]of1] |

Bit#31 30 29 28 27 26 0

LDCZL1|1 ol1]1]o0| |
o@aje Coprocessor Unit Number
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I_DI_ Load Doubleword Left LDL

31 26 25 21 20 1615 0
LDL base rt offset
011010
6 5 5 16
Format:

LDL rt, offset(base)

Description:

This instruction can be used in combination with the LDR instruction
to load a register with eight consecutive bytes from memory, when the
bytes cross a doubleword boundary. LDL loads the left portion of the
register with the appropriate part of the high-order doubleword; LDR loads
the right portion of the register with the appropriate part of the low-order
doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents
of general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the doubleword in memory which
contains the specified starting byte. From one to eight bytes will be loaded,
depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that
byte into the high-order (left-most) byte of the register; then it loads bytes
from memory into the register until it reaches the low-order byte of the
doubleword in memory. The least-significant (right-most) byte(s) of the
register will not be changed.

memory
(big-endian)

address 8 81 9/10|11|{12|13|14]|15
address0 |01 2112345 6| 7| before[A[B|C|D[E|F|G[H|s$24

register

LDL $24,3(30)
after [3]4]5]6[7][F|G[H]| s$24

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDL (or LDR)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.
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Operation:

T:  VAddr — ((offset;5)*8 || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1 3 || (PAddr, g xor ReverseEndian3)

if BigEndianMem = 0 then
pAddr — pAddrpgze_1 31l 0°
endif
byte — VAddr, ¢ xor BigEndianCPU3
mem ~ LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPR[rt] — memz.g«pyte. o || GPRIrs5 gpyte..0

Given a doubleword in a register and a doubleword in memory, the
operation of LDL is as follows:

LDL

Register A B C D E F G H

Memory | J K L M N O P
BigEndianCPU =0 BigEndianCPU =1
vAddr,_ o destination type offset destination type offset
LEM BEM LEM BEM
0 PBCDEFGH| O 0O 7 |1 J KLMNOP| 7 0O O
1 OPCDEFGH| 1 0 6 | JKLMNOPH| 6 0 1
2 NOPDEFGH| 2 0 5 |KLMNOPGH| 5 0o 2
3 MNOPEFGP| 3 0 4 |[LMNOPFGH]| 4 0 3
4 L MNOPFGH| 4 0 3 |MNOPEFGH| 3 0 4
5 KLMNOPGH| 5 0 2 |[NOPDEFGH| 2 0 5
6 J KL MNOPH| 6 0 1 |OPCDEFGH| 1 0O 6
7 I JKLMNOP| 7 0O O |[PBCDEFGH| O o 7
LEMLittle-endian memory (BigEndianMem = 0)
BEMBigEndianMem = 1
TypeAccessType (see Table 2.1 on page 3) sent to memory
OffsetpAddr,_g sent to memory
Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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DR

Load Doubleword Right I_ DR

31 26 25 21 20 16 15 0
LDR base rt offset
011011
6 5 5 16
Format:

LDR rt, offset(base)

Description:

This instruction can be used in combination with the LDL instruction
to load a register with eight consecutive bytes from memory, when the
bytes cross a doubleword boundary. LDR loads the right portion of the
register with the appropriate part of the low-order doubleword; LDL loads
the left portion of the register with the appropriate part of the high-order
doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which can
specify an arbitrary byte. It reads bytes only from the doubleword in
memory which contains the specified starting byte. From one to eight
bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that
byte into the low-order (right-most) byte of the register; then it loads bytes
from memory into the register until it reaches the high-order byte of the
doubleword in memory. The most significant (left-most) byte(s) of the
register will not be changed.

address 8 819 (10 (111213 |14 |15
address0 [0 |1 ]2 |3]|4|5]|6]|7 before| A| B| C| D| E| F| G| H| $24

memory

(big-endian) register

LDR $24,4($0)
register

after [alB[clo]1]2]3]4] %24

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDR (or LDL)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.
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Operation:

T:  VvAddr  ((offset;5)*8 || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1.3 || (PAddr, o xor ReverseEndian®)

if BigEndianMem = 1 then
pAddr — pAddrs; 3| 03
endif
byte — vAddr, ¢ xor BigEndianCPU?3
mem ~ LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPRIrt] — GPRIrtlg3_g4-g+vyte || MeMg3_grbyte

Given a doubleword in a register and a doubleword in memory, the
operation of LDR is as follows:

LDR
Register | A | B | C| D | E| F | G| H
Memory I J K L M N o P
BigEndianCPU =0 BigEndianCPU = 1
vAddr; g destination type offset destination type offset
LEM BEM LEM BEM
0 Il JKLMNOP| 7 0 0 |ABCDEFGI 0 7 0
1 Al J KL MNO| 6 1 0 ABCDEFI J 1 6 0
2 ABIl JKLMN| 5 2 0 |ABCDEI J K| 2 5 0
3 ABCIJKLM 4 3 0 |ABCDI JKL| 3 4 0
4 ABCDI JKL| 3 4 0 ABCI JKL M| 4 3 0
5 ABCDEI JK| 2 5 0 |ABIl JKLMN]| 5 2 0
6 ABCDEFI J| 1 6 0 |AI JKLMNO| 6 1 0
7 ABCDEFGI 0 7 0 I J KLMNOP| 7 0 0
LEMLittle-endian memory (BigEndianMem = 0)
BEMBigEndianMem = 1
TypeAccessType (see Table 2.1 on page 3) sent to memory
OffsetpAddr,_ g sent to memory
Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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H Load Halfword |_ |—
31 26 25 21 20 16 15 0
LH base rt offset
100001
6 5 5 16
Format:

LH rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are sign-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an
address error exception occurs.

Operation:

T:  vAddr — ((offset;5)*8 || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize — 1. 3 || (pPAddr, o xor (ReverseEndian || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU? || 0)
GPR[rt] ~ (mem15+8*byte)16 || memqs.gepyte. 8 byte

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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_HU

Load Halfword Unsigned

LHU

LHU rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are zero-extended and
loaded into general register rt.
If the least-significant bit of the effective address is non-zero, an
address error exception occurs.

Operation:

31 26 25 21 20 16 15 0
LHU base rt offset
100101
6 5 5 16
Format:

T:

VAddr — ((offset;5)*® || offset;5 o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgze _ 1 3 || (PAddr, o xor (ReverseEndian? || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigEndianCPU? || 0)

GPRIM] « 0% || mems.guyte. sryte

Exceptions:
TLB refill exception
TLB invalid exception
Bus Error exception
Address error exception
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| Load Linked | L
31 26 25 21 20 16 15 0
LL base rt offset
110000
6 5 5 16
Format:

LL rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. The loaded word is sign-extended.

This instruction implicitly performs a SYNC operation; all loads and
stores to shared memory fetched prior to the LL must access memory
before the LL, and loads and stores to shared memory fetched subsequent
to the LL must access memory after the LL. The processor begins checking
the accessed word for modification by other processors and devices.

Load Linked and Store Conditional can be used to atomically update
memory locations as shown:

L1:

LL T1, (TO)
ADD T2, 71,1
SC T2, (TO)
BEQ T2,0, L1
NOP

This atomically increments the word addressed by TO. Changing the
ADD to an OR changes this to an atomic bit set.

This instruction is available in User mode, and it is not necessary for
CPO to be enabled.

The operation of LL is undefined if the addressed location is uncached
and, for synchronization between multiple processors, the operation of LL
is undefined if the addressed location is noncoherent. A cache miss that
occurs between LL and SC may cause SC to fail, so no load or store
operation should occur between LL and SC, otherwise the SC may never
be successful. Exceptions also cause SC to fail, so persistent exceptions
must be avoided.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception takes place.
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Operation:

T:  vAddr — ((offset;s)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze.1. 3 || (PAddr, o xor (ReverseEndian || 0?))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, ¢ xor (BigEndianCPU || 0%)
GPRIM] « (MeMgy1.geyte)>” || MEMg1.gupyte. gtbyte
LLbit « 1
SyncOperation()

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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LLD Load Linked Doubleword LLD
31 26 25 21 20 16 15 0
LLD base rt offset
110100
6 5 5 16
Format:

LLD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the doubleword at
the memory location specified by the effective address are loaded into
general register rt.

This instruction implicitly performs a SYNC operation; all loads and
stores to shared memory fetched prior to the LLD must access memory
before the LLD, and loads and stores to shared memory fetched
subsequent to the LLD must access memory after the LLD. The processor
begins checking the accessed doubleword for modification by other
processors and devices.

Load Linked Doubleword and Store Conditional Doubleword can be
used to atomically update memory locations:

L1:

LLD T1, (TO)
ADD T2, T1,1
SCD T2, (TO)
BEQ T2,0, L1
NOP

This atomically increments the word addressed by TO. Changing the
ADD to an OR changes this to an atomic bit set.

The operation of LLD is undefined if the addressed location is
uncached and, for synchronization between multiple processors, the
operation of LLD is undefined if the addressed location is noncoherent. A
cache miss that occurs between LLD and SCD may cause SCD to fail, so
no load or store operation should occur between LLD and SCD, otherwise
the SCD may never be successful. Exceptions also cause SCD to fail, so
persistent exceptions must be avoided.

This instruction is available in User mode, and it is not necessary for
CPO to be enabled.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.
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Operation:

T:  VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR][rt] « mem
LLbit ~ 1
SyncOperation()

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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L UI Load Upper Immediate LU
31 26 25 21 20 16 15 0
LUI 0 rt immediate
001111 | 00000
6 5 5 16
Format:

LUI rt, immediate

Description:
The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits
of zeros. The result is placed into general register rt. The loaded word is

sign-extended.

Operation:

T:  GPR[rt] « (immediate;5)%? || immediate || 0%°

Exceptions:
None
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LW

Load Word LW

31 26 25 21 20 16 15 0
LW base rt offset
100011
6 5 5 16
Format:

LW rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. The loaded word is sign-extended.

If either of the two least-significant bits of the effective address is non-
zero, an address error exception occurs.

Operation:

T:  VvAddr  ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze.1. 3 || (PAddr, g xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, ¢ xor (BigEndianCPU || 0%)
GPR[1t] « (MeMgy.giyte)? || MEMg1.gepyte. srbyte

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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LWCz

Load Word To Coprocessor

LWCz

31 26 25 21 20 16 15 0
LWCz base rt offset
1100xx*
6 5 5 16
Format:

LWCz rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The processor reads a word from
the addressed memory location, and makes the data available to
coprocessor unit z.
The manner in which each coprocessor uses the data is defined by the
individual coprocessor specifications.
If either of the two least-significant bits of the effective address is non-

zero, an address error exception occurs.

Opcode Bit Encoding” at the end of Appendix A.

This instruction is not valid for use with CPO.
NOTE: *See the table “Opcode Bit Encoding” on next page, or “CPU Instruction

Operation:

T:

vAddr — ((offset;5)*® || offset;s o) + GPR[base}

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpgize.1 3 || (PAddr, o xor (ReverseEndian || 02))

mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU || 0%)

COPzLW (byte, rt, mem)

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

LWCz Bit#31 30 29 28 27 26 0
twerl 11 o0j0o] 0|1
Bit#31 30 29 28 27 26 0
lwe2l 1/1lojo|1]o
J =
~N" _
Opcode Coprocessor Unit Number
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L. WL Load Word Left LWL
31 26 25 21 20 16 15 0
LWL base rt offset
100010
6 5 5 16
Format:

LWL rt, offset(base)

Description:

This instruction can be used in combination with the LWR instruction
to load a register with four consecutive bytes from memory, when the bytes
cross a word boundary. LWL loads the left portion of the register with the
appropriate part of the high-order word; LWR loads the right portion of the
register with the appropriate part of the low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which can
specify an arbitrary byte. It reads bytes only from the word in memory
which contains the specified starting byte. From one to four bytes will be
loaded, depending on the starting byte specified. The loaded word is sign-
extended.

Conceptually, it starts at the specified byte in memory and loads that
byte into the high-order (left-most) byte of the register; then it loads bytes
from memory into the register until it reaches the low-order byte of the
word in memory. The least-significant (right-most) byte(s) of the register
will not be changed.

memocrjy
i (big-endian) register
address 4| 4 5 6 7
addresso| o] 1] 2] 3 before| A| B| C| D| $24

LWL $24,1($0)

ater [1] 2] 3] D] s24

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWL (or LWR)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.
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Operation:

T:  VvAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1. 3 || (PAddr, g xor ReverseEndian3)
if BigEndianMem = 0 then

pAddr  pAddrpgze_; 31l 0°

endif
byte — vAddr; o xor BigEndianCPU?
word ~ vAddr, xor BigEndianCPU
mem ~ LoadMemory (uncached, O || byte, pAddr, vAddr, DATA)
temp — Memgy.+324word-g*byte..32*word Il GPRIM]23.g4pyte .0
GPRI[rt] — (temps;)%? || temp

Given a doubleword in a register and a doubleword in memory, the
operation of LWL is as follows:

LWL
Register A B C D E F G H
Memory | J K L M N (@] P
BigEndianCPU =0 BigEndianCPU =1
vAddr, g destination type offset destination type offset
LEM BEM LEM BEM
0 SSSSPFGH| O 0 7 |SSSSIJKL| 3 4 0
1 SSSSOPGH| 1 0 6 |[SSSSJKLH|l 2 4 1
2 S SSSNOPH| 2 0 5 |SSSSKLGH| 1 4 2
3 SSSSMNOP| 3 0 4 |SSSSLFGH| O 4 3
4 SSSSLFGH| O 4 3 |[SSSSMNOP| 3 0 4
5 S SSSKLGH| 1 4 2 |[SSSSNOPH| 2 0 5
6 SSSSJKLH|l 2 4 1 [SSSSOPGH| 1 0 6
7 SSSSI JKL| 3 4 0 |[SSSSPFGH| O o 7
Key to table:
LEMLittle-endian memory (BigEndianMem = 0)
BEMBigEndianMem = 1
TypeAccessType (see Table 2.1 on page 3) sent to memory
OffsetpAddr,_g sent to memory
Ssign-extend of destinations;
Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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L WR

Load Word Right LWR

31

26 25 21 20 16 15 0

LWR

100110

base rt offset

6

Format:
LWR rt, offset(base)

Description:

This instruction can be used in combination with the LWL instruction
to load a register with four consecutive bytes from memory, when the bytes
cross a word boundary. LWR loads the right portion of the register with
the appropriate part of the low-order word; LWL loads the left portion of
the register with the appropriate part of the high-order word.

The LWR instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which can
specify an arbitrary byte. It reads bytes only from the word in memory
which contains the specified starting byte. From one to four bytes will be
loaded, depending on the starting byte specified. The loaded word is sign-
extended.

Conceptually, it starts at the specified byte in memory and loads that
byte into the low-order (right-most) byte of the register; then it loads bytes
from memory into the register until it reaches the high-order byte of the
word in memory. The most significant (left-most) byte(s) of the register will
not be changed.

address 4
address 0

memory
(big-endian)

4] 5] 6] 7
o 1] 2] 3

register
before | A| B| C| D| so4

LWR $24,4($0)

after | A| B| C| 4|

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWR (or LWL)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.
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Operation:

T:  vAddr — ((offset;5)*®|| offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1 3 || (PAddr, g xor ReverseEndian®)
if BigEndianMem = 1 then
pPAddr — pAddrpgizg_3; 31l 0°
endif
byte — vAddr; o xor BigEndianCPU?
word ~ vAddr, xor BigEndianCPU
mem ~ LoadMemory (uncached, O || byte, pAddr, vAddr, DATA)

temp — GPRIrt]31. 35 g+nyte..0 || MEM31+324w0rd-325word+8*byte
GPRIrt] — (temps;)°< || temp

Given a word in a register and a word in memory, the operation of LWR

is as follows:
LWR
Register| A | B | c|D|E|F |G| H|
Memory | 1 [J [ k| L] mM|N]oO]P|
BigEndianCPU =0 BigEndianCPU =1
vAddr; g destination type offset destination type offset
LEM BEM LEM BEM
0 SSSSMNOP| O 0 4 |SSSSEFGI 0 7 0
1 SSSSEMNO| 1 1 4 |[SSSSEFI J| 1 6 O
2 S SSSEFMN| 2 2 4 |SSSSEI JK| 2 5 0
3 SSSSEFGM| 3 3 4 |SSSSI JKL| 3 4 0
4 SSSSI JKL| O 4 0 |SSSSEFGM O 3 4
5 SSSSEI JK| 1 5 0 |SSSSEFMN| 1 2 4
6 SSSSEFI J| 2 6 0 |SSSSEMNO| 2 1 4
7 S SSSEFGI 3 7 0 |SSSSMNOP| 3 0 4
Key to table:

LEMLittle-endian memory (BigEndianMem = 0)
BEMBIigEndianMem = 1

TypeAccessType (see Table 2.1 on page 3) sent to memory
OffsetpAddr,_g sent to memory

Ssign-extend of destinationg;

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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L WU

Load Word Unsigned

LWU

LWU rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general

register rt. The loaded word is zero-extended.

zero, an address error exception occurs.

31 26 25 21 20 16 15 0
LwWu base rt offset
101111
6 5 5 16
Format:

If either of the two least-significant bits of the effective address is non-

Operation:

T:

VAddr — ((offset;5)*® || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrps 7.1 3 || (PAddr, o xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigEndianCPU || 02)

GPRIrt] « 032 || memsy.+genyte. g=byte

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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Move From
M FCO System Con\t/rol Coprocessor M FCO

31 26 25 21 20 16 15 11 10 0
COPO MF rt rd 0
010000 00000 000 0000O0O0O0O
6 5 5 5 11
Format:
MFCO rt, rd
Description:

The contents of coprocessor register rd of the CPO are loaded into
general register rt. May be used on both 32-bit and 64-bit CPO registers.

Operation:

T. data - CPR[O,rd]
T+1: GPR[rt]  (datag;)®? || datag;

Exceptions:
Coprocessor unusable exception
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MFCz Move From Coprocessor MFCz

31 26 25 21 20 16 15 11 10 0
COPz MF rt rd 0
0100xx* 00000O 000 0000O0O0O0O
6 5 5 5 11

Note: *See the table “Opcode Bit Encoding” on next page, or “CPU
Instruction Opcode Bit Encoding” at the end of Appendix A.

Format:
MFCz rt, rd

Description:

The contents of coprocessor register rd of coprocessor z are loaded into
general register rt.

Execution of the instruction referencing coprocessor 3 causes a
reserved instruction exception, not a coprocessor unusable exception.

Operation:

T if rdg = 0 then
data « CPR[z,rd4_1 ” 0131“0
else
data « CPR[z,rd4_'1 ” 0]63..32
endif
T+1: GPRI[r] — (datag;)®? || data

Exceptions:
Coprocessor unusable exception
Reserved instruction exception (coprocessor 3)

Opcode Bit Encoding:

MFCZ Bit#31 30 29 28 27 26 25 24 23 22 21 0

MECO 0 1 0 0 0 0 0 0 0 0 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0

MEC1 0 1 0 0 0 1 0 0 0 0 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0

MEC2 0 1 0 0 1 0 0 0 0 0 0

\— _/
N N ]
Opcode | Coprocessor Suboperation
Coprocessor Unit Number
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MFHI

Move From Hi

MFEHI

Description:

31 26 25 16 15 11 10 0
SPECIAL 0 rd 0 MFHI
000000 [OOOOOOOOOO 00000 010000

6 10 5 5 6
Format:
MFHI rd

The contents of special register HI are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two
instructions which follow a MFHI instruction may not be any of the
instructions which modify the HI register: MULT, MULTU, DIV, DIVU,
MTHI, DMULT, DMULTU, DDIV, DDIVU.

Operation:

T:

GPRI[rd] — HI

Exceptions:
None
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MFLO

Move From Lo MFLO

Description:

31 26 25 16 15 11 10 6 5 0
SPECIAL 0 rd 0 MFLO
000000 [OO0OO0OO0OOOO0O 00000 010010

6 10 5 5 6
Format:
MFLO rd

The contents of special register LO are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two
instructions which follow a MFLO instruction may not be any of the
instructions which modify the LO register: MULT, MULTU, DIV, DIVU,
MTLO, DMULT, DMULTU, DDIV, DDIVU.

Operation:

GPRI[rd] — LO

Exceptions:
None
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Move To
MTCO System Control Coprocessor MTCO

31 26 25 21 20 16 15 11 10 0
COPO MT rt rd 0
010000 00100 000 0000 OOOO
6 5 5 5 11
Format:
MTCO rt, rd

Description:

The contents of general register rt are loaded into coprocessor register
rd of CPO.

Because the state of the virtual address translation system may be
altered by this instruction, the operation of load instructions, store
instructions, and TLB operations immediately prior to and after this
instruction are undefined.

Operation:
T: data — GPRJrt]
T+1: CPR[O,rd] ~ data
Exceptions:

Coprocessor unusable exception
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Move To Coprocessor

MTC;

MTCZ

26 25 21 20 16 15 11 10
COPz MT rt rd 0
0100xx* 00100 000 0000 0OO0O0O
6 5 5 5 11
Format:
MTCz rt, rd

Description:

The contents of general register rt are loaded into coprocessor register
rd of coprocessor z. Execution of the instruction referencing coprocessor
3 causes a reserved instruction exception, not a coprocessor unusable

exception.

Operation:

Exceptions:

T:

data ~ GPR[rt]31_O
T+1: if rdg = 0
CPR[Z,rd4‘_1 “ 0] — CPR[Z, rd4“1 ” 0]63..32 || data

e

e

Ise

CPR(z,rd4 1 || O] ~ data || CPR[z,rd4_1 || Ol31. 0

ndif

Coprocessor unusable exception
Reserved instruction exception (coprocessor 3)

*Opcode Bit Encoding:

MTCZ Bit#31 30 29 28 27 26 25 24 23 22 21 0
copo| © 1 0 0 0 0 0| O 1 0 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0
cop1| © 1 0 0 0 1 0|0 1 0 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0
cop2| © 1 0 0 1 0 0O 1 0 0
— _/ e
hd ) _
Opcode Coprocessor Unit Number Coprocessor Suboperation
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MTHI Move To HI MTHI

31

26 25 2120 65 0

SPECIAL rs 0 MTHI
000000 000 00000O0O0O0O0OOOO|] O0O100012

6

5 15 6

Format:
MTHI rs

Description:
The contents of general register rs are loaded into special register HI.
If a MTHI operation is executed following a MULT, MULTU, DIV, or
DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register LO are undefined.

Operation:

T-2: HI < undefined

T-1: HI < undefined
T: HI — GPR]rs]

Exceptions:
None
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MTLO Move To LO MTLO
31 26 25 2120 65 0
SPECIAL rs 0 MTLO
oooo00O0 000000000OOOOOOO 010011
6 5 15 6
Format:
MTLO rs

Description:

The contents of general register rs are loaded into special register LO.

If a MTLO operation is executed following a MULT, MULTU, DIV, or
DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register HI are undefined.

Operation:
T-2: LO ~ undefined
T-1: LO ~ undefined
T: LO ~ GPR[rs]
Exceptions:
None
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MULT Multiply MULT

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 MULT
000000 00 0000O0O0O0O 011000
6 5 5 10 6

Format:
MULT rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both
operands as 32-bit 2's complement values. No integer overflow exception
occurs under any circumstances. The operands must be valid 32-bit, sign-
extended values.

When the operation completes, the low-order word of the double result
is loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.

Operation:
T-2: LO ~ undefined
HI ~ undefined
T-1: LO ~ undefined
HI ~ undefined
T: t - GPRgS]KL.O * GPR[rt]31_O
LO - (t31)22 || ta1.0
HI « (t63)°“ || t63..32
Exceptions:
None
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MULTU Multiply Unsigned MULTU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 MULTU
000000 00 0000O0O0O0O 011001
6 5 5 10 6

Format:
MULTU rs, rt

Description:

The contents of general register rs and the contents of general register
rt are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances. The operands must be valid
32-bit, sign-extended values.

When the operation completes, the low-order word of the double result
is loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two instructions.

Operation:
T-2: LO ~ undefined
HI « undefined
T-1:. LO ~ undefined
HI « undefined
Tt - (0 ||3%PR[TS]31..0) * (0 || GPRrt]31.0)
LO < (t30)2 |l t31..0
HI < (t63)7 |l t63..32
Exceptions:
None




CPU Instruction Set Details

Appendix A

NOR Nor NOR
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 NOR
000000 00000 100111
6 5 5 5 5 6
Format:
NOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical NOR operation. The result is placed
into general register rd.

Operation:

T: GPRJ[rd] « GPR[rs] nor GPR]rt]

Exceptions:
None
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OR or OR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 OR
000000 00000 100101
6 5 5 5 5 6
Format:
ORrd, rs, rt

Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical OR operation. The result is placed
into general register rd.

Operation:

T: GPRJ[rd] « GPRJrs] or GPR]rt]

Exceptions:
None

A-100
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ORI

Or Immediate OR|

31 26 25 21 20 16 15 0
ORI rs rt immediate
001101
6 5 5 16
Format:

ORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents
of general register rs in a bit-wise logical OR operation. The result is placed
into general register rt.

Operation:

T: GPR[rt] — GPR]rs]gs. 16 || (immediate or GPR[rs];5 q)

Exceptions:
None

A-101
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SB

Store Byte SB

31 26 25 21 20 16 15 0
SB base rt offset
101000
6 5 5 16
Format:
SB rt, offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The least-significant byte of
register rt is stored at the effective address.

Operation:

T:  VAddr — ((offset;5)* || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze.1 3 |l (PAddr, o xor ReverseEndian®)
byte — vAddr, o xor BigEndianCPU3
data « GPRIrtlg3 gupyte. o | 08"
StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

A-102
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SC Store Conditional SC
31 26 25 21 20 16 15
SC base rt offset
111000
6 5 5 16
Format:

SC rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

This instruction implicitly performs a SYNC operation; loads and
stores to shared memory fetched prior to the SC must access memory
before the SC; loads and stores to shared memory fetched subsequent to
the SC must access memory after the SC.

If any other processor or device has modified the physical address
since the time of the previous Load Linked instruction, or if an ERET
instruction occurs between the Load Linked instruction and this store
instruction, the store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is
indicated by the contents of general register rt after execution of the
instruction. A successful store sets the contents of general register rt to 1;
an unsuccessful store sets it to O.

The operation of Store Conditional is undefined when the address is
different from the address used in the last Load Linked.

This instruction is available in User mode; it is not necessary for CPO
to be enabled.

If either of the two least-significant bits of the effective address is non-
zero, an address error exception takes place.

If this instruction should both fail and take an exception, the exception
takes precedence.

Operation:

T:  vAddr — ((offset;5)*8 || offset;5 o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgzg.1 3 || (pAddr2 o xor (ReverseEndian || 0%))
data ~ GPR[rt]63 8*byte..0 ” O
if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] — 083 | LLbit
SyncOperation()

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
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SCD Store Conditional Doubleword SC D
31 26 25 21 20 16 15 0
SCD base rt offset
111100
6 5 5 16
Format:

SCD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

This instruction implicitly performs a SYNC operation; loads and
stores to shared memory fetched prior to the SCD must access memory
before the SCD; loads and stores to shared memory fetched subsequent to
the SCD must access memory after the SCD.

If any other processor or device has modified the physical address
since the time of the previous Load Linked Doubleword instruction, or if
an ERET instruction occurs between the Load Linked Doubleword
instruction and this store instruction, the store fails and is inhibited from
taking place.

The success or failure of the store operation (as defined above) is
indicated by the contents of general register rt after execution of the
instruction. A successful store sets the contents of general register rt to 1;
an unsuccessful store sets it to O.

The operation of Store Conditional Doubleword is undefined when the
address is different from the address used in the last Load Linked
Doubleword.

This instruction is available in User mode; it is not necessary for CPO
to be enabled.

If either of the three least-significant bits of the effective address is
non-zero, an address error exception takes place.

If this instruction should both fail and take an exception, the exception
takes precedence.

Operation:

vAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
data ~ GPRrt]
if LLbit then
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
endif
GPRI[rt] — 053] LLbit
SyncOperation()

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
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SD

Store Doubleword

SD

31 26 25 21 20 16 15 0
SD base rt offset
111111
6 5 5 16
Format:

SD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.

If either of the three least-significant bits of the effective address are

non-zero, an address error exception occurs.

Operation:

T:  vAddr — ((offset;s)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

data — GPR]rt]

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception
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SDCz Store Doubleword SDCz

From Coprocessor

spce| 1|1 1 1 1 0

31 26 25 21 20 16 15 0
SDCz base rt offset
1111xx*
5 5 16
Format:
SDCz rt, offset(base)
Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. Coprocessor unit z sources a
doubleword, which the processor writes to the addressed memory location.
The data to be stored is defined by individual coprocessor specifications.
If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.
This instruction is not valid for use with CPO.
This instruction is undefined when the least-significant bit of the rt
field is non-zero.
Operation:
T:  VAddr  ((offset;5)*® || offset;5 o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vVAddr, DATA)
data -« COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr,
vAddr, DATA)
Note: *See the table in this section under “Opcode Bit Encoding."
Also see “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.
Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception
Opcode Bit Encoding:
SDCZ gi431 30 20 28 27 26 0

spci| 1|1 1 1 0 1

Bit#31 30 29 28 27 26 0

e
SD opcode  Coprocessor Unit Number
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SDL Store Doubleword Left SD
31 26 25 21 20 16 15 0
SDL base rt offset
101100
6 5 5 16
Format:
SDL rt, offset(base)
Description:

This instruction can be used with the SDR instruction to store the
contents of a register into eight consecutive bytes of memory, when the
bytes cross a doubleword boundary. SDL stores the left portion of the
register into the appropriate part of the high-order doubleword of memory;
SDR stores the right portion of the register into the appropriate part of the
low-order doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to four bytes will be stored, depending on the starting
byte specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

address8 | 8 |9 |10|11(12(13|14|15
address0 |0 |1 12| 3|4 |5|6]|7

address8 | 8| 9 | 10| 11|12|13|14]15
address0| 0 |B|C| D|E|F| G| H

memory

(big-endian) register

before | Al B| C|D|E|F|G|H|%24

SDL $24,1($0)

after

Operation:

T:  vAddr — ((offset;5)*|| offset 15 o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze 1.3 || (PAddr, o xor ReverseEndian3)

If BigEndianMem = 0 then

pAddr — pAddrs; 5| 03
endif
byte — vAddr, , xor BigEndianCPU3

data — 0°%¥Y® || GPR[rtle3, 56-gnyte
Storememory (uncached, byte, data, pAddr, vAddr, DATA)
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Given a doubleword in a register and a doubleword in memory, the
operation of SDL is as follows:

SDL
Register A B C D E F G H

Memory | J K L M N (@] P
BigEndianCPU =0 BigEndianCPU =1
offset offset
vAddr, g destination type || EM BEM destination type | LEM BEM
0 I JKLMNOA| O 0O 7| ABCDEFGH| 7 0O O
1 Il JKLMNAB| 1 0O 6|1 ABCDEF G| 6 0 1
2 I JKLMABC| 2 0 5 I J ABCDE F| 5 0 2
3 I JKLABCD| 3 0 4|1 JKABCDE| 4 0 3
4 I JKABCDE| 4 0 3|1 JKLABCD| 3 0 4
5 I JABCDEF| 5 0o 2 I J KLMABC| 2 0 5
6 | ABCDEFG| 6 0 1|1 JKLMNAB| 1 0 6
7 ABCDEFGH| 7 0O 0|1l JKLMNOA| O 0o 7
LEM Little-endian memory (BigendianMem = 0)
BEM BigEndianMem =1
Type AccessType (see Table 2.1 on page 2-3) sent to memory
Offset pAddr, g sent to memory
Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception
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SDR Store Doubleword Right SD R
31 26 25 21 20 16 15 0
SDR base rt offset
101101
6 5 5 16

Format:
SDR rt, offset(base)

Description:

This instruction can be used with the SDL instruction to store the
contents of a register into eight consecutive bytes of memory, when the
bytes cross a boundary between two doublewords. SDR stores the right
portion of the register into the appropriate part of the low-order
doubleword; SDL stores the left portion of the register into the appropriate
part of the low-order doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to eight bytes will be stored, depending on the starting
byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then it copies bytes
from register to memory until it reaches the high-order byte of the word in
memory. No address exceptions due to alignment are possible.

memory

(big-endian)
address 8 10[11[12]13[14]15
addressO[p [1[2[3]4]5]6]7

register
before |A| B|C|D| E| F| G| H| $24

(o]
©

(bgg?é?fé%n) SDR $24,4($0)

address 8 | 8 11/12|13|14{15| after
addressO | E|F |G| H[4]|5|6]|7

©
=
o

Operation:

ReverseEndian3)

T:  VAddr — ((offset;5)*8 || offset ;5 o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
PAddr — pAddrpgze 1.3 || (PAddr; o xor

If BigEndianMem = 0 then
pAddr — pAddrpsize — 313 I 0°
endif
byte — vAddr,; o xor BigEndianCPU?
data GPR[rt]63_8*byte “ 08 byte

Given a doubleword in a register and a doubleword in memory, the
operation of SDR is as follows:
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TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

SDR
Register | A | B C D) E F G
Memory | J K L M N @]
BigEndianCPU =0 BigEndianCPU =1
o offset offset
vAddr, o destination type LEM BEM destination type LEM BEM
0 ABCDEFGH| 7 0 0 |HJKLMNOP| O 7 0
1 BCDEFGHP| 6 1 0 [ GHKLMNOP| 1 6 O
2 CDEFGHOP| 5 2 0 FGHL MNOP| 2 5 0
3 DEFGHNOP| 4 3 0 |EFGHMNOP| 3 4 0
4 EFGHMNOP| 3 4 0 |DEFGHNOP| 4 3 0
5 FGHLMNOP| 2 5 0 CDEFGHOP| 5 2 0
6 GHKLMNOP| 1 6 0 | BCDEFGHP| 6 1 0
7 HJKLMNOP| O 7 0 |ABCDEFGH| 7 0O O
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2.1 on page 2-3) sent to memory
Offset pAddr, g sent to memory
Exceptions:
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SH Store Halfword SH
31 26 25 21 20 16 15 0
SH base rt offset
101001
6 5 5 16
Format:

SH rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The least-significant
halfword of register rt is stored at the effective address. If the least-
significant bit of the effective address is non-zero, an address error
exception occurs.

Operation:

T:  vAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vVAddr, DATA)
pAddr — pAddrpszg.1 3 || (PAddr, o xor (ReverseEndian? || 0))
byte — vAddr, o, xor (BigEndianCPU? || 0)
data — GPRItlgz_gbyte.o Il 05"
StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
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SL |_ Shift Left Logical SL B
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SLL
000000 | 00000 r rd sa 000000
6 5 5 5 5 6

Format:
SLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting
zeros into the low-order bits.

The result is placed in register rd.

The operand must be a valid sign-extended, 32-bit value.

Operation:
T. s~ 0]sa
temp - GPR[rt]31_s._0 “ OS
GPR([rd] « (temp3;)3? || temp
Exceptions:
None
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SLLV

Shift Left Logical Variable

SLLV

SLLV rd, rt, rs

Description:

The contents of general register rt are shifted left the number of bits

31 26 25 21 20 16 15 11 10 6 5
SPECIAL rs rt rd 0 SLLV
000000 00000 000100
6 5 5 5 5 6
Format:

specified by the low-order five bits contained in general register rs,

inserting zeros into the low-order bits.
The result is placed in register rd.

The operand must be a valid sign-extended, 32-bit value.

Operation:
T: s« 0]||GP[rslsy o
temp — GPR[rt]31.5).0 Il 0°
GPR([rd] — (tempgz;)3? || temp
Exceptions:
None
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SLT

Set On Less Than

SL

Description:

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLT
000000 00000 101010
6 5 5 5 5 6
Format:
SLT rd, rs, rt

The contents of general register rt are subtracted from the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison

overflows.
Operation:
T: if GPR[rs] < GPR]rt] then
GPR[rd] — 053] 1
else
GPR[rd] — 054
endif
Exceptions:
None
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SLTI

Set On Less Than Immediate

SLTI

31 26 25 21 20 16 15 0
SLTI rs rt immediate
001010
6 5 5 16
Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the
contents of general register rs. Considering both quantities as signed
integers, if rs is less than the sign-extended immediate, the result is set to
one; otherwise the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:
T: if GPR[rs] < (immediate;5)*® || immediate;5 o then
GPR[rd] — 0831
else
GPRJ[rd] — 0%4
endif

Exceptions:
None
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Set On Less Than
SLTIU Immediate Unsigned SLT'U

31 26 25 21 20 16 15 0
SLTIU rs rt immediate
001011
5 5 16
Format:

SLTIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the
contents of general register rs. Considering both quantities as unsigned
integers, if rs is less than the sign-extended immediate, the result is set to
one; otherwise the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

T: if (O ]| GPRIr é)3< O]l |mmed|ate15)48 || immediate,g5 g then
GPR[rd] <0°]]1
else
GPRJ[rd] — 04
endif

Exceptions:
None
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SLTU

Set On Less Than Unsigned

SLTU

SLTU rd, rs, rt

Description:

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLTU
000000 00000 101011
6 5 5 5 5 6

Format:

The contents of general register rt are subtracted from the contents of
general register rs. Considering both quantities as unsigned integers, if
the contents of general register rs are less than the contents of general
register rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison

overflows.
Operation:
T: if (011 GPR[rsé) <0 || GPR][rt] then
GPR[rd] — 0°3 || 1
else
GPRI[rd] — 0%
endif
Exceptions:
None
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SRA Shift Right Arithmetic SRA

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRA
000000 00000 000011
6 5 5 5 5 6

Format:
SRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-
extending the high-order bits.

The result is placed in register rd.

The operand must be a valid sign-extended, 32-bit value.

Operation:

T. s <0]|lsa
temp ~ (GPRIrt]31)° || GPRIrt] 31.¢
GPR[rd] — (temp3;)%? || temp

Exceptions:
None
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SRAV

Shift Right
Arithmetic Variable

SRAV

SRAV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of

31 26 25 21 20 16 15 11 10 6 5
SPECIAL rs rt rd 0 SRAV
000000 00000 000111
6 5 5 5 5 6
Format:

bits specified by the low-order five bits of general register rs, sign-
extending the high-order bits.

The result is placed in register rd.

The operand must be a valid sign-extended, 32-bit value.

Operation:
T: s « GPR[rsly o
temp « (GPRIrt]31)° || GPR[rtl3; s
GPR[rd] — (temps3;)%? || temp
Exceptions:
None
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SRL

Shift Right Logical

SRL

Description:

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRL
000000 00000 000010
6 5 5 5 5 6

Format:
SRL rd, rt, sa

The contents of general register rt are shifted right by sa bits, inserting
zeros into the high-order bits.

The result is placed in register rd.

The operand must be a valid sign-extended, 32-bit value.

Operation:
T. s~ 0]sa
temp — 0% || GPR[rt]3; ¢
GPR[rd] — (temp3;)%? || temp
Exceptions:
None
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SRLV Shift Right Logical Variable SRLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SRLV
000000 00000 000110
6 5 5 5 5 6

Format:

SRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of
bits specified by the low-order five bits of general register rs, inserting zeros
into the high-order bits.

The result is placed in register rd.

The operand must be a valid sign-extended, 32-bit value.

Operation:

T: s « GPR[rsly o
temp — 0% || GPR[rt]3; ¢
GPR([rd] — (tempgz;)3? || temp

Exceptions:
None
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SUB

Subtract SU B

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SUB
000000 00000 100010

5 5 5 5 6
Format:
SUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd. The operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUBU instruction
is that SUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 30
and 31 differ (2's complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.

Operation:

T. temp — GPRJrs] - GPR]r]
GPRrd] — (tempzy)* || tempsy o

Exceptions:
Integer overflow exception
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SUBU

Subtract Unsigned

SUBU

SUBU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs to form a result.
The result is placed into general register rd.
The operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUB instruction
is that SUBU never traps on overflow. No integer overflow exception occurs

under any circumstances.

31 26 25 21 20 16 15 11 10 6 5
SPECIAL rs rt rd 0 SUBU
000000 00000 100011
6 5 5 5 5 6
Format:

Operation:
T. temp — GPRJrs] - GPR]r]
GPRIrd] — (tempz;)* || tempzy o
Exceptions:
None
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SW Store Word SW
31 26 25 21 20 16 15 0
SW base rt offset
101011
6 5 5 16
Format:

SW rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.

If either of the two least-significant bits of the effective address are non-

zero, an address error exception occurs.

Operation:

T:  vAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze.1 3 || (PAddr, g xor (ReverseEndian || 0?)
byte — vAddr, o xor (BigEndianCPU || 0?)
data — GPRIrt]g3.gyte || 05"
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception
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SWCZ Store Word From Coprocessor SWCZ

31

26 25 21 20 16 15 0

SWCz base rt offset
1110xx*

6

5 5 16

Format:
SWCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. Coprocessor unit z sources a word,
which the processor writes to the addressed memory location.

The data to be stored is defined by individual coprocessor
specifications.

This instruction is not valid for use with CPO.

If either of the two least-significant bits of the effective address is non-
zero, an address error exception occurs.

Execution of the instruction referencing coprocessor 3 causes a
reserved instruction exception, not a coprocessor unusable exception.

Operation:

T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr « pAddrpsze.1 3 || (PAddr, o xor (ReverseEndian || 0%)
byte — vAddr, o xor (BigEndianCPU || 0%)
data — COPzSW (byte,rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr DATA)

Note: *See the table in this section under “Opcode Bit Encoding."
Also see “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception
Reserved instruction exception (coprocessor 3)

Opcode Bit Encoding:

SWCz Bit#31 30 29 28 27 26 0

swecil 1] 1 10 0 1

Bit#31 30 29 28 27 26 0
swcel 1)1 1|0 1 0

h'd
SW opcode  Coprocessor Unit Number
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SWL Store Word Left SW L
31 26 25 21 20 16 15 0
SWL base rt offset
101010
6 5 5 16
Format:

SWL rt, offset(base)

Description:

This instruction can be used with the SWR instruction to store the
contents of a register into four consecutive bytes of memory, when the
bytes cross a word boundary. SWL stores the left portion of the register
into the appropriate part of the high-order word of memory; SWR stores the
right portion of the register into the appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to four bytes will be stored, depending on the starting
byte specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory

(big-endian) register
address4 | 4| 5| 6| 7 bet | A|l B| c| D|
addresso | 0 [ 1| 2 | 3|7 .

SWL $24,1($0)

address 4 4 5
address 0 0 A B C

(e}
~

after

Operation:

T: VAddr — ((offset;5)*® || offset 15 o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze 1 3 || (PAddr, o xor ReverseEndian®)
If BigEndianMem = 0 then
pAddr — pAddrs; » || 02
endif
byte — vAddr; , xor BigEndianCPU?
if (vAddr, xor BigendianCPU) = 0 then
data — 032 ]| 0248 || GPRIrtl3; 24.gwbyte
else
data — 0248PY® || GPRIrtl3; 54.g+pyte || 032
endif
StoreMemory(uncached, byte, data, pAddr, vAddr, DATA)
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Given a doubleword in a register and a doubleword in memory, the
operation of SWL is as follows:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

SWL
Register A B C D E F G H
Memory | J K L M N O P
BigEndianCPU =0 BigEndianCPU =1
offset offset
VAddr; o destination tyre [ EM BEM destination type [\ EM BEM
0 I JKLMNOE| O 0O 7 |EFGHMNOP| 3 4 0
1 I JKLMNEF| 1 0O 6 || EFGMNOP| 2 4 1
2 I JKLMEFG| 2 0O 5|1l JEFMNOP| 1 4 2
3 I JKLEFGH| 3 0O 4 |I JKEMNOP| O 4 3
4 I JKEMNOP| O 4 3 |1 J KLEFGH| 3 0O 4
5 I JEFMNOP| 1 4 2 |1 J KLMEF G| 2 0 b5
6 I EFGMNOP| 2 4 1 |I J KLMNEF| 1 0O 6
7 EFGHMNOP| 3 4 0 |I JKLMNOE| O o 7
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2.1 on page 2-3) sent to memory
Offset  pAddr, g sent to memory
Exceptions:
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SWR

31

Store Word Right SWR
0

26 25 21 20 16 15

SWR base rt offset

Format:
SWR rt, offset(base)

Description:

This instruction can be used with the SWL instruction to store the
contents of a register into four consecutive bytes of memory, when the
bytes cross a boundary between two words. SWR stores the right portion
of the register into the appropriate part of the low-order word; SWL stores
the left portion of the register into the appropriate part of the low-order
word of memory.

The SWR instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to four bytes will be stored, depending on the starting
byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then copies bytes
from register to memory until it reaches the high-order byte of the word in
memory.

No address exceptions due to alignment are possible.

address 4
address 0

address 4
address 0

memory

(big-endian) register

5 6

before |A|B|C|D|$24

0 1 2

SWR $24,1($0)

after
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Operation:

T: vAddr — ((offset;5)*8 || offset 15 o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;zg 1 3 || (PAddr, o xor ReverseEndian®)
If BigEndianMem = 0 then
pAddr — pAddrg; , || 02
endif
byte — vAddr; o xor BigEndianCPU?
if (vAddr, xor BigEndianCPU) = 0 then
data — 0% || GPR[It]3 geyte. o Il 05
else
data — GPR[rt]3.gebyte o Il 08 || 032
endif
StoreMemory(uncached, WORD-byte, data, pAddr, vAddr, DATA)

Given a doubleword in a register and a doubleword in memory, the

operation of SWR is as follows:

SWR
Register | A | B | C| D | E| F | G| H

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

Memory | J K L M N O P
BigEndianCPU =0 BigEndianCPU =1
offset offset
VAddr; o destination tyrPe [ M BEM destination tyre [ EM BEM
0 I JKLEFGH]| 3 0 4 |HJ KLMNOP|O 7 0
1 I JKLFGHP| 2 1 4 [ GHKLMNOP]|1 6 O
2 I JKLGHOP| 1 2 4 |FGHLMNOP| 2 5 0
3 I JKLHNOP| O 3 4 |EFGHMNOP| 3 4 0
4 EFGHMNOP| 3 4 0 ([ JKLHNOP|O 3 4
5 FGHLMNOP| 2 5 0 |l JKLGHOP|1 2 4
6 GHKLMNOP| 1 6 0 |I JKLFGHP| 2 1 4
7 HJKLMNOP| O 7 0 |l JKLEFGH]| 3 0 4
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem =1
Type AccessType (see Table 2.1 on page 2-3) sent to memory
Offset  pAddr, g sent to memory
Exceptions:
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SYNC Synchronize SYNC

31 26 25 6 5 0
SPECIAL 0 SYNC
000000 0000 0000 0000 0O0O0OO0 0OOOO 001111

20
Format:
SYNC

Description:

The SYNC instruction ensures that any loads and stores fetched prior
to the present instruction are completed before any loads or stores after
this instruction are allowed to start. Use of the SYNC instruction to
serialize certain memory references may be required in a multiprocessor
environment for proper synchronization. For example:

Processor A Processor B
sSwW R1, DATA 1 LW R2, FLAG
LI R2,1 BEQ R2, RO, 1B
SYNC NOP
SwW R2, FLAG SYNC
LW R1, DATA

The SYNC in processor A prevents DATA being written after FLAG,
which could cause processor B to read stale data. The SYNC in processor
B prevents DATA from being read before FLAG, which could likewise result
in reading stale data. For processors which only execute loads and stores
in order, with respect to shared memory, this instruction is a NOP.

LL and SC instructions implicitly perform a SYNC.

This instruction is allowed in User mode.

Operation:

T: SyncOperation()

Exceptions:
None
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SYSCALL  systemcall SYSCALL

31 26 25 6 5 0
SPECIAL Code SYSCALL
000000 001100
6 20 6
Format:
SYSCALL

Description:

A system call exception occurs, immediately and unconditionally
transferring control to the exception handler.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: SystemCallException

Exceptions:
System Call exception
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TEQ

Trap If Equal TEQ

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TEQ
000000 110100

6 5 5 10 6
Format:
TEQ rs, rt

Description:

The contents of general register rt are compared to general register rs.
If the contents of general register rs are equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:
T: if GPR[rs] = GPR]rt] then
TrapException
endif
Exceptions:

Trap exception
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TEQI

Trap If Equal Immediate

TEQI

TEQI rs, immediate

Description:

31 26 25 21 20 16 15 0
REGIMM rs TEQI immediate
000001 01100
6 5 5 16
Format:

The 16-bit immediate is sign-extended and compared to the contents
of general register rs. If the contents of general register rs are equal to the
sign-extended immediate, a trap exception occurs.

Operation:

T:  if GPR[rs] = (immediate;5)*® || immediate;5 o then

TrapException
endif

Exceptions:
Trap exception
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TGE

Trap If Greater Than Or Equal

TGE

Description:

31 26 25 21 20 16 15 0
SPECIAL rs rt code TGE
000000 110000
6 5 5 10 6

Format:
TGE rs, rt

The contents of general register rt are compared to the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:
T: if GPR[rs] = GPR]rt] then
TrapException
endif
Exceptions:

Trap exception
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TGEI

Trap If Greater Than Or Equal Immediate TG EI

31 26 25 21 20 16 15 0
REGIMM rs TGEI immediate
000001 01000
6 5 5 16
Format:

TGEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents
of general register rs. Considering both quantities as signed integers, if
the contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation:

T: if GPR[rs] = (immediate;5)*® || immediate;5 o then
TrapException
endif

Exceptions:
Trap exception
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TGEIU

Trap If Greater Than Or Equal
Immediate Unsigned

TGEIU

TGEIU rs, immediate

Description:

31 26 25 21 20 16 15 0
REGIMM rs TGEIU immediate
000001 01001
6 5 5 16
Format:

The 16-bit immediate is sign-extended and compared to the contents
of general register rs. Considering both quantities as unsigned integers, if
the contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation:

T:

if (0 || GPRIrs]) = (0 || (immediate;5)*® || immediate;5 o) then

TrapException
endif

Exceptions:

Trap exception
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TG EU Trap If Greater Than Or Equal Unsigned TG EU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TGEU
000000 110001
6 5 5 10 6

Format:
TGEU rs, rt

Description:

The contents of general register rt are compared to the contents of
general register rs. Considering both quantities as unsigned integers, if
the contents of general register rs are greater than or equal to the contents
of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if (0 ]] GPRJrs]) = (0 || GPR]rt]) then
TrapException
endif

Exceptions:
Trap exception
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TLBP  Probe TLB For Matching Entry TLBP

31 26 25 24 6 5 0
COPO CcoO 0 TLBP
010000 1 00000000000 0O0O0OCOO0OOO0O 001000
6 1 19 6

Format:
TLBP

Description:

The Index register is loaded with the address of the TLB entry whose
contents match the contents of the EntryHi register. If no TLB entry
matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references
associated with the instruction immediately after a TLBP instruction, nor
is the operation specified if more than one TLB entry matches.

Operation:

T:  Index— 1] 03

foriin O..TLBEntries-1
if (TLB[i]167.141 @nd not (0™ || TLBIi]36. 205))
= EntryHigg, 13) and not (0" || TLB[i]16, 205)) and
(TLB[i]140 0r (TLB[i]135 128 = EntryHiz_p)) then

Index — 020 ||i5 g

endif

endfor

Exceptions:
Coprocessor unusable exception
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TLBR Read Indexed TLB Entry TLBR
31 26 25 24 65 0
COPO CcoO 0 TLBR
010000 1 0000000 0OO00OO0OO0OCOOOOOOO 000001
6 1 19 6
Format:

TLBR

Description:

The G bit (which controls ASID matching) read from the TLB is written

into both of the EntryLoO and EntryLol registers.

The EntryHi and EntryLo registers are loaded with the contents of the
TLB entry pointed at by the contents of the TLB Index register. The
operation is invalid (and the results are unspecified) if the contents of the
TLB Index register are greater than the number of TLB entries in the

processaor.

Operation:

T: PageMask — TLB[Indexs glzss 192

EntryHi — TLB[Indexs glig91. 128 @nd not TLB[IndeXs_gloss 192
EntryLOl HTLB[lndEX5_0]127“65 ” TLB[lndEX5llo]140
EntryLOO - TLB[IndeXS_.O]63__1 ” TLB[lndeXSHO]]AO

Exceptions:
Coprocessor unusable exception
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TLBW Write Indexed TLB Entry TLBW
31 26 25 24 6 5 0
COPO CO 0 TLBWI
010000 1 000 0000 00000000 O0O0COO 000010
6 1 19 6
Format:

TLBWI
Description:

The G bit of the TLB is written with the logical AND of the G bits in the
EntryLoO and EntryLol registers.

The TLB entry pointed at by the contents of the TLB Index register is
loaded with the contents of the EntryHi and EntryLo registers.

The operation is invalid (and the results are unspecified) if the contents
of the TLB Index register are greater than the number of TLB entries in the
processor.

Operation:
T: TLB[Indexs o] -

PageMask || (EntryHi and not PageMask) || EntryLol || EntryLoO

Exceptions:
Coprocessor unusable exception
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TLBWR WwriteRandomTLBEntry TLBWR

31 26 25 24 6 5 0
COPO CcoO 0 TLBWR
010000 1 0000000 0OO00OO0OO0OCOOOOOOO 000110
6 1 19 6
Format:
TLBWR

Description:

The G bit of the TLB is written with the logical AND of the G bits in the
EntryLoO and EntryLol registers.

The TLB entry pointed at by the contents of the TLB Random register
is loaded with the contents of the EntryHi and EntryLo registers.

Operation:

T: TLB[Randomg o] -
PageMask || (EntryHi and not PageMask) || EntryLo1l || EntryLoO

Exceptions:
Coprocessor unusable exception

A-141



CPU Instruction Set Details Appendix A

TLT Trap If Less Than TLT
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TLT
000000 110010
6 5 5 10 6
Format:
TLT rs, rt

Description:

The contents of general register rt are compared to general register rs.
Considering both quantities as signed integers, if the contents of general
register rs are less than the contents of general register rt, a trap exception
occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if GPRJrs] < GPRJrt] then
TrapException
endif

Exceptions:
Trap exception
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TLTI Trap If Less Than Immediate TLTI
31 26 25 21 20 16 15 0
REGIMM rs TLTI immediate
000001 01010
6 5 5 16
Format:
TLTI rs, immediate
Description:

The 16-bit immediate is sign-extended and compared to the contents
of general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate,
a trap exception occurs.

Operation:

T: if GPR[rs] < (immediate15)48 || immediates_g then
TrapException
endif

Exceptions:
Trap exception
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TLTI U Trap If Less Than Immediate Unsigned TLTI U

TLTIU rs, immediate

Description:

31 26 25 21 20 16 15 0
REGIMM rs TLTIU immediate
000001 01011
6 5 5 16
Format:

The 16-bit immediate is sign-extended and compared to the contents
of general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate,
a trap exception occurs.

Operation:

T:

if (0 || GPR(rs]) < (0 || (immediate;5)*® || immediate;5 o) then

TrapException
endif

Exceptions:

Trap exception
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TLTU

Trap If Less Than Unsigned

TLTU

31 26 25 21 20 16 15 0
SPECIAL rs rt code TLTU
000000 110011
6 5 5 10 6

Format:
TLTU rs, rt

Description:

The contents of general register rt are compared to general register rs.
Considering both quantities as unsigned integers, if the contents of general
register rs are less than the contents of general register rt, a trap exception
OCCurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if (0]| GPR[rs]) < (0 || GPR]rt]) then
TrapException
endif

Exceptions:
Trap exception
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TNE

Trap If Not Equal TNE

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TNE
000000 110110
6 5 5 10 6
Format:
TNE rs, rt

Description:

The contents of general register rt are compared to general register rs.
If the contents of general register rs are not equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if GPR[rs] # GPR]rt] then
TrapException
endif

Exceptions:
Trap exception
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TNEI Trap If Not Equal Immediate TNEI
31 26 25 21 20 16 15 0
REGIMM rs TNEI immediate
000001 01110
6 5 5 16
Format:

TNEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents
of general register rs. If the contents of general register rs are not equal to
the sign-extended immediate, a trap exception occurs.

Operation:
T: if GPR[rs] # (immediate;5)*® || immediate,5_o then
TrapException
endif
Exceptions:

Trap exception
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WAIT Wait WAIT

31 26 25 24 65 0
COPO CcoO 0 WAIT
010000 1 0000000 0O0O0OO0OOOO0OOOO0O 100000
6 1 19 6

Format:
WAIT

Description:
The WAIT instruction is used to halt the internal pipeline and thus
reduce the power consumption of the CPU. See Appendix G for more

details.
Operation:
T: if SysAD bus is idle then
StopPipeline
endif
Exceptions:

Coprocessor unusable exception
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XOR Exclusive Or XOR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 XOR
000000 00000 100110
6 5 5 5 5 6
Format:
XOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical exclusive OR operation.

The result is placed into general register rd.

Operation:

T: GPRJ[rd] « GPR]rs] xor GPR]rt]

Exceptions:
None
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Exclusive OR Immediate

XORI rt, rs, immediate

Description:
The 16-bit immediate is zero-extended and combined with the contents
of general register rs in a bit-wise logical exclusive OR operation.

31 26 25 21 20 16 15
XORI rs rt immediate
001110
6 5 5 16
Format:

The result is placed into general register rt.

Operation:

T:

GPR[rf] — GPR[rs] xor (0*® || immediate)

Exceptions:
None
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CPU Instruction Opcode Bit Encoding

The remainder of this Appendix presents the opcode bit encoding for
the CPU instruction set (ISA and extensions), as implemented by the
R4600/R4700.

Table A.4 lists the R4600/R4700 Opcode Bit Encoding.
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28..26 Opcode
31..29 0 1 2 3 4 5 6 7
0 |SPECIAL|REGIMM J JAL BEQ BNE BLEZ BGTZ
1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 COPO COP1 COP2 * BEQL BNEL | BLEZL BGTZL
3 DADDI | DADDIU LDL LDR * * * *
4 LB LH LWL LW LBU LHU LWR LWU
5 SB SH SWL SW SDL SDR SWR [CACHES
6 LL LWC1 LWC2 * LLD LDC1 LDC2 LD
7 SC SWC1 | SWC2 * SCD SDC1 SDC2 SD
2.0 SPECIAL function
5.3 0 1 2 3 4 5 6 7
0 SLL * SRL SRA SLLV * SRLV SRAV
1 JR JALR * * SYSCALL BREAK * SYNC
2 MFEHI MTHI MFLO MTLO DSLLV * DSRLV | DSRAV
3 MULT | MULTU DIV DIVU DMULT |DMULTU| DDIV DDIVU
4 ADD ADDU SUB SUBU AND OR XOR NOR
5 * * SLT SLTU DADD DADDU| DSUB | DSUBU
6 TGE TGEU TLT TLTU TEQ * TNE *
7 DSLL * DSRL DSRA | DSLL32 * DSRL32 | DSRA32
18..16 REGIMM rt
20..19 0 1 2 3 4 5 6 7
0 BLTZ BGEZ | BLTZL | BGEZL * * * *
1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2 | BLTZAL | BGEZAL |BLTZALL |BGEZALL * * * *
3 * * * * * * * *
23..21 COPzrs
25, 24 0 1 2 3 4 5 6 7
0 MF DMF [ CF | y [ MT | DMT [ CT | v
1 BC Y Y Y Y Y Y Y
2 co
3
18..16 COPz rt
20..19 0 1 2 3 4 5 6 7
0 BCF | BCT [ BCFL [ BCTL | V y Y y
1 Y Y Y Y Y Y Y Y
2 Y Y Y Y Y Y Y Y
3 Y Y Y Y Y Y Y Y
2.0 CPO Function
5.3 0 1 2 3 4 5 6 7
0 Q TLBR _[TLBWI | ¢ ® ¢ [TLBWR | @
1] TLBP @ @ ¢ () @ e ¢
2 ¢ @ @ Q ® Q Q @
3 | ERET @ @ ¢ ¢ @ @ ¢
4 | WAIT @ @ ? ? @ @ ?
5 ? @ @ ? ® @ Q Q
6 ? @ @ Q ? Q Q Q
7 ¢ Q Q ¢ @ ¢ ¢ ¢
Key to Table:
* QOperation codes marked with an asterisk cause reserved instruction exceptions in all current
implementations and are reserved for future versions of the architecture.
g Operation codes marked with a gamma cause a reserved instruction exception. They are
reserved for future versions of the architecture.
d Operation codes marked with a delta are valid only for R4600 processors with CPO enabled,
and cause a reserved instruction exception on other processors.
f Operation codes marked with a phi are invalid but do not cause reserved instruction
exceptions in R4600 implementations.

Table A.4
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Introduction

This appendix provides a detailed description of each floating-point
unit (FPU) instruction (refer to Appendix A for a detailed description of the
CPU instructions). The instructions are listed alphabetically, and any
exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate causes and the manner of handling exceptions are omitted from
the instruction descriptions in this appendix (refer to Chapter 7 for
detailed descriptions of floating-point exceptions and handling).

Figure B.3 on page B-45 lists the entire bit encoding for the constant
fields of the floating-point instruction set; the bit encoding for each
instruction is included with that individual instruction.

Instruction Formats
There are three basic instruction format types:
e |-Type, or Immediate instructions, which include load and store oper-
ations
M-Type, or Move instructions
* R-Type, or Register instructions, which include the two- and three-
register floating-point operations.
The instruction description subsections that follow show how these
three basic instruction formats are used by:

e Load and store instructions

* Move instructions

* Floating-Point computational instructions
e Floating-Point branch instructions

Floating-point instructions are mapped onto the MIPS coprocessor
instructions, defining coprocessor unit number one (CP1) as the floating-
point unit.

Each operation is valid only for certain formats. Implementations may
support some of these formats and operations through emulation, but they
only need to support combinations that are valid (marked V in Table B.1).

Combinations marked R in Table B.1 are not currently specified by this
architecture, and cause an unimplemented instruction trap. They will be
available for future extensions to the architecture.
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Operation

Source Format

Single Double

Word

Longword

ADD

SuUB

MUL

DIV

SQRT

ABS

Ol V| O D] DA

| W| ”| ”| B D

MOV

NEG

TRUNC.L

ROUND.L

CEIL.L

FLOOR.L

TRUNC.W

ROUND.W

CEIL.W

FLOOR.W

I < <[ <[ < << <K< <1< << << <I<

CVT.S

I < <[ << <1< <K< <K< << << <K<K <

CVT.D

CVT.W

\%

CVT.L

<| < <

\%

Cc

\% \Y

R

Table B.1 Valid FPU Instruction Formats

The coprocessor branch on condition true/false instructions can be
used to logically negate any predicate. Thus, the 32 possible conditions
require only 16 distinct comparisons, as shown in Table B.2 below.
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Condition Relations Invalid
Operation

Mnemonic Code | Greater |Less Equal | Unordered | Exception If
Than Than Unordered

True False

F T 0 F F F F No

UN OR 1 F F F T No

EQ NEQ 2 F F T F No

UEQ OGL 3 F F T T No

OLT UGE 4 F T F F No

ULT OGE 5 F T F T No

OLE UGT 6 F T T F No

ULE OGT 7 F T T T No

SF ST 8 F F F F Yes

NGLE GLE 9 F F F T Yes

SEQ SNE 10 F F T F Yes

NGL GL 11 F F T T Yes

LT NLT 12 F T F F Yes

NGE GE 13 F T F T Yes

LE NLE 14 F T T F Yes

NGT GT 15 F T T T Yes

Table B.2 Logical Negation of Predicates by Condition True/False

Floating-Point Loads, Stores, and Moves
All movement of data between the floating-point coprocessor and
memory is accomplished by coprocessor load and store operations, which
reference the floating-point coprocessor General Purpose registers. These
operations are unformatted; no format conversions are performed and,
therefore, no floating-point exceptions can occur due to these operations.
Data may also be directly moved between the floating-point
coprocessor and the processor by move to coprocessor and move from
coprocessor instructions. Like the floating-point load and store operations,
move to/from operations perform no format conversions and never cause
floating-point exceptions.
An additional pair of coprocessor registers are available, called
Floating-Point Control registers for which the only data movement
operations supported are moves to and from processor General Purpose

registers.
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Floating-Point Operations
The floating-point unit operation set includes:

e floating-point add

e floating-point subtract
floating-point multiply
e floating-point divide
floating-point square root
convert between fixed-point and floating-point formats
convert between floating-point formats
floating-point compare

These operations satisfy the requirements of IEEE Standard 754
requirements for accuracy. Specifically, these operations obtain a result
which is identical to an infinite-precision result rounded to the specified
format, using the current rounding mode.

Instructions must specify the format of their operands. Except for
conversion functions, mixed-format operations are not provided.

Instruction Notation Conventions

In this appendix, all variable subfields in an instruction format (such
as fs, ft, immediate, and so on) are shown in lower-case. The instruction
name (such as ADD, SUB, and so on) is shown in upper-case.

For the sake of clarity, we sometimes use an alias for a variable subfield
in the formats of specific instructions. For example, we use rs = base in
the format for load and store instructions. Such an alias is always lower
case, since it refers to a variable subfield.

In some instructions, the instruction subfields op and function can
have constant 6-bit values. When reference is made to these instructions,
upper-case mnemonics are used. For instance, in the floating-point ADD
instruction we use op = COP1 and function = FADD. In other cases, a
single field has both fixed and variable subfields, so the name contains
both upper and lower case characters. Bit encoding for mnemonics are
shown in Figure B.3 at the end of this appendix, and are also included with
each individual instruction.

In the instruction description examples that follow, the Operation
section describes the operation performed by each instruction using a
high-level language notation.

Instruction Notation Examples
The following examples illustrate the application of some of the
instruction notation conventions:

Example #1:

GPR[1f] « immediate || 06

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General Purpose Register rt.

Example #2:
(immediate;5)*° || immediate;5 o

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.
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Load and Store Instructions
In the R4600 implementation, the instruction immediately following a
load may use the contents of the register being loaded. In such cases, the
hardware interlocks, requiring additional real cycles, so scheduling load
delay slots is still desirable, although not required for functional code.
The behavior of the load store instructions is dependent on the width
of the FGRs.
< When the FR bit in the Status register equals zero, the Floating-Point
General registers (FGRs) are 32-bits wide.
< When the FR bit in the Status register equals one, the Floating-Point
General registers (FGRs) are 64-bits wide.
In the load and store operation descriptions, the functions listed in
Table B.3 are used to summarize the handling of virtual addresses and
physical memory.

Function Meaning

AddressTranslation Uses the TLB to find the physical address given the virtual
address. The function fails and an exception is taken if
the required translation is not present in the TLB.

LoadMemory Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory Uses the cache, write buffer, and main memory to store
the word or part of word specified as data in the word con-
taining the specified physical address. The low-order two
bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

Table B.3 Load and Store Common Functions

Figure B.1 shows the I-Type instruction format used by load and store
operations.

I-Type (Immediate)
31 26 25 21 20 16 15 0

op is a 6-bit operation code
base is the 5-bit base register specifier
ft is a 5-bit source (for stores) or destination (for loads) FPA register specifier

offset is the 16-bit signed immediate offset

Figure B.1 Load and Store Instruction Format
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All coprocessor loads and stores reference aligned-word data items.
Thus, for word loads and stores, the access type field is always WORD, and
the low-order two bits of the address must always be zero.

For doubleword loads and stores, the access type field is always
DOUBLEWORD, and the low-order three bits of the address must always
be zero.

Regardless of byte-numbering order (endianness), the address
specifies that byte which has the smallest byte-address in the addressed
field. For a big-endian machine, this is the leftmost byte; for a little-endian
machine, this is the rightmost byte.

Computational Instructions

Computational instructions include all of the arithmetic floating-point
operations performed by the FPU.

Figure B.2 shows the R-Type instruction format used for
computational operations.

R-Type (Register)

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd function
6 5 5 5 5 6

COP1 is a 6-bit operation code

fmt is a 5-bit format specifier

fs is a 5-bit sourcel register

ft is a 5-bit source2 register

fd is a 5-bit destination register

function is a 6-bit function field

Figure B.2 Compufaflonal TRstruction rormat

The function field indicates the floating-point operation to be
performed.

Each floating-point instruction can be applied to a number of operand
formats. The operand format for an instruction is specified by the 5-bit
format field; decoding for this field is shown in Table B.4.

Code Mnemonic | Size Format

16 S single Binary floating-point

17 D double Binary floating-point

18 Reserved

19 Reserved

20 W single 32-bit binary fixed-point
21 L longword 64-bit binary fixed-point
22-31 Reserved

Table B.4 Format Field Decoding
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Table B.5 lists all floating-point instructions.

Code Mnemonic | Operation

(5: 0)

0 ADD Add

1 SuUB Subtract

2 MUL Multiply

3 DIV Divide

4 SQRT Square root

5 ABS Absolute value

6 MOV Move

7 NEG Negate

8 ROUND.L Convert to single fixed-point, rounded to nearest/even
9 TRUNC.L Convert to single fixed-point, rounded toward zero

10 CEIL.L Convert to single fixed-point, rounded to +oo

11 FLOOR.L Convert to single fixed-point, rounded to -

12 ROUND.W Convert to single fixed-point, rounded to nearest/even

13 TRUNC.W Convert to single fixed-point, rounded toward zero
14 CEIL.W Convert to single fixed-point, rounded to + o
15 FLOOR.W Convert to single fixed-point, rounded to — o
16-31 - Reserved

32 CVT.S Convert to single floating-point

33 CVT.D Convert to double floating-point

34 - Reserved

35 - Reserved

36 CVT.W Convert to 32-bit binary fixed-point

37 CVT.L Convert to 64-bit binary fixed-point

38-47 - Reserved

48-63 C Floating-point compare

Table B.5 Floating-Point Instructions and Operations

In the following pages, the notation FGR refers to the 32 General

Purpose registers FGRO through FGR31 of the FPU, and FPR refers to the
floating-point registers of the FPU.
« When the FR bit in the Status register (SR(26)) equals zero, only the

even floating-point registers are valid and the 32 General Purpose reg-
isters of the FPU are 32-bits wide.

< When the FR bit in the Status register (SR(26)) equals one, both odd

and even floating-point registers may be used and the 32 General Pur-
pose registers of the FPU are 64-bits wide.
The following routines are used in the description of the floating-point

operations to retrieve the value of an FPR or to change the value of an FGR:
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FR=0

value ~ ValueFPR(fpr, fmt)
case fmt of

S, W:

if FGRg =0

value — FGRIfpr]

else

value — FGR[fpr - 1]

endif

D.

/*. undefined for fpr not even */
value — FGRIfpr]
end

StoreFPR(fpr, fmt, value):

case fmt of
S, W:
if FGRg =0

FGR[pr’] — FGR[fpr]63__32 II value

else

FGR[fpr - 1] ~ value || FGRI[fpr - 1]31 ¢
endif

D:

/* undefined for fpr not even */

FGR[fpr] « value

end

FR=1

value — ValueFPR(fpr, fmt)
case fmt of

S:

value « FGR[fpr]lz; o

D, L:

value — FGRIfpr]

W:

value — FGR][fpr]

end

StoreFPR(fpr, fmt, value):

case fmt of

S, W:

FGR[fpr] — undefined3? || value
D, L:

FGR[fpr] ~ value

end
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ABS.fmt

Floating-Point

Absolute Value

ABS.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd ABS
010001 00000 000101
6 5 5 5 5 6
Format:

ABS.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the
specified format and the arithmetic absolute value is taken. The result is
placed in the floating-point register specified by fd.

The absolute value operation is arithmetic; a NaN operand signals
invalid operation.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit O of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor unusable exception
Coprocessor exception trap

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception




FPU Instruction Set Details Appendix B

ADD.fmt Floating-Point Add ADD.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd ADD
010001 000000
6 5 5 5 5 6
Format:

ADD.fmt fd, fs, ft

Description:

The contents of the FPU registers specified by fs and ft are interpreted
in the specified format and arithmetically added. The result is rounded as
if calculated to infinite precision and then rounded to the specified format
(fmt), according to the current rounding mode. The result is placed in the
floating-point register (FPR) specified by fd.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit O of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR(ft, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception
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BC1F

Branch On FPA False
(Coprocessor 1)

BC1F

31 26 25 21 20 1615 0
COP1 BC BCF offset
010001 01000 00000
6 5 5 16
Format:

BC1F offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the result of the last floating-point compare is false,
the program branches to the target address, with a delay of one
instruction.

Operation:
T-1: condition — not COCJ1]
T: target  (offset;5)*® || offset || 02
T+1: if condition then
PC ~ PC + target
endif
Exceptions:

Coprocessor unusable exception
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BC1FL

(Coprocessor 1)

Branch On FPU False Likely

BC1FL

BC1FL offset

Description:
A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.
If the result of the last floating-point compare is false, the program
branches to the target address, with a delay of one instruction. If the
conditional branch is not taken, the instruction in the branch delay slot is

31 26 25 21 20 1615 0
COP1 BC BCFL offset
010001 01000 00010
6 5 5 16
Format:

nullified.
Operation:
T-1 condition — not COCJ[1]
T: target — (offset;5)*® || offset || 02
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
Exceptions:

Coprocessor unusable exception
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BC1T

Branch On FPU True
(Coprocessor 1)

BC1T

Description:

BC1T offset

31 26 25 21 20 16 15 0
COP1 BC BCT offset
010001 01000 00001
6 5 5 16
Format:

A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the result of the last floating-point compare is true,
the program branches to the target address, with a delay of one

instruction.
Operation:

T-1: condition — COCJ[1]

T: target — (offset15)46 || offset || 0?

T+1: if condition then

PC ~ PC + target
endif

Exceptions:

Coprocessor unusable exception
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BCITL ™ opocessorsy > BCI1TL

31 26 25 21 20 16 15 0
COP1 BC BCTL offset
010001 01000 00011
6 5 5 16
Format:

BC1TL offset

Description:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.

If the result of the last floating-point compare is true, the program
branches to the target address, with a delay of one instruction. If the
conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Operation:

T-1: condition — COC[1]
T: target — (offset;5)*® || offset || 02
T+1: if condition then
PC — PC + target
else
NullifyCurrentinstruction
endif

Exceptions:
Coprocessor unusable exception
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Floating-Point

C.cond.fmt "“Compare C.cond.fmt

31 26 25 21 20 16 15 11 10 6 5 43 0
COP1 fmt ft fs 0 FC* cond*
010001 00000
5 5 5 5 2 4
Format:

C.cond.fmt fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and arithmetically compared.

A result is determined based on the comparison and the conditions
specified in the instruction. If one of the values is a Not a Number (NaN),
and the high-order bit of the condition field is set, an invalid operation
exception is taken. After a one-instruction delay, the condition is available
for testing with branch on floating-point coprocessor condition
instructions.

Comparisons are exact and can neither overflow nor underflow. Four
mutually-exclusive relations are possible as results: less than, equal,
greater than, and unordered. The last case arises when one or both of the
operands are NaN; every NaN compares unordered with everything,
including itself.

Comparisons ignore the sign of zero, so +0 = -0.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit O of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Note: *See “FPU Instruction Opcode Bit Encoding” at the end of
Appendix B.
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Operation:

T: if NaN(ValueFPR(fs, fmt)) or NaN(ValueFPR(ft, fmt)) then
less — false
equal — false
unordered — true
if conds then
signal InvalidOperationException

endif

else
less — ValueFPR(fs, fmt) < ValueFPR(ft, fmt)
equal — ValueFPR(fs, fmt) = ValueFPR(ft, fmt)
unordered ~ false

endif

condition — (cond, and less) or (cond; and equal) or

(condg and unordered)
FCR[31],3 ~ condition
COC[1] < condition

Exceptions:
Coprocessor unusable
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
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CEIL.L.fmt  Cmegiony  CEIL.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
fmt 0 fs fd CEIL.L
010001 00000 001010
5 5 5 5 6
Format:

CEIL.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are
interpreted in the specified source format, fmt, and arithmetically
converted to the single fixed-point format. The result is placed in the
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to +oo (2).

This instruction is valid only for conversion from single- or double-
precision floating-point formats. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of —203 t0 263_ 1, the Invalid operation exception
is raised. If the Invalid operation is not enabled then no exception is taken
and 2%3-1 is returned.

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
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CEILW.fmt e 5amgle  CEIL.W.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
fmt 0 fs fd CEIL.W
010001 00000 001110
5 5 5 5 6
Format:

CEIL.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are
interpreted in the specified source format, fmt, and arithmetically
converted to the single fixed-point format. The result is placed in the
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to +o (2).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit O of any
register specification is set and the FR bit in the Status register equals zero,
since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly
rounded integer result is outside of —231 0 231_ 1, the Invalid operation
exception is raised. If the Invalid operation is not enabled then no
exception is taken and 231-1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
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Move Control Word From FPU
CFC]— (Coprocessor 1) CFC]—

31 26 25 21 20 16 15 11 10 0
COP1 CF rt fs 0
010001 00010 000 0000O0O0O0O
6 5 5 5 11
Format:
CFC1 rt, fs

Description:

The contents of the FPU control register fs are loaded into general
register rt.

This operation is only defined when fs equals O or 31.

The contents of general register rt are undefined for time T of the
instruction immediately following this load instruction.

Operation:

T: temp ~ FCR]fs]
T+1: GPR[rt]  (temps;)®? || temp

Exceptions:
Coprocessor unusable exception
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Move Control Word To FPU
CTCl (Coprocessor 1) CTC]—

31 26 25 21 20 16 15 11 10 0
COP1 CT rt fs 0
010001 00110 000 0000O0O0O0O
5 5 5 11
Format:
CTC1lrt, fs

Description:

The contents of general register rt are loaded into FPU control register
fs. This operation is only defined when fs equals 31.

Writing to Control Register 31, the floating-point Control/Status
register, causes an interrupt or exception if any cause bit and its
corresponding enable bit are both set. The register will be written before
the exception occurs. The contents of floating-point control register fs are
undefined for time T of the instruction immediately following this load
instruction.

Operation:
T: temp « GPRIrt]a1 o
T+1: FCR[fs] ~ temp
COC[1] ~ FCR[31]53
Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Division by zero exception
Inexact exception
Overflow exception
Underflow exception
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CVT.D.fmt  comerisoomme CVT.D.fmt

Floating-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
fmt 0 fs fd CVT.D
010001 00000 100001
5 5 5 5 6
Format:

CVT.D.fmt fd, fs

Description:

The contents of the floating-point register specified by fs is interpreted
in the specified source format, fmt, and arithmetically converted to the
double binary floating-point format. The result is placed in the floating-
point register specified by fd.

This instruction is valid only for conversions from single floating-point
format, 32-bit or 64-bit fixed-point format.

If the single floating-point or single fixed-point format is specified, the
operation is exact. The operation is not defined if bit O of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T: StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
Underflow exception
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CVT.Lfmt  Comeriovong  CVT.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.L
010001 00000 100101

5 5 5 5 6
Format:

CVT.L.fimt fd, fs

Description:

The contents of the floating-point register specified by fs are
interpreted in the specified source format, fmt, and arithmetically
converted to the long fixed-point format. The result is placed in the
floating-point register specified by fd.

This instruction is valid only for conversions from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of —262 to 263-1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2%3-1 is returned.

Operation:

T: StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
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Floating-Point

CVTSfmt Convert to Sing|e CVTSfmt

Floating-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.S
010001 00000 100000

5 5 5 5 6
Format:

CVT.S.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are
interpreted in the specified source format, fmt, and arithmetically
converted to the single binary floating-point format. The result is placed
in the floating-point register specified by fd. Rounding occurs according to
the currently specified rounding mode.

This instruction is valid only for conversions from double floating-point
format, or from 32-bit or 64-bit fixed-point format. The operation is not
defined if bit O of any register specification is set and the FR bit in the
Status register equals zero, since the register numbers specify an even-odd
pair of adjacent coprocessor general registers. When the FR bit in the
Status register equals one, both even and odd register numbers are valid.

Operation:

T: StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
Underflow exception
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CVT.W.fmt " aamgfomt  CVT.W.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.W
010001 00000 100100

5 5 5 5 6
Format:

CVT.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are
interpreted in the specified source format, fmt, and arithmetically
converted to the single fixed-point format. The result is placed in the
floating-point register specified by fd. This instruction is valid only for
conversion from a single- or double-precision floating-point formats. The
operation is not defined if bit O of any register specification is set and the
FR bit in the Status register equals zero, since the register numbers specify
an even-odd pair of adjacent coprocessor general registers. When the FR
bit in the Status register equals one, both even and odd register numbers
are valid.

When the source operand is an Infinity or NaN, or the correctly
rounded integer result is outside of -23* to 231-1, an Invalid operation
exception is raised. If Invalid operation is not enabled, then no exception
is taken and 23 -1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
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DIV.fmt  Floating-Point Divide DIV.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd DIV
010001 000011

5 5 5 5 6
Format:

DIV.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and arithmetically divided. The result
is rounded as if calculated to infinite precision and then rounded to the
specified format, according to the current rounding mode. The result is
placed in the floating-point register specified by fd.

This instruction is valid for only single or double precision floating-
point formats.

The operation is not defined if bit O of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt)/ValueFPR(ft, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Division-by-zero exception
Inexact exception
Overflow exception
Underflow exception
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:)MFC]. Doubleword Move From DMFC].

Floating-Point Coprocessor

31 26 25 21 20 16 15 11 10 0
COP1 DMF rt fs 0
010001 00001 000 0000 0OOOO
5 5 5 11
Format:
DMFC1 rt, fs

Description:

The contents of register fs from the floating-point coprocessor is stored
into processor register rt.

The contents of general register rt are undefined for time T of the
instruction immediately following this load instruction.

The FR bit in the Status register specifies whether all 32 registers of the
R4600 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of fs is non-zero. When FR is set, fs
may specify either odd or even registers.

Operation:
T: if SRy = 1 then
data — CPR[1,fs]
else
data — CPR[1,fs, 1 || O]
endif
T+1: GPR[rt] — data
Exceptions:

Coprocessor unusable exception
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Doubleword Move To
DMTC]— Floating-Point Coprocessor DMTC]—

31 26 25 21 20 16 15 11 10 0
COP1 DMT rt fs 0
010001 00101 000 0000 0OOOO
6 5 5 5 11
Format:
DMTC1 rt, fs

Description:

The contents of general register rt are loaded into coprocessor register
fs of the CP1.

The contents of floating-point register fs are undefined for time T of the
instruction immediately following this load instruction.

The FR bit in the Status register specifies whether all 32 registers of the
R4600 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of fs is non-zero. When FR equals
one, fs may specify either odd or even registers.

Operation:

T: data « GPRJr]

T+1: if SRZG =1 then
CPR[1, fs] ~ data
else
CPRI1, fs, 1 || 0] ~ data
endif

Exceptions:
Coprocessor unusable exception
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FLOOR.L.fmt Freratone FLOOR.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
fmt 0 fs fd FLOOR.L
010001 00000 001011
5 5 5 5 6
Format:

FLOOR.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are
interpreted in the specified source format, fmt, and arithmetically
converted to the single fixed-point format. The result is placed in the
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to -« (3).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of —2°3 to 23— 1, the Invalid operation exception
is raised. If the Invalid operation is not enabled then no exception is taken
and 2%3-1 is returned.

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
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FLOOR.W.fmt fon'tesnge FLOOR.W.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd FLOOR.W
010001 00000 001111
5 5 5 5 6
Format:

FLOOR.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are
interpreted in the specified source format, fmt, and arithmetically
converted to the single fixed-point format. The result is placed in the
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to — (RM = 3).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit O of any
register specification is set and the FR bit in the Status register equals zero,
since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly
rounded integer result is outside of -23* to 231-1, an Invalid operation
exception is raised. If Invalid operation is not enabled, then no exception
is taken and 23'-1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
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Load Doubleword to FPU

LDCl (Coprocessor 1) LDCl

31 26 25 21 20 16 15 0
LDC1 base ft offset
110101
5 5 16
Format:

LDC1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address.

When FR = 0, the contents of the doubleword at the memory location
specified by the effective address is loaded into registers ft and ft+1 of the
floating-point coprocessor. This instruction is not valid, and is undefined,
when the least significant bit of ft is non-zero.

When FR = 1, the contents of the doubleword at the memory location
specified by the effective address are loaded into the 64-bit register ft of the
floating point coprocessor.

The FR bit of the Status register (SR,g) specifies whether all 32 registers
of the R4600 are addressable. If FR equals zero, this instruction is not
defined when the least significant bit of ft is non-zero. If FR equals one, ft
may specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

Operation:

vAddr — ((offset15)48 | | offset s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vVAddr, DATA)
data —~ LoadMemory(uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SRZG =1 then
CPR][1, ft] ~ data
else
CPR[l, ft4_1 II O] ~ data
endif

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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Load Word to FPU
LWC]— ?gopro%ress%r 1) LWC]—

31 26 25 21 20 16 15 0
LWC1 base ft offset
110001
5 5 16
Format:
LWC1 ft, offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The contents of the
word at the memory location specified by the effective address is loaded
into register ft of the floating-point coprocessor.

The FR bit of the Status register specifies whether all 64-bit Floating-
Point registers are addressable. If FR equals zero, LWC1 loads either the
high or low half of the 16 even Floating-Point registers. If FR equals one,
LWC1 loads the low 32-bits of both even and odd Floating-Point registers.

If either of the two least-significant bits of the effective address is non-
zero, an address error exception occurs.

Operation:
T: vAddr < ((offset;5)*8 | | offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vVAddr, DATA)

pAddr — pAddrpgize.1..3 || (pPAddr, g xor (ReverseEndian | | 0%))
mem ~ LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigEndianCPU || 0?)

if SR26 =1 then

CPR[L, ft] — undefined®? || memgy . gpyte. gebyte

else if ftg=0 then

CIPR[L fty 1 11 0] — CPRIL, ftg 3 |1 Oles.32 |1 MeMgzygspyte. g*byte
else

CPO?][CL ft4.1 11 O] — memzy.gepyte. gsbyte | | CPRIL, ft4 1 11 Ol31.0
endi

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
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MFC1 (Coprocessor 1) MFC1

31 26 25 21 20 16 15 11 10 0
COP1 MF rt fs 0
010001 00000 000 0000O0O0O0O
5 5 5 11
Format:
MFC1 rt, fs

Description:

The contents of register fs from the floating-point coprocessor are
loaded into processor register rt.

The contents of register rt are undefined for time T of the instruction
immediately following this load instruction.

The FR bit of the Status register specifies whether all 32 registers of the
R4600 are addressable. If FR equals zero, MFC1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MFC1
stores the low 32-bits of both even and odd Floating-Point registers.

Operation:

T: if SR26 =1 then
data —~ CPR[1, fs]
else if fsy = 0 then
data — CPR[1, sy 1 || Ol31.0
else
data — CPR[1, fs4 1 || Ole3.32
endif
T+l:  GPR[rt]  (datag;)®? || data

Exceptions:
Coprocessor unusable exception
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MOV.fmt Floating-Point Move MOV.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd MOV
010001 00000 000110
6 5 5 5 5 6

Format:

MOV.fmt fd, fs
Description:

The contents of the FPU register specified by fs are interpreted in the
specified format and are copied into the FPU register specified by fd.

The move operation is non-arithmetic; no IEEE 754 exceptions occur
as a result of the instruction.

This instruction is valid only for single- or double-precision floating-
point formats.

The operation is not defined if bit O of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:
T: StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
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MTC1 Codrecassor 1) MTC1

31 26 25 21 20 16 15 11 10 0
COP1 MT rt fs 0
010001 00100 000 0000O0OO0O0O
5 5 5 11
Format:
MTC1 rt, fs

Description:

The contents of register rt are loaded into the FPU general register at
location fs.

The contents of floating-point register fs is undefined for time T of the
instruction immediately following this load instruction.

The FR bit of the Status register specifies whether all 32 registers of the
R4600 are addressable. If FR equals zero, MTC1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MTC1
loads the low 32-bits of both even and odd Floating-Point registers.

Operation:

T: data —~ GPR[rt]3; o
T+1: if SRyg=1then
CPRI[1, fs] — undefined®? || data
else if fs3=0 then
CPRIL, fs4 1 |1 0] — CPRI1, fsy 1 || Olgs. 32 || data
else
CPRI[1, fs4 11| 0] — data || CPR[1, fs4 11| O0l31.0
endif

Exceptions:
Coprocessor unusable exception
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MUL .fmt Floating-Point Multiply MUL .fmt

31 26 25 21 20 16 15 11 10 6 5 0
fmt ft fs fd MUL
010001 000010
5 5 5 5 6
Format:

MUL.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and arithmetically multiplied. The
result is rounded as if calculated to infinite precision and then rounded to
the specified format, according to the current rounding mode. The result
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-
point formats.

The operation is not defined if bit O of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) * ValueFPR(ft, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception
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NEG.fmt Floating-Point Negate NEG.fmt

31 26 25 21 20 16 15 11 10 6 5 0
fmt 0 fs fd NEG
010001 00000 000111
5 5 5 5 6
Format:

NEG.fmt fd, fs
Description:

The contents of the FPU register specified by fs are interpreted in the
specified format and the arithmetic negation is taken (polarity of the sign-
bit is changed). The result is placed in the FPU register specified by fd.

The negate operation is arithmetic; an NaN operand signals invalid
operation.

This instruction is valid only for single- or double-precision floating-
point formats. The operation is not defined if bit O of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
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ROUND.L.fmt [feainePoint  pQUND.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
fmt 0 fs fd ROUND.L
010001 00000 001000
5 5 5 5 6
Format:

ROUND.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are
interpreted in the specified source format, fmt, and arithmetically
converted to the long fixed-point format. The result is placed in the
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to nearest/even (0).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of —2°3 to 262- 1, the Invalid operation exception
is raised. If the Invalid operation is not enabled then no exception is taken
and 252 -1 is returned.

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
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ROUND.W.fmt Floating-Point. ROUND.W.fmt

Round to Single
Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
fmt 0 fs fd ROUND.W
010001 00000 001100
5 5 5 5 6
Format:

ROUND.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are
interpreted in the specified source format, fmt, and arithmetically
converted to the single fixed-point format. The result is placed in the
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to the nearest/even
(RM = 0).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit O of any
register specification is set and the FR bit in the Status register equals zero,
since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly
rounded integer result is outside of -23* to 23! -1, an Invalid operation
exception is raised. If Invalid operation is not enabled, then no exception
is taken and 23 -1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
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Store Doubleword from FPU
SDC]— (Coprocessor 1) SDC]—

31 26 25 21 20 16 15 0
SDC1 base ft offset
111101
6 5 5 16
Format:

SDC1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address.

When FR = 0, the contents of registers ft and ft+1 from the floating-
point coprocessor are stored at the memory location specified by the
effective address. This instruction is not valid, and is undefined, when the
least significant bit of ft is non-zero.

When FR = 1, the 64-bit register ft is stored to the contents of the
doubleword at the memory location specified by the effective address. The
FR bit of the Status register (SR,g) specifies whether all 32 registers of the
R4600 are addressable. When FR equals zero, this instruction is not
defined if the least significant bit of ft is non-zero. If FR equals one, ft may
specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

Operation:

T:  VAddr - (offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vVAddr, DATA)
if SR26 =1
data — CPR[1, ft]
else
data — CPR[1, ft, 1 |] 0)
endif
StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
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SQRT.fmt

Floating-Point

Square Root

SOQRT.fmt

31 26 25 21 20 16 15 11 10 6 5
COP1 fmt 0 fs fd SQRT
010001 00000 000100
6 5 5 5 5 6
Format:

SQRT.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are
interpreted in the specified format and the positive arithmetic square root
is taken. The result is rounded as if calculated to infinite precision and
then rounded to the specified format, according to the current rounding
mode. If the value of fs corresponds to -0, the result will be -0. The result
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-
point formats.

The operation is not defined if bit O of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception




FPU Instruction Set Details Appendix B

SUB.fmt Floating-Point Subtract SUB.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd SUB
010001 000001

5 5 5 5 6
Format:

SUB.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and arithmetically subtracted. The
result is rounded as if calculated to infinite precision and then rounded to
the specified format, according to the current rounding mode. The result
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-
point formats.

The operation is not defined if bit O of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) — ValueFPR(ft, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception
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SWC1  Seesini  swel

31 26 25 21 20 16 15 0
SWC1 base ft offset
111001
5 5 16
Format:

SWC1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The contents of
register ft from the floating-point coprocessor are stored at the memory
location specified by the effective address.

The FR bit of the Status register specifies whether all 64-bit floating-
point registers are addressable.

If FR = 0, SWC1 stores either the high or low half of the 16 even
floating-point registers.

If FR = 1, SWC1 stores the low 32-bits of both even and odd floating-
point registers.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception occurs.

Operation:

T:  vAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize.1 3 | | (PAddr, g xor (ReverseEndian || 02))
byte — vAddr, o xor (BigEndianCPU || 0%)
if SRZG =1 then
data  CPRIL, ftle-gunyte. o Il 0%V
else if ftz=0 then
data « CPRIL, fty 1 || Olg3.g+yte.0 Il 05
else
data 0328V || CPRIL, ft, 1 || 0] 63.32-8%byte
endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
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TRUNC.L.fmt ;e tong TRUNC.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
fmt 0 fs fd TRUNC.L
010001 00000 001001
5 5 5 5 6
Format:

TRUNC.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are
interpreted in the specified source format, fmt, and arithmetically
converted to the single fixed-point format. The result is placed in the
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round toward zero (1).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of —263 t0 263_1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2%3-1 is returned.

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
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TRUNC.W.fmt [ [ranerent TRUNC.W.fmt

Truncate to Single
Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
fmt 0 fs fd TRUNC.W
010001 00000 001101
5 5 5 5 6
Format:

TRUNC.W.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the
specified source format fmt and arithmetically converted to the single
fixed-point format. The result is placed in the FPU register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round toward zero (RM = 1).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit O of any
register specification is set and the FR bit in the Status register equals zero,
since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly
rounded integer result is outside of -23 to 231-1, an Invalid operation
exception is raised. If Invalid operation is not enabled, then no exception
is taken and 23! -1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
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FPU Instruction Opcode Bit Encoding

Opcode
28..26
31..29 0 1 2 3 4 5 6 7
0
1
2 COP1
3
4
5
6 LWC1 LDC1
7 SWC1 SDC1
sub
23..21
o5 o4 O 1 2 3 4 5 6 7
0 MF DMFn| CF y MT DMTn CT y
1 BC y y y Y y y Y
2 S D 5 5 W Ln > >
3 0 0 o 0 o o e} o
18..16 br
20.19 O 1 2 3 4 5 6 7
0 BCF BCT BCFL BCTL y Y Y Y
1 y y y y y y y y
2 y y y y y y y y
3 Y Y Y Y Y Y Y Y
2.0 function
5.3 0 1 2 3 4 5 6 7
0 ADD SUB MUL DIV SQRT ABS MOV NEG
1 ROUND.LN| TRUNC.LN| CEIL.LN [FLOOR.LN|ROUND.W [ TRUNC.W| CEILW [FLOOR.W
2 o o 0 0 0 o 1) 0
3 0 o o 0 o 1) ) 0
4 CVT.S CVT.D o) o) CVT.W | CVT.Ln be) be)
5 o) o) o o 0 d o o
6 C.F C.UN CEQ | CUEQ | C.OLT | C.ULT | C.OLE | C.ULE
7 C.SF | C.NGLE| C.SEQ | C.NGL C.LT C.NGE | C.LE C.NGT
Key to Table:
y Operation codes marked with a gamma cause a reserved instruction exception. They are
reserved for future versions of the architecture.
& Operation codes marked with a delta cause unimplemented operation exceptions in all
current implementations and are reserved for future versions of the architecture.
n Valid when 64-bit operand opcodes are enabled.

Figure B.3 Bit Encoding for FPU Instructions
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Introduction
This appendix lists cycle operation counts and caveats for R4600/
R4700 cache operations timing.

Caveats About Cache Operations

1. All cycle counts are in processor cycles.

2. All cache ops have lower priority than cache misses, write backs and
external requests. If the write back buffer contains unwritten data when
a cache op is executed, the write back buffer will be retired before the cache
op is begun.

If an instruction cache miss occurs at the same time as a cache op is
executed, the instruction cache miss will be handled first. Cache ops are
mutually exclusive with respect to data cache misses. External requests
will be completed before beginning a cache op.

3. For all data cache ops the cache op machine waits for the store buffer
and response buffer to empty before beginning the cache op. This can add
3 cycles to any data cache op if there is data in the response buffer or store
buffer. The response buffer contains data from the last data cache miss
that has not yet been written to the data cache. The store buffer contains
delayed store data waiting to be written to the data cache.

4. Cache ops of the form xxxx_Writeback_xxxx may perform a write back
which will fill the write back buffer. Write backs can affect subsequent
cache ops, since they will stall until the write back buffer is written back
to memory. Cache ops which fill the write back buffer are noted as
(writeback) in the following tables.

5. All cycle counts are best case assuming no interference from the
mechanisms described above.

Cache Operations Tables

Table C.1 and Table C.2 show data cache and instruction cache opera-
tions information. A detailed explanation of the Fill_I equation follows
Table C.2.




Cache Operations Timing

Appendix C

Codel

Name

Number of Cycles

Index_Writeback_Invalidate D

10 cycles if the cache line is clean.
12 cycles if the cache line is dirty
(Writeback).

Index_Load_Tag D

7 cycles.

Index_Store_Tag_D

8 cycles.

Create_Dirty_Exclusive_D

10 cycles for a cache hit.

13 cycles for a cache miss if the cache
line is clean.

15 cycles for a cache miss if the cache
line is dirty (Writeback).

Hit_Invalidate_D

7 cycles for a cache miss.
9 cycles for a cache hit.

Hit_Writeback_Invalidate_D

7 cycles for a cache miss.

12 cycles for a cache hit if the cache
line is clean.

14 cycles for a cache hit if the cache
line is dirty (Writeback).

Hit_Writeback_D

7 cycles for a cache miss.

10 cycles for a cache hit if the cache
line is clean.

14 cycles for a cache hit if the cache
line is dirty (Writeback).

Note:

1Code number corresponds to the code column of the CACHE instruction in Appendix A.

Table C.1 Primary Data Cache Operations
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Code! | Name Number of Cycles

0 Index_Invalidate_| | 7 cycles.

1 Index_Load_Tag_| | 7 cycles.

2 Index_Store_Tag_| | 8 cycles.

3 n/a n/a

4 Hit_Invalidate_|I 7 cycles for a cache miss.

9 cycles for a cache hit.

Fill_|

Cycle number must be calculated based on the sys-
tem response to a memory access, because Fill_I
causes an instruction cache refill from memory.

This equation yields the number of processor cycles
for a Fill_I cache op:?
Number_of _cycles_for_a_Fill_I_CacheOp =10 +{0
- (SYSDIV - 1)} + (2 x SYSDIV) +
(ML x SYSDIV) + (D x SYSDIV) 3

Hit_Writeback_|

7 cycles for a cache miss.
20 cycles for a cache hit (Writeback).

Note:

1Code number corresponds to the code column of the CACHE instruction in Appendix A.

2For definitions and discussion of the Fill_I equation variables refer to the subsection
“Details of the Fill_| Equation,” which follows this table.

3The term {0 - (SYSDIV - 1) has a value between 0 and (SYSDIV - 1), depending on the
alignment of the execution of the cache op with the system clock.

Table C.2 Primary Instruction Cache Operations

Details on the Fill_I Equation
These are the definitions for the Hit_Writeback | equation in Table C.2:

SYSDIV:

2-8.

Number of processor cycles per system cycle; ranges from

ML: Number of system cycles of memory latency, defined as
the number of cycles the SysAD bus is driven by the
external agent before the first double word of data

appears.

D: Number of system cycles required to return the block of
data, defined as the number of cycles beginning when the
first double word of data appears on the SysAD bus and
ending when the last double word of data appears on the
SysAD bus, inclusive.
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Standby Mode Operation Appendix D

The R4600/R4700 provides a means to reduce the amount of power
consumed by the internal core when the CPU would otherwise not be
performing any useful operations. This is known as “Standby Mode” and
is discussed in this appendix.

Entering Standby Mode

To enter Standby Mode, first execute the WAIT instruction. When the
WAIT instruction finishes the W pipe-stage, if the SysAD bus is currently
idle, the internal clocks will shut down, thus freezing the pipeline. The
PLL, internal timer, some of the input pin clocks (Int[5:0]*, NMI*,
ExtRgst*, Reset* and ColdReset*) and the output clocks (TClock[1:0],
RClock[1:0], SyncOut, ModeClock and MasterOut) will continue to run.
If the conditions are not correct when the WAIT instruction finishes the W
pipe-stage (i.e., the SysAD bus is not idle), the WAIT is treated as a NOP.

Once the CPU is in Standby Mode, any interrupt, including ExtRgst* or
Reset*, will cause the CPU to exit Standby Mode.
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This appendix identifies the R4600 and R4700 Coprocessor O hazards.
In Table E.1 the number of instructions required between instruction A
(which places a value in a CPO register) and instruction B (which uses the
same register as a source) is computed using the following formula:

(destination stage of A) - (source stage of B) - 1

SOURCE DESTINATION
Operation Name Stage | Name Stage
MTCO gpr rt 2(A) | cpr rd 4(\W)a
MFCO cpr rd 2(A) | gprrt 4(\W)a
TLBR Index, TLB 2(A) | PageMask, 4(W)
EntryHi,EntryLoO, EntryLol
TLBWI Index or Random, PageMask, 2(A) | TLB 3(D)B
TLBWR EntryHi, EntryLoO, EntryLol
TLBP PageMask, EntryHi 2(A) | Index 4W)
ERET EPC or ErrorEPC, 2(A) | Status.EXL, Status.ERL 4 W)y
Status.ERL -
LLbit 4(W)
CACHE Index Load TagLo, TagHi, ECC 3(D)
Tag
CACHE Index Store TaglLo, TagHi, ECC 3(D)
Tag
Instruction fetch EntryHi.ASID, Status.KSU, Sta- o(l)
tus.RE, Config.KOC, TLB
Status.ERL, Status.EXL o(lyy
Instruction fetch EPC, Status, Cause 4(W)
exception -
BadVAddr, Context, EntryHi | 1(1)d
Coprocessor usable Status.CU, Status.KSU, Sta- 1(R)
test tus.EXL, Status.ERL
Interrupt Cause.IP, Status.IM, Status.IE, 2(A)
Status.EXL, Status.ERL
Load/Store EntryHi.ASID, Status.KSU, Sta- 2(A)
tus.RE, Status.ERL, Status.EXL
Config.KOC, TLB
Load/Store exception EPC, Status, Cause, Bad- 4(W)
VAddr, Context, EntryHi
Notes:
o There must be at least one instruction between a MTCO and a MFCO.
B TLBW_ instructions will cause a one cycle slip.
y Instructions fetches following an ERET will see a change in EXL or ERL in Stage 2 of the ERET in anticipation
of the completion of the ERET. If the ERET does not complete, these instructions are killed before they commit
changes in state other than noted by d. The pipestage corresponding to the stage field is given in parentheses.

Table E.1 Coprocessor O Hazards
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Certain combinations of instructions are not permitted because the
results of executing such combinations are unpredictable in the face of
the events such as pipeline delays, cache misses, interrupts, and excep-
tions.

Most hazards result from instructions modifying and reading state in
different pipeline stages. Such hazards are defined between pairs of
instructions, not on a single instruction in isolation. Other hazards are
associated with restartability of instructions in the presence of exceptions.
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