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Overview Chapter 1

 

Introduction

 

The IDT79R4600 (R4600) and IDT79R4700 (R4700) support a wide
variety of processor-based applications. Because of their low power
consumption, coupled with high performance, they are well suited for a
wide variety of embedded applications, including laser printers,
X-terminals, internetworking equipment, imaging equipment, and high-
end video games.  The R4600 and R4700 are also well-suited to high-
performance desktop applications such as Windows

 

TM

 

 

 

NT desktop and
notebook systems, and 3-D workstations.

Compatible with the IDT79R4400PC family for both hardware and
software, the R4600 and R4700 will serve in many of the same
applications, but in addition support low-power operation for applications
such as notebook computers. 

 

Floating Point 

 

The R4700 has improved FPA multiply operations.  All other features of
the R4700 are the same as those in the R4600.  In this manual, these two
products are referred to collectively as the R4600/R4700, except when
information pertains only to one of them.  In that situation they are
referred to individually.

 

Secondary Cache

 

The R4600/R4700 does not provide integrated secondary cache and
multiprocessor support as found in the R4000SC and R4000MC, but it is
simple to build an external secondary cache. For most embedded
applications, however, the large on-chip, two-way set associative caches
make this unnecessary.

 

Performance

 

The R4600/R4700 brings R4000SC performance levels to the R4000PC
package, while at the same time providing lower cost and lower power. It
does this by providing larger on-chip caches that are two-way set
associative, fewer pipeline stalls, and early restart for data cache misses.
The result is higher performance than for an R4000 at the same frequency
and for the same system latencies (exact figures are system dependent).

 

Upward Compatibility

 

The R4600/R4700 provides complete upward application-software
compatibility with the IDT79R3000 family of microprocessors, including
the IDT79R3000A and the IDT RISController™ family (IDT79R30xx family)
as well the IDT79R4000 family of microprocessors. Microsoft
Windows™NT and UNISOFT Unix™ V.4 operating systems insure the
availability of thousands of applications programs, geared to provide a
complete solution to a large number of processing needs. An array of
development tools facilitates the rapid development of R4600/R4700-
based systems, enabling a wide variety of customers to take advantage of
the MIPS Open Architecture philosophy.

Together with the R4400, the R4600/R4700 provides a compatible,
timely, and necessary evolution path from 32-bit to true, 64-bit
computing. The original design objectives of the R4000 clearly mandated
this evolution path; the result is a true 64-bit processor fully compatible
with 32-bit operating systems and applications.

The R4600/R4700 enables 32-bit applications to access 64-bit compute
power painlessly.  The software tools support a wide variety of models,
including 32-bit address and data, 64-bit address and data, and 32-bit
address/64-bit data.  32-bit address/data enables applications to be
migrated without “cleaning up” some software.  
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The R4600/R4700 offers high-performance, large caches, and MMU and
FPA functions to these systems.  For desktop systems, the R4600/R4700
supports a full migration to 64-bit, allowing 64-bit systems to execute true
64-bit or older 32-bit applications.  For embedded applications, the power
and bandwidth of 64-bit data types can be used without the memory
expansion of 64-bit addressing.

The list on the following page summarizes the R4600/R4700 features.
For a feature-by-feature comparison with the R4000, refer to the tables
beginning on page 9-23.
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Features

 

• True 64-bit microprocessor
- 64-bit integer operations
- 64-bit floating-point operations
- 64-bit registers
- 64-bit virtual address space

• High-performance microprocessor
- For R4600: 133 peak MIPS at 133MHz

For R4700: 175 peak MIPS at 175MHz
- For R4600: 44 peak MFLOP/s at 133MHz

For R4700: 87 peak MFLOP/s at 175MH
- For R4600: 109 SPECint92 and 83 SPECfp92 at 150Mz

For R4700: 132 SPECint92 and 94 SPECfp92 at 175Mz
- Large two-way set associative caches on-chip

• Improved FPA multiply performance (R4700 only)
- 1 mul, 1 add every 4 clock cycles

• High level of integration
- 64-bit integer CPU
- 64-bit floating-point unit
- 16KB instruction cache; 16KB data cache
- Flexible MMU with large TLB

• Low-power operation
- 3.3V or 5V power supply options
- For R4600: 25mW/MHz internal power dissipation

(2.5W @ 100MHz, 3.3V)
For R4700: 24mW/MHz internal power dissipation

(2.4W @ 100MHz, 3.3V)
- Standby mode reduces internal power to 400mW

• Fully software compatible with R4000 Processor Family

• Standard operating system support includes:
- Microsoft Windows NT
- UNISOFT Unix™ System V.4
- JMI C-executive
- VX Works

• Available in 179-pin PGA or 208-pin MQUAD

• Input and output clock frequency:
- Input clock at one-half pipeline frequency
- Output clock is a programmable divisor of the pipeline frequency
- Selectable bus frequency
- Ratios of 1/2...1/8 of pipeline rate

• 64GB physical address space

• Processor family for a wide variety of applications
- Desktop workstations and PCs
- Deskside or departmental servers
- Routers
- High-performance embedded applications
- Notebooks

• Large number of development tools, including:
- Cross compilers
- Logic models
- Logic analyzer support
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Device Overview

 

The R4600/R4700 family brings a high-level of integration designed for
high-performance and high-bandwidth computing. The key elements of
the R4600/R4700 are briefly described below.   An overview of these blocks
is found here, with more detailed information on each block presented in
subsequent chapters.

Figure 1.1 shows a block level representation of the functional units
within the R4600/R4700.

 

Figure 1.1  R4600/R4700 Block Diagram

 

Pipeline Overview

 

The R4600/R4700 uses a 5-stage pipeline similar to the IDT79R3000.
The simplicity of this pipeline allows the R4600/R4700 to be lower-cost
and lower-power than super-scalar or super-pipelined processors. Unlike
the R3000, the R4600/R4700 does virtual-to-physical translation in
parallel with cache access. This allows the R4600/R4700 to operate at over
twice the frequency of the R3000 and to support a larger TLB for address
translation.

Compared to the 8-stage R4000 pipeline, the R4600/R4700 is more
efficient (requires fewer stalls). This is because the branch and load latency
for the R4600/R4700 is shorter than for the R4000 (both are 2 cycles for
the R4600/R4700 but are 3 and 4 cycles respectively for the R4000).
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The internal pipeline of the R4600/R4700 processor operates at twice
the frequency of the master clock, as discussed in Chapter 3. The
processor achieves high throughput by pipelining cache accesses,
shortening register access times, implementing virtual-indexed primary
caches, and allowing the latency of certain functional units to span more
than one pipeline clock cycles.

Refer to Chapter 3 for a detailed discussion of the CPU pipeline
operation, including descriptions of the delay instructions, interruptions
to the pipeline flow caused by interlocks and exceptions, and the R4600/
R4700 implementation of a store buffer.  Refer to Chapter 6 for a detailed
discussion of the FPU pipeline. 

 

CPU Register Overview

 

The R4600/R4700 has thirty-two general purpose registers. These
registers are used for scalar integer operations and address calculation.
The register file consists of two read ports and one write port, and is fully
bypassed to minimize operation latency in the pipeline.

Figure 1.2 shows the R4600/R4700 CPU registers.

 

Figure 1.2  R4600/R4700 CPU Registers

 

Two of the CPU general purpose registers have assigned functions:
•

 

r0

 

 is hardwired to a value of zero, and can be used as the target reg-
ister for any instruction whose result is to be discarded. 

 

r0

 

 can also
be used as a source when a zero value is needed.

•

 

r31

 

 is used as an implicit return destination address register by the
JAL and BAL series of instructions.

The CPU has three special purpose registers:
•

 

PC

 

 — Program Counter register
•

 

HI

 

 — Multiply and Divide register higher result
•

 

LO

 

 — Multiply and Divide register lower result
The two Multiply and Divide registers (

 

HI

 

, 

 

LO

 

) store:
• the product of integer multiply operations, or
• the quotient (in 

 

LO

 

) and remainder (in 

 

HI

 

) of integer divide operations.
The R4600/R4700 processor has no 

 

Program Status Word

 

 (PSW) register
as such; this is covered by the 

 

Status 

 

and 

 

Cause 

 

registers incorporated
within the System Control Coprocessor (CP0). CP0 registers are described
later in this chapter.
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CPU Instruction Set Overview

 

Each CPU instruction is 32 bits long. As shown in Figure 1.3, there are
three instruction formats: 

• immediate (I-type)
• jump (J-type)
• register (R-type)

 

Figure 1.3  CPU Instruction Formats

 

Each format contains a number of different instructions, which are
described further in this chapter. Fields of the instruction formats are
described in Chapter 2.

Instruction decoding is simplified by limiting the number of formats to
these three. This limitation means that the more complicated (and less
frequently used) operations and addressing modes can be synthesized by
the compiler, using sequences of these same simple instructions. 

The instruction set can be further divided into the following groupings:
•

 

Load and Store i

 

nstructions move data between memory and general
registers. They are all immediate (I-type) instructions, since the only
addressing mode supported is base register plus 16-bit, signed imme-
diate offset.

•

 

Computational 

 

instructions perform arithmetic, logical, shift, multi-
ply, and divide operations on values in registers. They include register
(R-type, in which both the operands and the result are stored in reg-
isters) and immediate (I-type, in which one operand is a 16-bit imme-
diate value) formats.

•

 

Jump and Branch 

 

instructions change the control flow of a program.
Jumps are always made to a paged, absolute address formed by com-
bining a 26-bit target address with the high-order bits of the Program
Counter (J-type format) or register address (R-type format). Branches
have 16-bit offsets relative to the program counter (I-type). Jump And
Link instructions save their return address in register 31.

•

 

Coprocessor 

 

instructions perform operations in the coprocessors.
Coprocessor load and store instructions are I-type. 

•

 

Coprocessor 0 

 

(system coprocessor) instructions perform operations
on CP0 registers to control the memory management and exception
handling facilities of the processor and the standby mode for power
management. These are listed in Table 1.17.

•

 

Special 

 

instructions perform system calls and breakpoint operations.
These instructions are always R-type.

•

 

Exception 

 

instructions cause a branch to the general exception-han-
dling vector based upon the result of a comparison. These instruc-
tions occur in both R-type (both the operands and the result are
registers) and I-type (one operand is a 16-bit immediate value) for-
mats.

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
11 10 6 5

rd saR-Type (Register)

J-Type (Jump)

I-Type (Immediate)
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Chapter 2 provides more detail about these instructions, and Appendix
A gives a complete description of each.

Table 1.1 through Table 1.16 list CPU instructions common to MIPS
R-Series processors, along with the level in which they first appeared. The
last column in each table refers to the MIPS ISA level in which the
instruction first appeared.  Table 1.17 lists CP0 instructions.

  

  

 

OpCode Description MIPS ISA Level

 

1

 

LB Load Byte I

LBU Load Byte Unsigned I

LH Load Halfword I

LHU Load Halfword Unsigned I

LW Load Word I

LWL Load Word Left I

LWR Load Word Right I

SB Store Byte I

SH Store Halfword I

SW Store Word I

SWL Store Word Left I

SWR Store Word Right I

 

Note:

 

1

 

For Tables 1.1 through 1.17 this column refers to the level in which the
instruction first appeared.

 

Table 1.1  CPU Instruction Set: Load and Store Instructions

 

OpCode Description MIPS ISA Level

 

ADDI Add Immediate I

ADDIU Add Immediate Unsigned I

SLTI Set on Less Than Immediate I

SLTIU Set on Less Than Immediate 
Unsigned

I

ANDI AND Immediate I

ORI OR Immediate I

XORI Exclusive OR Immediate I

LUI Load Upper Immediate I

 

Table 1.2  CPU Instruction Set: Arithmetic Instructions (ALU Immediate)
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OpCode Description MIPS ISA Level

 

ADD Add I

ADDU Add Unsigned I

SUB Subtract I

SUBU Subtract Unsigned I

SLT Set on Less Than I

SLTU Set on Less Than Unsigned I

AND AND I

OR OR I

XOR Exclusive OR I

NOR NOR I

 

Table 1.3  CPU Instruction Set: Arithmetic (3-Operand, R-Type)

 

OpCode Description MIPS ISA Level

 

MULT Multiply I

MULTU Multiply Unsigned I

DIV Divide I

DIVU Divide Unsigned I

MFHI Move From HI I

MTHI Move To HI I

MFLO Move From LO I

MTLO Move To LO I

 

Table 1.4  CPU Instruction Set: Multiply and Divide Instructions

 

OpCode Description MIPS ISA Level

 

J Jump I

JAL Jump And Link I

 

Table 1.5  CPU Instruction Set: Jump and Branch Instruction
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JR Jump Register I

JALR Jump And Link Register I

BEQ Branch on Equal I

BNE Branch on Not Equal I

BLEZ Branch on Less Than or Equal to Zero I

BGTZ Branch on Greater Than Zero I

BLTZ Branch on Less Than Zero I

BGEZ Branch on Greater Than or Equal to Zero I

BLTZAL Branch on Less Than Zero And Link I

BGEZAL Branch on Greater Than or Equal to Zero 
And Link

I

 

OpCode Description MIPS ISA Level

 

SLL Shift Left Logical I

SRL Shift Right Logical I

SRA Shift Right Arithmetic I

SLLV Shift Left Logical Variable I

SRLV Shift Right Logical Variable I

SRAV Shift Right Arithmetic Variable I

 

Table 1.6  CPU Instruction Set: Shift Instructions

 

OpCode Description MIPS ISA Level

 

LWCz Load Word to Coprocessor z I

SWCz Store Word from Coprocessor z I

MTCz Move To Coprocessor z I

MFCz Move From Coprocessor z I

CTCz Move Control to Coprocessor z I

CFCz Move Control From Coprocessor z I

COPz Coprocessor Operation z I

BCzT Branch on Coprocessor z True I

BCzF Branch on Coprocessor z False I

 

Table 1.7  Instruction Set: Coprocessor Instructions

 

OpCode Description MIPS ISA Level

 

SYSCALL System Call I

BREAK Break I

 

Table 1.8  CPU Instruction Set: Special Instructions

 

OpCode Description MIPS ISA Level

 

Table 1.5  CPU Instruction Set: Jump and Branch Instruction
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OpCode Description MIPS ISA Level

 

LD Load Doubleword III

LDL Load Doubleword Left III

LDR Load Doubleword Right III

LL Load Linked II

LLD Load Linked Doubleword III

LWU Load Word Unsigned III

SC Store Conditional II

SCD Store Conditional Doubleword III

SD Store Doubleword III

SDL Store Doubleword Left III

SDR Store Doubleword Right III

SYNC Sync II

 

Table 1.9  MIPS 2/MIPS 3 Additional: Load and Store Instructions

 

OpCode Description MIPS ISA Level

 

DADDI Doubleword Add Immediate III

DADDIU Doubleword Add Immediate 
Unsigned

III

 

Table 1.10  MIPS 2/MIPS 3 Additional: Arithmetic Instructions (ALU Immediate)

 

OpCode Description MIPS ISA Level

 

DMULT Doubleword Multiply III

DMULTU Doubleword Multiply Unsigned III

DDIV Doubleword Divide III

DDIVU Doubleword Divide Unsigned III

 

Table 1.11  MIPS 2/MIPS 3 Additional: Multiply and Divide Instructions
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OpCode Description
MIPS ISA Level

 

BEQL Branch on Equal Likely II

BNEL Branch on Not Equal Likely II

BLEZL Branch on Less Than or Equal to Zero 
Likely

II

BGTZL Branch on Greater Than Zero Likely II

BLTZL Branch on Less Than Zero Likely II

BGEZL Branch on Greater Than or Equal to Zero 
Likely

II

BLTZALL Branch on Less Than Zero And Link 
Likely

II

BGEZALL Branch on Greater Than or Equal to Zero 
And Link Likely

II

BCzTL Branch on Coprocessor z True Likely II

BCzFL Branch on Coprocessor z False Likely II

 

Table 1.12  MIPS 2/MIPS 3 Additional: Branch Instructions

 

OpCode Description MIPS ISA Level

 

DADD Doubleword Add III

DADDU Doubleword Add Unsigned III

DSUB Doubleword Subtract III

DSUBU Doubleword Subtract Unsigned III

 

Table 1.13  MIPS 2/MIPS 3 Additional: Arithmetic Instructions 
(3-operand, R-type)

 

OpCode Description MIPS ISA Level

 

DSLL Doubleword Shift Left Logical III

DSRL Doubleword Shift Right Logical III

DSRA Doubleword Shift Right Arithmetic III

DSLLV Doubleword Shift Left Logical Variable III

DSRLV Doubleword Shift Right Logical Variable III

DSRAV Doubleword Shift Right Arithmetic Variable III

DSLL32 Doubleword Shift Left Logical + 32 III

DSRL32 Doubleword Shift Right Logical + 32 III

DSRA32 Doubleword Shift Right Arithmetic + 32 III

 

Table 1.14  MIPS 2/MIPS 3 Additional: Shift Instructions
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OpCode Description MIPS ISA Level

 

TGE Trap if Greater Than or Equal II

TGEU Trap if Greater Than or Equal Unsigned II

TLT Trap if Less Than II

TLTU Trap if Less Than Unsigned II

TEQ Trap if Equal II

TNE Trap if Not Equal II

TGEI Trap if Greater Than or Equal Immediate II

TGEIU Trap if Greater Than or Equal Immediate 
Unsigned

II

TLTI Trap if Less Than Immediate II

TLTIU Trap if Less Than Immediate Unsigned II

TEQI Trap if Equal Immediate II

TNEI Trap if Not Equal Immediate II

 

Table 1.15  MIPS 2/MIPS 3 Additional: Exception Instructions

 

OpCode Description MIPS ISA Level

 

DMFCz Doubleword Move From Coprocessor z II

DMTCz Doubleword Move To Coprocessor z II

LDCz Load Double Coprocessor z II

SDCz Store Double Coprocessor z II

 

Table 1.16  MIPS 2/MIPS 3 Additional: Coprocessor Instructions

 

OpCode Description MIPS ISA Level

 

DMFC0 Doubleword Move From CP0 III

DMTC0 Doubleword Move To CP0 III

MTC0 Move to CP0 I

MFC0 Move from CP0 I

TLBR Read Indexed TLB Entry I

TLBWI Write Indexed TLB Entry I

TLBWR Write Random TLB Entry I

TLBP Probe TLB for Matching Entry I

CACHE Cache Operation R4xxx only

ERET Exception Return R4xxx only

WAIT Enter Standby mode R4600 only

 

Table 1.17  CP0 Instructions
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Data Formats and Addressing

 

The R4600/R4700 processor uses four data formats: a 64-bit
doubleword, a 32-bit word, a 16-bit halfword, and an 8-bit byte. Byte
ordering within each of the larger data formats—halfword, word,
doubleword—can be configured in either big-endian or little-endian order.
Endianness refers to the location of byte 0 within the multi-byte data
structure. Figures 1.4 and 1.5 show the ordering of bytes within words and
the ordering of words within multiple-word structures for the big-endian
and little-endian conventions. 

When the R4000 processor is configured as a big-endian system, byte 0
is the most-significant (leftmost) byte, thereby providing compatibility with
MC 68000

 

‚

 

 and IBM 370

 

‚

 

 conventions. Figure 1.4 shows this configuration.

 

Figure 1.4  Big-Endian Byte Ordering

 

When configured as a little-endian system, byte 0 is always the least-
significant (rightmost) byte, which is compatible with iAPX

 

‚

 

 x86 and DEC
VAX

 

‚

 

 conventions. Figure 1.5 shows this configuration.

 

Figure 1.5  Little-Endian Byte Ordering 

 

In this text, bit 0 is always the least-significant (rightmost) bit; thus, bit
designations are always little-endian (although no instructions explicitly
designate bit positions within words).

Figures 1.6 and 1.7 show little-endian and big-endian byte ordering in
doublewords.
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Figure 1.6  Little-Endian Data in a Doubleword
 

 

 

 

Figure 1.7  Big-Endian Data in a Doubleword

 

The CPU uses byte addressing for halfword, word, and doubleword
accesses with the following alignment constraints: 

• Halfword accesses must be aligned on an even byte boundary 
(0, 2, 4...).

• Word accesses must be aligned on a byte boundary divisible by four
(0, 4, 8...).

• Doubleword accesses must be aligned on a byte boundary divisible by
eight (0, 8, 16...).

The following special instructions load and store words that are not
aligned on 4-byte (word) or 8-word (doubleword) boundaries: 

LWL LWR SWL SWR
LDL LDR SDL SDR

These instructions are used in pairs to provide addressing of misaligned
words. Addressing misaligned data incurs one additional instruction cycle
over that required for addressing aligned data. This extra cycle is because
of an extra instruction for the “pair” (e.g., LWL and LWR form a pair).  Also
note that the CPU moves the unaligned data at the same rate as a
hardware mechanism.
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Figures 1.8 and 1.9 show the access of a misaligned word that has byte
address 3.

 

Figure 1.8  Big-Endian Misaligned Word Addressing

Figure 1.9  Little-Endian Misaligned Word Addressing

 

Coprocessors (CP0-CP2)

 

The MIPS ISA (MIPS III) for the R4600/R4700 (and R4000/R4400)
defines three coprocessors (designated CP0 through CP2):

• Coprocessor 0 (

 

CP0

 

) is incorporated on the CPU chip and supports
the virtual memory system and exception handling.  CP0 is also re-
ferred to as the 

 

System Control Coprocessor

 

.
• Coprocessor 1 (

 

CP1) is incorporated on the R4600/R4700, and imple-
ments the MIPS floating-point instruction set.

• Coprocessor 2 (CP2) is reserved for future use.
CP0 and CP1 are described in the sections that follow.

System Control Coprocessor, CP0
CP0 translates virtual addresses into physical addresses and manages

exceptions and transitions between kernel, supervisor, and user states.
CP0 also controls the cache subsystem, as well as providing diagnostic
control and error recovery facilities.

CP0 is also used to control the power management for the R4600/
R4700. This is the standby mode and it can be used to reduce the power
consumption of the internal core of the CPU. The standby mode is entered
by executing the WAIT instruction with the SysAD bus idle and is exited by
any interrupt. This feature is discussed in Appendix G.

Higher
Address

Lower
Address

 Bit #

4 5 6

3

31 24 23 16 15 8 7 0

Higher
Address

Lower
Address

31 24 23 16 15 8 7 0

 Bit #

3

6 45



Overview Chapter 1

1 – 16

The CP0 registers shown in Figure 1.10 and described in Table 1.18 on
page 1.17 manipulate the memory management and exception handling
capabilities of the CPU.

Note: Access to reserved or undefined CP0 register results are unde-
fined.  An exception may or may not result.

Figure 1.10  R4600/R4700 CP0 Registers   
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Number Register Description

0 Index Programmable pointer into TLB array

1 Random Pseudorandom pointer into TLB array (read only)

2 EntryLo0 Low half of TLB entry for even virtual page (VPN)

3 EntryLo1 Low half of TLB entry for odd virtual page (VPN)

4 Context Pointer to kernel virtual page table entry (PTE) for 32-
bit address spaces

5 PageMask TLB Page Mask

6 Wired Number of wired TLB entries

7 — Reserved

8 BadVAddr Bad virtual address

9 Count Timer Count

10 EntryHi High half of TLB entry

11 Compare Timer Compare

12 SR Status register

13 Cause Cause of last exception

14 EPC Exception Program Counter

15 PRId Processor Revision Identifier

16 Config Configuration register

17 LLAddr Load Linked Address

18 - 19 — Reserved

20 XContext Pointer to kernel virtual PTE table for 64-bit address 
spaces

21–25 — Reserved

26 ECC Secondary-cache error checking and correcting (ECC) 
and Primary parity

27 CacheErr Cache Error and Status register

28 TagLo Cache Tag register

29 TagHi Cache Tag register

30 ErrorEPC Error Exception Program Counter

31 — Reserved

Table 1.18  System Control Coprocessor (CP0) Register Definitions
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Floating-Point Co-Processor
The R4600/R4700 incorporates an entire floating-point co-processor on

chip, including a floating-point register file and execution units. The
floating-point co-processor forms a “seamless” interface with the integer
unit, decoding and executing instructions in parallel with the integer unit.
The R4700 enhances the FPA implemented in the original R4600, resulting
in an improved peak MFLOP rate.

Floating-Point Units
The R4600/R4700 floating-point execution units supports single and

double precision arithmetic, as specified in the IEEE Standard 754. The
execution unit is broken into a separate multiply unit and a combined
add/convert/divide/square root unit. Overlap of multiplies and add/
subtract is supported. The multiplier is partially pipelined, allowing a new
multiply to begin every 6 cycles for the R4600, and every 4 cycles for the
R4700.

As in the R3010 and R4000, the R4600/R4700 maintains fully precise
floating-point exceptions while allowing both overlapped and pipelined
operations. Precise exceptions are extremely important in mission-critical
environments, such as ADA, and highly desirable for debugging in any
environment.

The floating-point unit’s operation set includes floating-point add,
subtract, multiply, divide, square root, conversion between fixed-point and
floating-point format, conversion among floating-point formats, and
floating-point compare. These operations comply with the IEEE Standard
754.

Table 1.19 shows the latencies of some of the floating-point instructions
in internal processor cycles. Due to pipelining, repeat rates may be higher.
Also note that many operations are autonomous and can go in parallel.

Operation Single Precision Double Precision

ADD 4 4

SUB 4 4

MUL R4600:  8
R4700:  4

R4600:  8
R4700:  5

DIV 32 61

SQRT 31 60

CMP 3 3

FIX 4 4

FLOAT 6 6

ABS 1 1

MOV 1 1

NEG 1 1

LWC1, LDC1 2 2

SWC1, SDC1 1 1

Table 1.19  Floating-Point Latency Cycles
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Virtual to Physical Address Mapping
The R4600/R4700 provides three modes of operation:
• user mode
• supervisor mode
• kernel mode
This mechanism is available to system software to provide a secure

environment for user processes. Bits in a status register determine the
mode of operation. In the user mode, the R4600/R4700 provides a single,
uniform virtual address space of 256GB (2GB when Status.UX = 0).

When operating in the kernel mode, four distinct virtual address spaces,
totalling 1024GB (4GB when Status.KX = 0), are simultaneously available
and are differentiated by the high-order bits of the virtual address.

The R4600/R4700 processors also support a supervisor mode in which
the virtual address space is 256.5GB (2.5GB when Stauts.SX = 0), divided
into three regions based on the high-order bits of the virtual address.

When the R4600/R4700 uses 64-bit virtual addresses, the address
space layouts are an upward compatible extension of the 32-bit virtual
address space layout. A detailed description of the addressing is given in
Chapter 4.

Joint TLB
For fast virtual-to-physical address decoding, the R4600/R4700 uses a

large, fully associative TLB which maps 96 Virtual pages to their
corresponding physical addresses. The TLB is organized as 48 pairs of
even-odd entries, and maps a virtual address and address space identifier
into the large, 64GB physical address space.

Two mechanisms are provided to assist in controlling the amount of
mapped space, and the replacement characteristics of various memory
regions. First, the page size can be configured, on a per-entry basis, to map
a page size of 4KB to 16MB (in multiples of 4). A CP0 register is loaded with
the page size of a mapping, and that size is entered into the TLB when a
new entry is written. Thus, operating systems can provide special purpose
maps; for example, a typical frame buffer can be memory mapped using
only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB
miss occurs. The R4600/R4700 provides a random replacement algorithm
to select a TLB entry to be written with a new mapping; however, the
processor provides a mechanism whereby a system specific number of
mappings can be locked into the TLB, and thus avoid being randomly
replaced. This facilitates the design of real-time systems, by allowing
deterministic access to critical software.

The joint TLB also contains information to control the cache coherency
protocol for each page. Specifically, each page has attribute bits to
determine whether the coherency algorithm is: uncached, non-coherent
write-back, non-coherent write-through write-allocate, non-coherent
write-through no write-allocate, sharable, exclusive, or update. Non-
coherent write-back is typically used for both code and data on the R4600/
R4700; the write-through modes support more efficient frame buffer
accesses than the R4000 family. The coherent modes are supported for
R4000 compatibility and generate different transaction types on the
system interface; cache coherency is not supported however.
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Instruction TLB
The R4600/R4700 also incorporates a 2-entry instruction TLB. Each

entry maps a 4KB page. The instruction TLB improves performance by
allowing instruction address translation to occur in parallel with data
address translation. When a miss occurs on an instruction address
translation, the least-recently used ITLB entry is filled from the JTLB. The
operation of the ITLB is invisible to the user.

Data TLB
The R4600/R4700 also incorporates a 4-entry data TLB. Each entry

maps a 4KB page. The data TLB improves performance by allowing data
address translation to occur in parallel with data address translation.
When a miss occurs on an data address translation, the DTLB is filled from
the JTLB. The DTLB refill is pseudo-LRU: the least recently used entry of
the least recently used half is filled. The operation of the DTLB is invisible
to the user.

Cache Memory
In order to keep the R4600/R4700’s high-performance pipeline full and

operating efficiently, the R4600/R4700 incorporates on-chip instruction
and data caches that can be accessed in a single processor cycle. Each
cache has its own 64-bit data path and can be accessed in parallel. The
cache subsystem provides the integer and floating-point units with an
aggregate bandwidth of 1.6GB per second at a system clock frequency of
50MHz.

Furthermore, the large, Two-way set associative caches increase
emulation performance of DOS and Windows 3.1 applications when
running under Windows NT.

Instruction Cache
The R4600/R4700 incorporates a two-way set associative on-chip

instruction cache. This virtually indexed, physically tagged cache is 16KB
in size and is protected with word parity.

Because the cache is virtually indexed, the virtual-to-physical address
translation occurs in parallel with the cache access, thus further
increasing performance by allowing these two operations to occur
simultaneously. The tag holds a 24-bit physical address and valid bit, and
is parity protected.

The instruction cache is 64-bits wide, and can be refilled or accessed in
a single processor cycle. Instruction fetches require only 32 bits per cycle,
for a peak instruction bandwidth of 700 MB/sec @ 175MHz.  Sequential
accesses take advantage of the 64-bit fetch to reduce power dissipation,
and cache miss refill writes 64 bits per cycle to minimize the cache miss
penalty. The line size is eight instructions (32 bytes) to maximize
performance.

Data Cache
For fast, single cycle data access, the R4600/R4700 includes a 16KB on-

chip data cache that is two-way set associative with a fixed 32-byte (eight
words) line size.  Both the D-cache and the I-cache can be accessed each
pipeline cycle; thus, the data bandwidth is 1400 MB/sec @ 175 MHz, in
addition to the 700 MB/sec instruction bandwidth.

The data cache is protected with byte parity and its tag is protected with
a single parity bit. It is virtually indexed and physically tagged to allow
simultaneous address translation and data cache access
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The normal write policy is writeback, which means that a store to a cache
line does not immediately cause memory to be updated. This increases
system performance by reducing bus traffic and eliminating the bottleneck
of waiting for each store operation to finish before issuing a subsequent
memory operation. Software can however select write-through on a per-
page basis when it is appropriate, such as for frame buffers.

Associated with the Data Cache is the store buffer. When the R4600/
R4700 executes a Store instruction, this single-entry buffer gets written
with the store data while the tag comparison is performed. If the tag
matches, then the data is written into the Data Cache in the next cycle that
the Data Cache is not accessed (the next non-load cycle). The store buffer
allows the R4600/R4700 to execute a store every processor cycle and to
perform back-to-back stores without penalty.

Write buffer
Writes to external memory, whether cache miss writebacks or stores to

uncached or write-through addresses, use the on-chip write buffer. The
write buffer holds up to four 64-bit address and data pairs or 1 cache line
to be written back. The entire buffer is used for a data cache writeback and
allows the processor to proceed in parallel with memory update. For
uncached and write-through stores, the write buffer significantly increases
performance over the R4000 family of processors.

R4600/R4700 Clocks
The R4600/R4700 has a number of clocks for the user.  First, there is

the pipeline clock, PClock. This clock is used for the pipeline and pipeline
related functions internal to the R4600/R4700. It is two times the
MasterClock frequency. The next clock is the system interface clock,
SClock. This is also an internal clock and is used to sample data at the
system interface and to clock data into the processor system interface
output registers. The SClock is a divided version of the PClock. The divisor
is selected at boot time.

There are three external clocks. (Some outputs are replicated to minimize
loading.)  The MasterOut is at the same frequency as MasterClock and can
be used to clock certain external logic. The other clocks are used by the
external agent. These are the TClock, Transmit clock, and the RClock,
Receive clock. The TClock is used to clock the output registers (signals
transmitted to the R4600/R4700) of the external agent and is at the same
frequency as SClock. The RClock is used to clock the input register (signals
received from the R4600/R4700) of the external agent. It is also at the
same frequency as the SClock but its phase leads the SClock and TClock
by 25%.  The R4600/R4700 implements an on-chip PLL to eliminate the
effects of clock skew.



Overview Chapter 1

1 – 22

System Interface
The R4600/R4700 supports a 64-bit system interface that is compatible

with the R4000PC system interface. This interface operates from two
clocks provided by the R4600/R4700, TClock[1:0] and RClock[1:0], at a
division of the pipeline clock.

The interface consists of a 64-bit Address/Data bus with 8 check bits
and a 9-bit command bus. In addition, there are 8 handshake signals and
6 interrupt inputs. The interface has a simple timing specification and is
capable of transferring data between the processor and memory at a peak
rate of 400MB/sec at 50MHz.

Figure 1.11 shows a typical system using the R4600/R4700. In this
example there is DRAM, a boot EPROM and an optional secondary cache.

Figure 1.11  Typical System Block Diagram
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Comparison of R4600/R4700 and R4400
This section compares features of the R4600/R4700 to the earlier R4400

PC.  Table 1.20 to Table 1.26 highlight some of the differences between the
R4600/R4700 and the R4400 PC. This list is not exhaustive.

  

Item R4400 PC R4600/R4700

I/O R4400:  TTL compatible
RV4400:  LV CMOS

R4600/R4700: TTL-compatible (5V ±0.5%)
RV4600/RV4700: LVCMOS (3.3V±0.3V)

Package 179-pin ceramic PGA same and 208-pin MQUAD

JTAG yes no (serial out connected directly to serial in)

Block transfer sizes 16B or 32B 32B

Sclock divisor 2, 3, 4, 6, 8 2, 3, 4, 5, 6, 7, 8

Non-block writes max throughput of 4 sclock cycles two new system interface protocol options 
that support 2 sclock cycle throughput 
(remains 4 in compatibility mode)

Serial configuration as described in R4000 User’s Guide different, as described in Table 9.2 on 
page 9-7

Address bits 63..56 on reads and 
writes

zero bits 19..12 of virtual address

Uncached and write-through 
stores

uncached stores are buffered in 1-
entry uncached store buffer (write 
through not possible)

uncached and write-though stores buffered 
in 4-entry write buffer

SysADC parity only same

SysADC for non-data cycles parity zero

SysCmdP parity zero

Parity error during writeback use Cache Error exception output bad parity

Error bit in data identifier of 
read responses

Bus Error if error bit set for any dou-
bleword

only check error bit of first doubleword; all 
other error bits ignored

Parity error on read data Bus Error if parity error in any dou-
bleword

bad parity written to cache; take Cache 
Error exception if bad parity occurs on dou-
blewords that the processor is waiting for

Block writes 1-2 null cycles between address and 
data

0 cycles between address and data

Release after Read Request variable latency 0 latency

SysAD value for x cycles of write-
back data pattern

data bus undefined data bus maintains last D cycle value

SysAD bus use after last D cycle 
of writeback

data bus undefined trailing x cycles (e.g. DDxxDDxx, not 
DDxxDD) follow rule in entry immediately 
preceding

Output slew rate dynamic feedback control simple CMOS output buffers with 2-bit 
static strength control

IOOut output output slew rate control feedback 
loop output

driven HIGH, do not connect
(reserved for future output)

IOIn input output slew rate control input should be driven high
(reserved for future input)

GrpRunB output do not connect same
(reserved for future output)

GrpStallB input should be connected to VCC same
(reserved for future input)

FaultB output pin indicates compare mismatch driven HIGH, do not connect
(reserved for future output)

Table 1.20  System Interface Comparison Between R4400 PC and R4600/R4700  
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Item R4400 PC R4600/R4700

Cache Sizes 16KB Instruction cache, 16KB Data 
cache

16KB Instruction cache, 16KB Data 
cache

Cache Line Sizes software selectable between 16B and 
32B

fixed at 32B

Cache Index vAddr13..0 vAddr12..0

Cache Tag pAddr35..12 same

Cache Organization direct mapped 2-way set associative

Data cache write policy write-allocate and write-back write-allocate or not based on TLB 
entry, write-through or not based on 
TLB entry

Data cache miss stall, output address, copy dirty data to 
writeback buffer, refill cache, output 
writeback data

same, with FIFO to select the set to 
refill

Data order for block 
reads

sub-block ordering same

Data order for block 
writes

sequential same

Instruction cache miss 
restart

restart after all data received and writ-
ten to cache

same

Data cache miss restart restart after all data received and writ-
ten to cache

restart on first doubleword, send sub-
sequent doublewords to response 
buffer

Instruction Tag 2-bit cache state 1-bit cache state

Cache miss overhead 5-8 cycles 3 cycles

Instruction cache parity 1 parity bit per 8 data bits 1 parity bit per 32 data bits

Data cache parity 1 parity bit per 8 data bits same

Table 1.21  Cache Comparison Between R4400 PC and R4600/R4700
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Item R4400 PC R4600/R4700

Instruction virtual 
address translation

2-entry ITLB same

ITLB miss 1 cycle penalty, refilled from JTLB, 
LRU replacement

1 cycle on branch, jump, and ERET, 2 
cycles otherwise, refilled from JTLB, 
LRU replacement

Data virtual address 
translation

done directly in JTLB 4-entry DTLB

DTLB miss n.a. 1 cycle penalty, refilled from JTLB, 
pseudo-LRU replacement

JTLB 48 entries of even/odd page pairs, fully 
associative

same

Page size 4KB, 16KB, ..., 16MB same

Multiple entry match 
in JTLB

sets TS in Status and disables TLB 
until Reset to prevent damage

no damage for multiple match; no 
detection or shutdown implemented

Virtual address size VSIZE = 40 same

Physical address size PSIZE = 36 same

Table 1.22  TLB Comparison Between R4400 PC and R4600/R4700

Item R4400 PC R4600/R4700

ALU latency 1 cycle 1 cycle

Load latency 3 cycles 2 cycles

Branch latency 4 cycles (2 cycle penalty for taken 
branches)

2 cycles (no penalty for taken 
branches)

Store buffer (not write 
buffer)

2 doublewords 1 doubleword

Integer multiply integer multiply hardware, 1 cycle to 
issue

done in floating-point multiplier, 4 
cycles to issue

Integer divide done in integer datapath adder, slips 
until done

done in floating-point adder, 4 cycles to 
issue

Integer multiply HIGH and LOW available at the same 
time

LOW available one cycle before HIGH

Integer divide HIGH and LOW available at the same 
time

HIGH available one cycle before LOW

HIGH and LOW hazards yes, HIGH and LOW written early in 
pipeline

no, HIGH and LOW written after W

MFHI/MFLO latency 1 cycle 2 cycles

SLLV, SRLV, SRAV 2 cycles to issue 1 cycle to issue

DSLL, DSRL, DSRA, 
DSLL32, DSRL32, 
DSRA32, DSLLV, 
DSRLV, DSRAV

2 cycles to issue 1 cycle to issue

Table 1.23  Pipeline Comparison Between R4400 PC and R4600/R4700
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Item R4400 PC R4600/R4700

WatchLo, WatchHi implemented unimplemented (no watch registers)

Config as described in R4000 User’s Guide subset

Status as described in R4000 User’s Guide, 
but RP not functional

no TS or RP

Low-power standby 
mode

no WAIT instruction disables internal 
clock, freezing pipeline and other state; 
resume on interrupt

MFC0/MTC0 hazard only hazardous for certain cp0 register 
combinations

always hazardous -- detected and 1-
cycle slip inserted

EntryLo0, EntryLo1 as described in R4000 User’s Guide two new cache algorithms added to C 
field for non-coherent write-through

TagLo, TagHi, ECC, 
CacheErr

R4400SC bits implemented but mean-
ingless

Only bits meaningful on R4400 PC 
implemented

TagLo as described in R4000 User’s Guide bits 5..3 read/writeable but otherwise 
unused, bit 2 used for F bit

Exceptions as described in R4000 User’s Guide 
(VCEI and VCED not possible)

VCEI, VCED, and WATCH exceptions 
not implemented

Index CACHE ops
I Fill CACHE op

use vAddr13..4 to select line use vAddr13 to select set, vAddr12..5 to 
select line of set

Index Store Tag CACHE 
op

Status.CE ignored TagLo.P stored if Status.CE set

PRId Imp = 0x04 R4600:  Imp = 0x20
R4700:  Imp = 0x21

Table 1.24  Coprocessor 0 Comparison Between R4400 PC and R4600/R4700

Item R4400 PC R4600/R4700

Possible exception stall only for operands that can cause 
exceptions

some simplifications in detection hard-
ware

Floating-point divide separate divide unit done in floating-point adder

Floating-point square 
root

done in floating-point adder same

Converts to/from 64-bit 
integer

uses unimplemented for integer oper-
ands/results with more than 53 bits of 
precision

handles full 64-bit operands and 
results

Floating-point registers Status.FR enables all 32 floating point 
registers

same

FCR0 Imp = 0x05 R4600:  Imp = 0x20
R4700:  Imp = 0x21

Table 1.25  Coprocessor 1 Comparison Between R4400 PC and R4600/R4700
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Summary

Chapter 2

 

Introduction

 

This chapter is an overview of the central processing unit (CPU)
instruction set; refer to Appendix A

 

 

 

for detailed descriptions of individual
CPU instructions.

An overview of the floating-point unit (FPU) instruction set is in
Chapter 6; refer to Appendix B for detailed descriptions of individual FPU
instructions.

 

CPU Instruction Formats

 

Each CPU instruction consists of a single 32-bit word, aligned on a word
boundary. There are three instruction formats—immediate (I-type), jump
(J-type), and register (R-type)—as shown in Figure 2.1. The use of a small
number of instruction formats simplifies instruction decoding (thus higher
frequency operations) and allowing the compiler to synthesize more
complicated (and less frequently used) operations and addressing modes
from these three formats as needed. 

 

Figure 2.1  CPU Instruction Formats

 

In the MIPS architecture, coprocessor instructions are implementation-
dependent; refer to Appendix A for details of individual Coprocessor 0
instructions. 

Figure Legend:
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch condition
immediate 16-bit immediate value, branch displacement or address 

displacement
target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field
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Load and Store Instructions

 

Load

 

 

 

and store are immediate (I-type) instructions that move data
between memory and the general registers. The only addressing mode that
load and store instructions directly support is 

 

base register plus 16-bit
signed immediate offset

 

.

 

Scheduling a Load Delay Slot

 

A load instruction that does not allow its result to be used by the
instruction immediately following is called a 

 

delayed load instruction

 

. The
instruction slot immediately following this delayed load instruction is
referred to as the 

 

load delay slot

 

.
In the R4600/R4700 processor, the instruction immediately following a

load instruction can request the contents of the loaded register, however,
in such cases, hardware interlocks insert additional real cycles.
Consequently, scheduling load delay slots can be desirable, both for
performance and R-Series (e.g., R3051) processor compatibility. However,
the scheduling of load delay slots is not absolutely required.

 

Defining Access Types

 

Access type

 

 indicates the size of an R4600/R4700 processor data item
to be loaded or stored, set by the load or store instruction opcode. Access
types are defined in Appendix A.

Regardless of access type or byte ordering (endianness), the address
given specifies the low-order byte in the addressed field. For a big-endian
configuration, the low-order byte is the most-significant byte; for a little-
endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address,
define the bytes accessed within the addressed doubleword, which is
shown in Table 2.1 on page 2-3. 
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Only the combinations shown in Table 2.1 are permissible; other
combinations cause address error exceptions. See Appendix A for
individual descriptions of CPU load and store instructions.

 

Access Type
Mnemonic
(

 

Value

 

)

Low Order
Address 
Bits

Bytes Accessed

Big endian
(63----------31----------0)

Byte

Little endian
(63----------31----------0)

Byte2 1 0

 

Doubleword (

 

7

 

) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Septibyte (

 

6

 

) 0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

Sextibyte (

 

5

 

) 0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

Quintibyte (

 

4

 

) 0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word (

 

3

 

) 0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte (

 

2

 

) 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword (

 

1

 

) 0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte (

 

0

 

) 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7

 

Table 2.1 Byte Access within a Doubleword
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Computational Instructions

 

Computational instructions can be either: 1) in register (R-type) format,
in which both operands are registers, or 2) in immediate (I-type) format, in
which one operand is a 16-bit immediate. 

Computational

 

 

 

instructions perform the following operations on register
values:

• arithmetic
• logical
• shift
• multiply
• divide
These operations fit in the following four categories of computational

instructions:
• ALU Immediate

 

 

 

instructions
• three-Operand Register-Type

 

 

 

instructions
• shift

 

 

 

instructions
• multiply and divide instructions

 

64-bit Virtual Address Operations with 32-bit operands

 

Operands to 32-bit operand opcodes must be in sign-extended form. 32-
bit operand opcodes include all non-doubleword operations, such as: ADD,
ADDU, SUB, SUBU, ADDI, SLL, SRL, SRA, SLLV, etc. The result of
operations that use incorrect sign-extended 32-bit values is unpredictable.

 

Cycle Timing for Multiply and Divide Instructions

 

MFHI and MFLO instructions (described in Appendix A) are interlocked
so that any attempt to read them before prior multiply or divide
instructions complete delays the execution of these instructions until the
prior instructions finish. 

Table 2.2 gives the number of processor cycles (PCycles) required to
resolve an interlock or stall between various multiply or divide
instructions, and a subsequent MFHI or MFLO instruction.

For more information about computational instructions, refer to the
individual instruction as described in Appendix A.

 

Instruction R4600 R4700

 

MULT 10 8

MULTU 10 8

DIV 42 42

DIVU 42 42

DMULT 12 10

DMULTU 12 10

DDIV 74 74

DDIVU 74 74

 

Table 2.2 Multiply/Divide Instruction Cycle Timing
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Jump and Branch Instructions

 

Jump and branch

 

 

 

instructions change the control flow of a program. All
jump and branch instructions occur with a delay of one instruction: that
is, the instruction immediately following the jump or branch (this is known
as the instruction in the 

 

delay slot

 

) always executes while the target
instruction is being fetched from storage.

 

Overview of Jump Instructions

 

Subroutine calls in high-level languages are usually implemented with
Jump or Jump and Link instructions, both of which are J-type
instructions. In J-type format, the 26-bit target address shifts left 2 bits
and combines with the high-order 4 bits of the current program counter to
form an absolute address.

Returns, dispatches, and large cross-page jumps are usually
implemented with the Jump Register or Jump and Link Register
instructions. Both are R-type instructions that take the 32-bit or 64-bit
byte address contained in one of the general purpose registers.

For more information about jump instructions, refer to the individual
instruction as described in Appendix A.

 

Overview of Branch Instructions

 

All branch instruction target addresses are computed by adding the
address of the instruction in the delay slot to the 16-bit 

 

offset

 

 (shifts left 
2 bits and is sign-extended to 32 bits). All branches occur with a delay of
one instruction.

If a conditional branch likely is not taken, the instruction in the delay
slot is nullified. For regular conditional branches, the delay slot is always
executed.

For more information about branch instructions, refer to the individual
instruction as described in Appendix A.

 

Special Instructions

 

Special

 

 

 

instructions allow the software to initiate traps; they are always
R-type. For more information about special instructions, refer to the
individual instruction as described in Appendix A.

 

Exception Instructions

 

Exception instructions are extensions to the MIPS ISA. For more
information about exception instructions, refer to the individual
instruction as described in Appendix A. 

 

 Coprocessor Instructions

 

Coprocessor

 

 

 

instructions perform operations in their respective
coprocessors. Coprocessor loads and stores are I-type, and coprocessor
computational instructions have coprocessor-dependent formats.

Individual coprocessor instructions are described in Appendices A (for
CP0) and B (for the FPU, CP1).

CP0

 

 

 

instructions perform operations specifically on the System Control
Coprocessor registers to manipulate the memory management and
exception handling facilities of the processor.   Appendix A contains details
of the CP0 instructions.
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Introduction

 

This chapter describes the basic operation of the CPU pipeline, which
includes descriptions of the delay instructions (instructions that follow a
branch or load instruction in the pipeline), interruptions to the pipeline
flow caused by interlocks and exceptions, and R4600/R4700
implementation of an uncached store buffer. The FPU pipeline is described
in a later chapter.

 

CPU Pipeline Operation

 

The R4600/R4700 uses a 5-stage pipeline similar to the R3000. The
simplicity of this pipeline allows the R4600/R4700 to be lower cost and
lower power than super-scalar or super-pipelined processors. Unlike the
R3000, the R4600/R4700 does virtual to physical translation in parallel
with cache access. This allows the R4600/R4700 to operate at over twice
the frequency of the R3000 and to support a larger TLB for address
translation.

Compared to the 8-stage R4000 pipeline, the R4600/R4700 is more
efficient (requires fewer stalls).

Once the pipeline has been filled, five instructions are executed
simultaneously. Figure 3.1 shows the five stages of the instruction
pipeline; the next section describes the pipeline stages.

  

 

Figure 3.1  Instruction Pipeline Stages

                                                

I0 1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

I1 1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

I2 1I 2I 1R 2R 1A 2A 1D 2D 1W •••

I3 1I 2I 1R 2R 1A 2A 1D •••

I4 1I 2I 1R 2R 1A •••

one cycle

Figure Legend

1I-1R Instruction cache access 2R Instruction decode

2I Instruction virtual to physical address translation in ITLB 1A-2A Integer add, logical, shift

2A-2D Data cache access and load align 1A Data virtual address calculation

1D Data virtual to physical address translation in DTLB 2A Store align

1D-2D Virtual to physical address translation in JTLB 1A Branch decision

2R Register file read 2W Register file write

2R Bypass calculation



 

The CPU Pipeline Chapter 3

3 – 2

 

CPU Pipeline Stages

 

This section describes each of the phases of the five pipeline stages.
Each stage has 2 phases:

• 1I - Instruction Fetch, Phase one
• 2I - Instruction Fetch, Phase two
• 1R - Register Fetch, Phase one
• 2R - Register Fetch, Phase two
• 1A - Execution, Phase one
• 2A - Execution, Phase two
• 1D - Data Fetch, Phase one
• 2D - Data Fetch, Phase two
• 1W - Write Back, Phase one
• 2W - Write Back, Phase two

 

1I - Instruction Fetch, Phase one

 

During the 1I phase the instruction address translation begins in the
ITLB.

 

2I - Instruction Fetch, Phase two

 

During the 2I phase, the instruction cache fetch begins and the
instruction address translation in the ITLB continues.

 

1R - Register Fetch, Phase one

 

During the 1R phase, the following occurs:
• The instruction cache fetch finishes.
• The instruction cache tag is checked against the page frame number

obtained from the ITLB.

 

2R - Register Fetch, Phase two

 

During the 2R phase, the following occurs:
• The instruction decoder decodes the instruction.
• Any required operands are fetched from the register file.
• Make a decision to either issue or slip (for an interlock condition).
• For a branch, the branch address is calculated.

 

1A - Execution, Phase one

 

During the 1A phase, one of the following occurs:
• Any result from the A or D stages are bypassed.
• The arithmetic logic unit (ALU) starts the integer arithmetic, logical or

shift operation.
• The ALU calculates the data virtual address for load and store in-

structions.
• The ALU determines whether the branch condition is true.

 

2A - Execution, Phase two

 

During the 2A phase, one of the following occurs:
• The integer arithmetic, logical or shift operation will complete.
• A data cache access will start.
• Store data is shifted to the specified byte position(s).
• The data virtual to physical address translation in the DTLB will start.

 

1D - Data Fetch, Phase one

 

During the 1D phase, one of the following occurs:
• The data cache access will continue.
• The data address translation in the DTLB completes.
• The virtual to physical address translation in the JTLB will start.
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2D - Data Fetch, Phase two

 

During the 2D phase, one of the following occurs:
• The data cache access will finish and the data is shifted down and ex-

tended. 
• The virtual to physical address translation in the JTLB will finish.
The data cache tag is checked against the PFN from the DTLB or JTLB
for any data cache access.

 

1W - Write Back, Phase one

 

This phase is used internally by the processor to resolve all exceptions,
in preparation for the register file write.

 

2W - Write Back, Phase two

 

For register-to-register and load instructions, the result is written back
to the register file during the 2W stage. Branch instructions perform no
operation during this stage.
Figure 3.2 shows the activities occurring during each ALU pipeline

stage, for load, store, and branch instructions.

 

Figure 3.2  CPU Pipeline Activities

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

ITLBM

ICD ICA

ITLBR

DCAD DCAA DCLA

JTLB1

DTLBR DTC

RF

IDEC

BAC

EX1

DVA

SA

WB

ITC

JTLB2

WB

IFetch
and

Decode

ALU

Load/Store

Branch

EX2

Stage

Clock

ICD Instruction cache address decode ICA Instruction cache array access

ITLBM Instruction address translation 
match

ITLBR Instrustion address translation read

ITC Instruction tag check RF Register operand fetch

IDEC Instruction decode EX1 Operation stage 1

EX2 Operation stage 2 WB Write back to register file

DVA Data virtual address calculation DCAD Data cache address decode

DCAA Data cache array access DCLA Data cache load align

JTLB1 Address translation in JTLB stage 1 JTLB2 Address translation in JTLB stage 2

DTLBM Data address translation match DTLMR Data address translation read

DTC Data tag check SA Store align

DCW Data cache write BAC Branch address calculation

DTLBM

DCW
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Branch Delay

 

The CPU pipeline has a branch delay of one cycle and a load delay of one
cycle.   The one-cycle branch delay is a result of the branch decision logic
operating during the 1A pipeline phase of the branch instruction. This
allows the branch target address calculated in the previous phase to be
used for the instruction access in the following 1I phase. The pipeline will
begin the fetch of the branch path as well as the fall-through path in the
cycle following the delay slot. After the branch decision is made, the
processor will continue with the fetch of either the branch path (for a taken
branch) or the fall-through path (for the non-taken branch).

Figure 3.3 illustrates the branch delay. 

 

Figure 3.3  CPU Pipeline Branch Delay

 

Load Delay

 

The completion of a load at the end of the 2D pipeline phase produces
an operand that is available for the 1A pipeline phase of the instruction
following the load delay slot.

Figure 3.4 shows the load delay of one pipeline cycle. 

 

Figure 3.4  CPU Pipeline Load Delay

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

One Cycle One Cycle One Cycle One CycleOne Cycle

Branch
Delay   *Branch and fall-through address calculated

 **Address selection made

*

**

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

One Cycle One Cycle One Cycle One CycleOne Cycle

Load Delay
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Interlock and Exception Handling

 

Smooth pipeline flow is interrupted when cache misses or exceptions
occur, or when data dependencies are detected. Interruptions handled
using hardware, such as cache misses, are referred to as interlocks, while
those that are handled using software are called exceptions. 

There are two types of  interlocks:
• stalls, which are resolved by halting the pipeline
• slips, which require the back end of the pipeline to advance while the

front end of the pipeline is held static
At each cycle, exception and interlock conditions are checked for all

active instructions. 
Because each exception or interlock condition corresponds to a

particular pipeline stage, a condition can be traced back to the particular
instruction in the exception/interlock stage, as shown in Figure 3.5. For
instance, a Reserved Instruction (RI) exception is raised in the execution
(A) stage.

 

    

 

Figure 3.5  Correspondence of Pipeline Stage to Interlock Condition

 

For a description of the pipeline interlocks and exceptions listed in
Figure 3.5, refer to Table 3.1 and Table 3.2, which follow.

 

State
Pipeline Stage

I R A D W

 

Stall ITM ICM DCM

CPE

 

I R A D W

 

Slip LDI

MDSt

FCBsy

 

I R A D W

 

Exceptions ITLB IBE RI DBE

IPErr CUn NMI

BP Reset

SC DPErr

DTLB OVF

TLBMod Trap

Intr
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Table 3.1 and Table 3.2 describe the pipeline interlocks and exceptions
listed in Figure 3.5.

    

  

 

Exception Conditions

 

When an exception condition occurs, the relevant instruction and all
those that follow it in the pipeline are cancelled. Accordingly, any stall
conditions and any later exception conditions that may have referenced
this instruction are inhibited; there is no benefit in servicing stalls for a
cancelled instruction.

 

Exception Description

 

ITLB Instruction Translation or Address Exception

Intr External Interrupt

IBE Instruction Bus Error

RI Reserved Instruction

BP Breakpoint

SC System Call

CUn Coprocessor Unusable

IPErr Instruction Parity Error

OVF Integer Overflow

FPE FP Interrupt

ExTrap EX Stage Traps

DTLB Data Translation or Address Exception

TLBMod TLB Modified

DBE Data Bus Error

DPErr Data Parity Error

NMI Non-maskable Interrupt (or Soft Reset)

Reset Reset

 

Table 3.1  Pipeline Exceptions

 

Interlock Description

 

ITM Instruction TLB Miss

ICM Instruction Cache Miss 

CPE Coprocessor Possible Exception 

DCM Data Cache Miss 

LDI Load Interlock 

MDSt Multiply/Divide Start 

FCBsy FP Coprocessor Busy 

 

Table 3.2  Pipeline Interlocks
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When an exceptional condition is detected for an instruction, the
R4600/R4700 will kill it and all following instructions. When this
instruction reaches the W stage, the exception flag causes it to write
various CP0 registers with the exception state, change the current PC to
the appropriate exception vector address and clear the exception bits of
earlier pipeline stages.

This implementation allows all preceding instructions to complete
execution and prevents all subsequent instructions from completing. Thus
the value in the EPC is sufficient to restart execution. It also ensures that
exceptions are taken in the order of execution; an instruction taking an
exception may itself be killed by an instruction further down the pipeline
that takes an exception in a later cycle.

Figure 3.6 shows the exception detection procedure (e.g., a reserved
instruction exception).

 

Figure 3.6  Exception Detection

 

Stall Conditions

 

Stalls are used to stop the pipeline for conditions detected after the R
pipe-stage. When a stall occurs, the processor will resolve the condition
and then the pipeline will continue. 

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

Exc

I1

I2

I3

Exception Vector

Exception Vector Address

Kill
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Figure 3.7 shows a data cache miss stall.

 

Figure 3.7  Data Cache Miss

 

The data cache miss is detected in the D pipe stage. If the cache line to
be replaced is dirty — the W bit is set — the data is moved to the internal
write buffer in the next cycle. The first doubleword of data is returned to
the cache in 3 and the pipeline will then restart. The remainder of the
cache line is returned in the subsequent cycles. The data to be written
back will be returned to memory some time after the entire new cache line
is returned.

 

Slip Conditions

 

During the 2R and 1A pipe-stages, internal logic will determine whether
it is possible to start the current instruction in this cycle. If all of the source
operands are available (either from the register file or via the internal
bypass logic) and all the hardware resources necessary to complete the
instruction will be available at the necessary time(s), then the instruction
“issues”; otherwise, the instruction will “slip”. Slipped instructions are
retried on subsequent cycles until they issue. The backend of the pipeline
(stages D and W) will advance normally during slips in an attempt to
resolve the conflict. “NOPS” will be inserted into the bubble in the pipeline.
Instructions killed by branch likely instructions, ERET or exceptions will
not cause slips.

I R A D W W W W W

I R A D D D D D W

I R A A A A A D W

I R R R R R A D W

Detect Cache Miss

1 2 3 4

1

2

3

4

Start moving dirty cache line data to write buffer

Get first doubleword into cache and restart pipeline

Load remainder of cache line into cache

...

...

...

...
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Figure 3.8 shows an instruction cache miss.

 

Figure 3.8  Instruction cache miss

 

Instruction cache misses are detected in R as shown in Figure 3.8 and
the pipeline slips in its A stage. There can never be a writeback required
for an instruction cache miss since dirty data can never exist in the I
cache. Writes are not allowed to the I cache. Note that early restart is not
employed for instruction cache misses, the requested cache line will be
loaded into the cache in its entirety and, after that, the pipeline will restart.

 

R4600/R4700 Write Buffer

 

The R4600/R4700 contains a write buffer to improve the  performance
of writes to the external memory. Writes to external memory, whether
cache miss writebacks or stores to uncached or write-through addresses,
use this on-chip write buffer. The write buffer holds up to four 64-bit
address and data pairs.

For a cache miss write-back, the entire buffer is used for the write-back
data and allows the processor to proceed in parallel with the memory
update. For uncached and write-through stores, the write buffer
uncouples the CPU from the write to memory allowing increased
performance over the R4000 family of processors. If the write buffer is full,
additional stores will stall until there is room for them in the write buffer.
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Memory Management Chapter 4

 

The R4600/R4700 processor provides a full-featured memory
management unit (MMU) which uses an on-chip Translation Lookaside
Buffer (TLB) to translate virtual addresses into physical addresses.

This chapter describes the processor virtual and physical address
spaces, the virtual-to-physical address translation, the operation of the
TLB in making these translations, and those System Control Coprocessor
(CP0) registers that provide the software interface to the TLB.

 

Translation Lookaside Buffer (TLB)

 

Mapped virtual addresses are translated into physical addresses using
an on-chip TLB.

 

1

 

  The TLB is a fully associative memory that holds 48
entries, which provide mapping to 48 odd/even page pairs (96 pages).
When address mapping is indicated, each TLB entry is checked
simultaneously for a match with the virtual address that is extended with
an ASID stored in the 

 

EntryHi

 

 register.
The address mapped to a page ranges in size from 4Kbytes to 16Mbytes,

in multiples of 4—that is, 4K, 16K, 64K, 256K, 1M, 4M, 16M.

 

Hits and Misses

 

If there is a virtual address match, or hit, in the TLB, the physical page
number is extracted from the TLB and concatenated with the offset to form
the physical address (see Figure 4.1).

If no match occurs (TLB miss), an exception is taken and software refills
the TLB from the page table resident in memory.  Software can write over
a selected TLB entry or use a hardware mechanism to write into a random
entry.

 

Multiple Matches

 

The R4600/R4700 does not provide any detection or shutdown
mechanism for multiple matches in the TLB. There is no damage possible
from this condition. The result is undefined for this condition.  Software is
expected never to allow this to occur.

 

Address Spaces

 

This section describes the virtual and physical address spaces and the
manner in which virtual addresses are converted or “translated” into
physical addresses in the TLB.

 

Virtual Address Space

 

The processor

 

 

 

virtual address can be either 32- or 64-bits wide,
depending on mode of operation (user, supervisor or kernel) and the
setting of the corresponding extended address bit in the Status register
(UX, SX and KX).  

• For the extended address bit = 0, addresses are 32-bits wide.
• For the extended address bit = 1, addresses are 64-bits wide.
Both 32-bit and 64-bit address wrap in the same way.  For example, in

64-bit mode 0xffffffffffffffff will wrap to 0x0000000000000000.  While the
R4400 slipped on shift of >32-bit or other shift variables, the R4600/
R4700 does not.

 

1. 

 

There are virtual-to-physical address translations that occur outside of the TLB.  
For example, addresses in 

 

kseg0

 

 and 

 

kseg1

 

 spaces are unmapped translations.  In 
these spaces the physical address is 0x0000 0000 0 || VA[28:0]
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Figure 4.1 shows the translation of a virtual address into a physical
address.

 

Figure 4.1  Overview of a Virtual-to-Physical Address Translation

 

As shown in Figure 4.2 and Figure 4.3, the virtual address is extended
with an 8-bit address space identifier (ASID), which reduces the frequency
of TLB flushing when switching contexts.  This 8-bit ASID is in the CP0

 

EntryHi

 

 register, described later in this chapter.  The 

 

Global

 

 bit (

 

G

 

) is in the

 

EntryLo0

 

 and 

 

EntryLo1

 

 registers, described later in this chapter.

 

Physical Address Space

 

Using a 36-bit address, the processor physical address space
encompasses 64Gigabytes.  The section following describes the translation
of a virtual address to a physical address.

 

Virtual-to-Physical  Address Translation

 

Converting a virtual address to a physical address begins by comparing
the virtual address from the processor with the virtual address in the TLB;
there is a match when the virtual page number (VPN) of the address is the
same as the VPN field of the entry, and either:

• the Global (

 

G

 

) bit of the TLB entry is set, or
• the ASID field of the virtual address is the same as the ASID field of

the TLB entry.
This match is referred to as a 

 

TLB hit

 

.   If there is no match, a TLB Miss
exception is taken by the processor and software is allowed to refill the TLB
from a page table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is
output from the TLB and concatenated with the 

 

Offset

 

, which represents
an address within the page frame space.  The 

 

Offset

 

 does not pass through
the TLB.

Virtual-to-physical translation is described in greater detail throughout
the remainder of this chapter; Figure 4.19 on page 22 is a flow diagram of
the process.

The next two sections describe the 32-bit and 64-bit address
translations.

1. Virtual address (VA) represented by the
virtual page number (VPN) is compared
with tag in TLB.

Virtual address

2. If there is a match, the page frame
number (PFN) representing the upper
bits of the physical address (PA) is
output from the TLB.

VPN   ASIDG

VPN   ASIDG

PFN

TLB

Physical address

PFN

Offset

Offset

TLB

3. The Offset, which does not pass through
the TLB, is then concatenated to the PFN.

Entry
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32-bit Virtual Address Translation

 

Figure 4.2 shows the virtual-to-physical-address translation of a 32-bit
virtual address. 

• The top portion of Figure 4.2 shows a virtual address with a 12-bit, or
4Kbyte, page size, labelled 

 

Offset

 

.  The remaining 20 bits of the ad-
dress represent the VPN, and index the 1M-entry page table.

• The bottom portion of Figure 4.2 shows a virtual address with a 24-
bit, or 16Mbyte, page size, labelled 

 

Offset

 

.  The remaining 8 bits of the
address represent the VPN, and index the 256-entry page table.

 

Figure 4.2  32-bit Virtual Address Translation

 

64-bit Virtual Address Translation

 

Figure 4.3 on page 4 shows the virtual-to-physical-address translation
of a 64-bit virtual address.  This figure illustrates the two extremes in the
range of possible page sizes: a 4Kbyte page (12 bits) and a 16Mbyte page
(24 bits).

• The top portion of Figure 4.3 shows a virtual address with a 
12-bit, or 4Kbyte, page size, labelled 

 

Offset

 

.  The remaining 28 bits of
the address represent the VPN, and index the 256M-entry page table.

• The bottom portion of Figure 4.3 shows a virtual address with a 24-
bit, or 16Mbyte, page size, labelled 

 

Offset

 

.  The remaining 16 bits of
the address represent the VPN, and index the 64K-entry page table.

28 11 0

   20 12

   2931

VPN Offset

3239

ASID

   8

Virtual Address with 1M (220) 4-Kbyte pages

23 0

   8 24

Offset

39

Virtual Address with 256 (28)16-Mbyte pages

8 bits = 256 pages

20 bits  = 1M pages 12

ASID
   8

28   293132

VPN

24

Virtual-to-physical
translation in TLB

Bits 31, 30 and 29 of the virtual 
address select user, supervisor, 
or kernel address spaces.

Offset passed   
unchanged to 
physical   
memory

Virtual-to-physical
translation in TLB

 TLB

 TLB

   35 0
PFN Offset

Offset passed   
unchanged to 
physical   
memory

36-bit Physical Address
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Figure 4.3  64-bit Virtual Address Translation

 

Operating Modes

 

The processor has three operating modes that function in both 32- and
64-bit operations:

• User mode
• Supervisor mode
• Kernel mode
These modes are described in the next three sections.

 

 User Mode Operations

 

In User mode, a single, uniform virtual address space—labelled User
segment—is available; its size is:

• 2 Gbytes (2

 

31

 

 bytes) for Status.UX = 0 (

 

useg

 

)
• 1 Tbyte (2

 

40 

 

bytes) for Status.UX = 1 (

 

xuseg

 

)

11 0

12

63

VPN Offset

6471

ASID

   8

Virtual Address with 256M (228) 4-Kbyte pages

23 0

   24 24

Offset

16 bits = 64K pages

28 bits  = 256M pages 12

ASID VPN

6162 40 39

   28

0 or -1

636471 6162 40 24

 8

39

   16

   24

0 or -1

Virtual-to-physical
translation in TLB

Bits 62 and 63 of the virtual 
address select user, supervisor, 
or kernel address spaces.

Virtual-to-physical
translation in TLB  TLB

   35 0
PFN Offset

 TLB

Offset passed   
unchanged to 
physical   
memory

Offset passed   
unchanged to 
physical   
memory

36-bit Physical Address

Virtual Address with 64K (216)16-Mbyte pages
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Figure 4.4 shows the User mode virtual address space.

 

Figure 4.4   User Mode Virtual Address Space

 

The User segment starts at address 0 and the current active user
process resides in either 

 

useg

 

 (32-bit virtual addressing) or 

 

xuseg

 

 (in 64-
bit virtual addressing). The TLB identically maps all references to 

 

useg

 

/

 

xuseg

 

 from all modes, and controls cache accessibility.
The processor operates in User mode when the

 

 Status

 

 register contains
the following bit-values:

•

 

KSU

 

 bits = 10

 

2

 

•

 

EXL

 

 = 0
•

 

ERL

 

 = 0
In conjunction with these bits, the 

 

UX

 

 bit in the 

 

Status

 

 register selects
between 32- or 64-bit User virtual addressing as follows:

• when 

 

UX

 

 = 0, 32-bit 

 

useg

 

 space is selected
• when 

 

UX

 

 = 1, 64-bit 

 

xuseg

 

 space is selected
Table 4.1 lists the characteristics of the two user mode segments, 

 

useg

 

and 

 

xuseg

 

.
   

 

32-bit User Mode (

 

useg

 

)

 

In User mode, when Status.UX = 0, User mode virtual addressing is
compatible with the 32-bit addressing model shown in Figure 4.4, and a 2-
Gbyte user address space is available, labelled 

 

useg

 

. 

 

Address Bit 
Values

Status Register Segment
Name

Address Range Segment Size

Bit Values

KSU EXL ERL UX

 

32-bit
A(31) = 0

10

 

2

 

0 0 0 useg 0x0000 0000
through
0x7FFF FFFF

2 Gbyte
(2

 

31

 

 bytes)

64-bit
A(63:40) = 0

10

 

2

 

0 0 1 xuseg 0x0000 0000 0000 0000
through
0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

Table 4.1 32-bit and 64-bit User Mode Segments

useg xuseg

Address
Error

1 TB
Mapped

32-bit* 64-bit

0x FFFF FFFF FFFF FFFF

0x 0000 0000 0000 0000

0x FFFF FFFF 

0x 8000 0000 

0x 0000 0000 

0x 0000 0100 0000 0000

Address
Error

Mapped
2 GB

Note:  *For 32-bit virtual addresses, bit 31 is sign-extended through bits 63:32.
Failure (i.e., bit 31 = 1) results in an Address Error exception.
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All valid User mode virtual addresses have their most-significant bit
cleared to 0; any attempt to reference an address with the most-significant
bit set while in User mode causes an Address Error exception. 

In 32-bit User mode virtual addressing, the TLB refill exception vector is
used for TLB misses.

The system maps all references to useg through the TLB, and bit
settings within the TLB entry for the page determine the cacheability of a
reference. 

64-bit User Mode (xuseg)
In User mode, when Status.UX =1, User mode virtual addressing is

extended to the 64-bit model shown in Figure 4.4,  and a 1-Tbyte user
address space is available, labelled xuseg. 

All valid User mode virtual addresses have bits 63:40 equal to 0; an
attempt to reference an address with bits 63:40 not equal to 0 causes an
Address Error exception. 

The extended addressing TLB refill exception vector is used for TLB
misses.
 
Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a
true kernel runs in R4600/R4700 Kernel mode, and the rest of the
operating system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register
contains the following bit-values:

• KSU = 012
• EXL = 0
• ERL = 0
In conjunction with these bits, the SX bit in the Status register selects

between 32- or 64-bit Supervisor mode virtual addressing:
• when SX = 0, 32-bit supervisor space virtual addressing is selected
• when SX = 1, 64-bit supervisor space virtual addressing is selected
Figure 4.5 shows Supervisor mode address mapping.  Table 4.2, which

follows the figure, lists the characteristics of the supervisor mode
segments; descriptions of the address spaces follow.

Figure 4.5  Supervisor Mode Virtual Address Space
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Mapped

Mapped
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0.5 GB
error
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Address
error

Address
error

Mapped
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Mapped

Address
error

32-bit* 64-bit

csseg

0x FFFF FFFF FFFF FFFF

0x 4000 0100 0000 0000

0x 0000 0000 0000 0000

0x FFFF FFFF E000 0000

0x FFFF FFFF C000 0000

0x 4000 0000 0000 0000

0x 0000 0100 0000 0000

0x FFFF FFFF 

0x 8000 0000 

0x 0000 0000 

0x E000 0000 

0x C000 0000 

0x A000 0000 

Address
error

1 TB
Mapped

Note: *In 32-bit virtual addressing, bit 31 is sign-extended through bits
63:32.  Failure results in an Address Error exception.
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32-bit Supervisor Mode, User Space (suseg)
In Supervisor mode, when Status.SX = 0 and the most-significant bit of

the 32-bit virtual address is set to 0, the suseg virtual address space is
selected; it covers the full 231 bytes (2Gbytes) of the current user address
space.  The virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address. 

This mapped space starts at virtual address 0x0000 0000 and runs
through 0x7FFF FFFF.

32-bit Supervisor Mode, Supervisor Space (sseg)
In Supervisor mode, when Status.SX = 0 and the three most-significant

bits of the 32-bit virtual address are 1102, the sseg virtual address space
is selected; it covers 229-bytes (512Mbytes) of the current supervisor
address space.  The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs
through 0xDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)
In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual

address are set to 002, the xsuseg virtual address space is selected; it
covers the full 240 bytes (1Tbyte) of the current user address space.  The
virtual address is extended with the contents of the 8-bit ASID field to form
a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000
and runs through 0x0000 00FF FFFF FFFF.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)
In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual

address are set to 012, the xsseg current supervisor virtual address space
is selected.  The virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000
and runs through 0x4000 00FF FFFF FFFF.

Address Bit 
Values

Status Register

Segment
Name Address Range

Segment
Size

Bit Values

KSU EXL ERL SX

32-bit
A(31) = 0

012 0 0 0 suseg 0x0000 0000
through
0x7FFF FFFF

2 Gbytes 
(231 bytes)

32-bit
A(31:29) = 1102

012 0 0 0 sseg 0xC000 0000
through
0xDFFF FFFF

512 Mbytes 
(229 bytes)

64-bit
A(63:62) = 002

012 0 0 1 xsuseg 0x0000 0000 0000 0000
through
0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

64-bit
A(63:62) = 012

012 0 0 1 xsseg 0x4000 0000 0000 0000
through
0x4000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

64-bit
A(63:62) = 112

012 0 0 1 csseg 0xFFFF FFFF C000 0000
through
0xFFFF FFFF DFFF FFFF

512 Mbytes
(229 bytes)

Table 4.2 32-bit and 64-bit Supervisor Mode Segments



Memory Management Chapter 4

4 – 8

64-bit Supervisor Mode, Separate Supervisor Space (csseg)
In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual

address are set to 112, the csseg separate supervisor virtual address space
is selected.  Addressing of the csseg is compatible with addressing sseg in
32-bit mode.  The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000
and runs through 0xFFFF FFFF DFFF FFFF.

 Kernel Mode Operations
The processor operates in Kernel mode when the Status register

contains one of the following values:
• KSU = 002
• EXL = 1
• ERL = 1
In conjunction with these bits, the KX bit in the Status register selects

between 32- or 64-bit Kernel mode addressing:
• when KX = 0, 32-bit kernel space virtual addressing is selected
• when KX = 1, 64-bit kernel space virtual addressing is selected
The processor enters Kernel mode whenever an exception is detected

and it remains in Kernel mode until an Exception Return (ERET)
instruction is executed.  The ERET instruction restores the processor to
the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated
by the high-order bits of the virtual address, as shown in Figure 4.6.  
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Figure 4.6  Kernel Mode Address Space
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Note: *In 32-bit virtual addressing, bit 31 is sign-extended through bits 63:32.  Failure
results in an Address Error exception.
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Table 4.3 lists the characteristics of the 32-bit kernel mode segments,
and Table 4.4 lists the characteristics of the 64-bit kernel mode segments

32-bit Kernel Mode, User Space (kuseg)
In Kernel mode, when Status.KX = 0, and the most-significant bit of the

virtual address, A31, is cleared, the 32-bit kuseg virtual address space is
selected; it covers the full 231 bytes (2 Gbytes) of the current user address
space. The virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space 0 (kseg0)
In Kernel mode, when Status.KX = 0 and the most-significant three bits

of the virtual address are 1002, 32-bit kseg0 virtual address space is
selected; it is the current 229-byte (512-Mbyte) kernel physical space.

References to kseg0 are not mapped through the TLB; the physical
address selected is defined by subtracting 0x8000 0000 from the virtual
address (physical address = 0x0000 0000 0 || VA[28:0]).

The K0 field of the Config register, described in this chapter, controls
cacheability and coherency.

32-bit Kernel Mode, Kernel Space 1 (kseg1)
In Kernel mode, when Status.KX = 0 and the most-significant three bits

of the 32-bit virtual address are 1012, 32-bit kseg1 virtual address space
is selected; it is the current 229-byte (512Mbyte) kernel physical space.

References to kseg1 are not mapped through the TLB; the physical
address selected is defined by subtracting 0xA000 0000 from the virtual
address (physical address = 0x0000 0000 0 || VA[28:0]). 

Caches are disabled for accesses to these addresses, and physical
memory (or memory-mapped I/O device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)
In Kernel mode, when Status.KX = 0 and the most-significant three bits

of the 32-bit virtual address are 1102, the ksseg virtual address space is
selected; it is the current 229-byte (512Mbyte) supervisor virtual space.
The virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address.

Address Bit 
Values

Status Register Is
One Of These Values

Segment
Name

Address Range Segment
Size

KSU EXL ERL KX

A(31) = 0

KSU = 002

or

EXL = 1

or

ERL =1

0 kuseg 0x0000 0000
through
0x7FFF FFFF

2 Gbytes 
(231 bytes)

A(31:29) = 1002 0 kseg0 0x8000 0000
through
0x9FFF FFFF

512 
Mbytes 
(229 bytes)

A(31:29) = 1012 0 kseg1 0xA000 0000
through
0xBFFF FFFF

512 
Mbytes 
(229 bytes)

A(31:29) = 1102 0 ksseg 0xC000 0000
through
0xDFFF FFFF

512 
Mbytes 
(229 bytes)

A(31:29) = 1112 0 kseg3 0xE000 0000
through
0xFFFF FFFF

512 
Mbytes 
(229 bytes)

Table 4.3 32-bit Kernel Mode Segments
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32-bit Kernel Mode, Kernel Space 3 (kseg3)
In Kernel mode, when Status.KX = 0 and the most-significant three bits

of the 32-bit virtual address are 1112, the kseg3 virtual address space is
selected; it is the current 229-byte (512Mbyte) kernel virtual space. The
virtual address is extended with the contents of the 8-bit ASID field to form
a unique virtual address.

64-bit Kernel Mode, User Space (xkuseg)
In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual

address are 002, the xkuseg virtual address space is selected; it covers the
current user address space.  The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address. 

As a special feature for the ECC handler, if the ERL bit of the Status
register is set, the user address region becomes a 231-byte unmapped,
uncached space.  This allows the ECC exception code to operate uncached
using r0 as a base register.

64-bit Kernel Mode, Current Supervisor Space (xksseg)
In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual

address are 012, the xksseg virtual address space is selected; it is the
current supervisor virtual space.  The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

Address Bit 
Values

Status Register Is 
One Of These Values

Segment
Name

Address Range Segment
Size

KSU EXL ERL KX

A(63:62) = 002

KSU = 002

or

EXL = 1

or

ERL =1

1 xkuseg 0x0000 0000 0000 0000
through
0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

A(63:62) = 012 1 xksseg 0x4000 0000 0000 0000
through
0x4000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

A(63:62) = 102 1 xkphys 0x8000 0000 0000 0000
through
0xBFFF FFFF FFFF FFFF

8 236-byte 
spaces

A(63:62) = 112 1 xkseg 0xC000 0000 0000 0000
through
0xC000 00FF 7FFF FFFF

244 bytes

A(63:62) = 112
A(61:31) = -1

1 ckseg0 0xFFFF FFFF 8000 0000
through
0xFFFF FFFF 9FFF FFFF

512 
Mbytes 
(229 bytes)

A(63:62) = 112
A(61:31) = -1

1 ckseg1 0xFFFF FFFF A000 0000
through
0xFFFF FFFF BFFF FFFF

512 
Mbytes 
(229 bytes)

A(63:62) = 112
A(61:31) = -1

1 cksseg 0xFFFF FFFF C000 0000
through
0xFFFF FFFF DFFF FFFF

512 
Mbytes 
(229 bytes)

A(63:62) = 112
A(61:31) = -1

1 ckseg3 0xFFFF FFFF E000 0000
through
0xFFFF FFFF FFFF FFFF

512 
Mbytes 
(229 bytes)

Table 4.4 64-bit Kernel Mode Segments
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64-bit Kernel Mode, Physical Spaces (xkphys)
In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual

address are 102, the xkphys virtual address space is selected; it is a set of
eight 236-byte kernel physical spaces.  Accesses with address bits 58:36
not equal to 0 cause an address error. 

References to this space are not mapped; the physical address selected
is taken from bits 35:0 of the virtual address.  Bits 61:59 of the virtual
address specify the cacheability and coherency attributes, as shown in
Table 4.5.

64-bit Kernel Mode, Kernel Space (xkseg)
In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual

address are 112, the address space selected is one of the following:
• kernel virtual space, xkseg, the current supervisor virtual space; the

virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address 

• one of the four 32-bit kernel compatibility spaces, as described in the
next section.

64-bit Kernel Mode, Compatibility Spaces (ckseg1:0, cksseg, ckseg3)
In Kernel mode, when Status.KX = 1, bits 63:62 of the 64-bit virtual

address are 112, and bits 61:31 of the virtual address equal “–1”, the lower
two bytes of address, as shown in Figure 4.6, select one of the following
512-Mbyte compatibility spaces.

• ckseg0.  This 64-bit virtual address space is an unmapped region,
compatible with the 32-bit address model kseg0.  The K0 field of the
Config register, described in this chapter, controls cacheability and
coherency.

• ckseg1.  This 64-bit virtual address space is an unmapped and un-
cached region, compatible with the 32-bit address model kseg1. 

• cksseg.  This 64-bit virtual address space is the current supervisor
virtual space, compatible with the 32-bit address model ksseg.

• ckseg3.  This 64-bit virtual address space is kernel virtual space,
compatible with the 32-bit address model kseg3.

System Control Coprocessor
The System Control Coprocessor (CP0) is implemented as an integral

part of the CPU, and supports memory management, address translation,
exception handling, and other privileged operations.  CP0 contains the
registers shown in Figure 4.7 plus a 48-entry TLB.  The sections that follow
describe how the processor uses each of the memory management-related
registers.

Each CP0 register has a unique number that identifies it; this number
is referred to as the register number.  For instance, the Page Mask register
is register number 5.

Value
(61:59)

Cacheability and Coherency Attributes Starting Address

0 Cacheable, noncoherent, write-through, no 
write allocate

0x8000 0000 0000 0000

1 Cacheable, noncoherent, write-through, write 
allocate

0x8800 0000 0000 0000

2 Uncached 0x9000 0000 0000 0000

3 Cacheable, noncoherent 0x9800 0000 0000 0000

4 - 7 Reserved 0xA000 0000 0000 0000

Table 4.5 Cacheability and Coherency Attributes
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Figure 4.7  CP0 Registers and the TLB

Format of a TLB Entry
Figure 4.8 shows the TLB entry formats for both 32- and 64-bit virtual

addressing. Each field of an entry has a corresponding field in the EntryHi,
EntryLo0, EntryLo1, or PageMask registers, as shown in Figure 4.9 and
Figure 4.10; for example the Mask field of the TLB entry is also held in the
PageMask register.
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Figure 4.8  Format of a TLB Entry

The format of the EntryHi, EntryLo0, EntryLo1, and PageMask registers
are nearly the same as the TLB entry.  The one exception is the Global field 
(G bit), which is used in the TLB, but is reserved in the EntryHi register.
Figure 4.9 and Figure 4.10 describe the TLB entry fields that are shown in
Figure 4.8.

Figure 4.9  Fields of the PageMask and EntryHi Registers
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Figure 4.10  Fields of the EntryLo0 and EntryLo1 Registers

The TLB page coherency attribute (C) bits specify whether references to
the page should be cached; if cached, the algorithm selects between several
coherency attributes.  Table 4.6 shows the coherency attributes selected
by the C bits.

    

CP0 Registers
The following sections describe the CP0 registers (shown in Figure 4.7

on page 13) that are assigned specifically as a software interface with
memory management (each register is followed by its register number in
parentheses). 
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Table 4.6 TLB Page Coherency (C) Bit Values
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Index Register (0)
The Index register is a 32-bit, read/write register containing six bits to

index an entry in the TLB.  The high-order bit of the register shows the
success or failure of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read
(TLBR) or TLB Write Index (TLBWI) instructions.

Figure 4.11 shows the format of the Index register; Table 4.7, which
follows the figure, describes the Index register fields.

Figure 4.11  Index Register
   

Random Register (1)
The Random register is a read-only register of which six bits index an

entry in the TLB.  This register decrements as each instruction executes,
and its values range between an upper and a lower bound, as follows:

• A lower bound is set by the number of TLB entries reserved for exclu-
sive use by the operating system (the contents of the Wired register).

• An upper bound is set by the total number of TLB entries. Thus the
upper bound is 47 (The TLB entries are number from 0 to 47).

The R4600/R4700 implements this register differently from the
R4000:  The R4000 counts both valid and invalid instructions, while the
R4600/R4700 counts only valid instructions.

The Random register specifies the entry in the TLB that is affected by the
TLB Write Random instruction.  The register does not need to be read for
this purpose; however, the register is readable to verify proper operation of
the processor.

To simplify testing, the Random register is set to the value of the upper
bound upon system reset.  This register is also set to the upper bound
when the Wired register is written. 

Figure 4.12 shows the format of the Random register; Table 4.8 on
page 17 describes the Random register fields.

Figure 4.12  Random Register

Field Description

P Probe failure.  Set to 1 when the previous TLBProbe 
(TLBP) instruction was unsuccessful.

Index Index to the TLB entry affected by the TLBRead and 
TLBWrite instructions

0 Reserved.   Must be written as zeroes, and returns 
zeroes when read.

Table 4.7 Index Register Field Descriptions

Index Register

31 

1

30 6 5 0

25 6

    IndexP 0

Random Register
31 6 5 0

26 6

    Random0
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EntryLo0 (2), and EntryLo1 (3) Registers
The EntryLo register consists of two registers that have identical

formats: 
• EntryLo0 is used for even virtual pages.
• EntryLo1 is used for odd virtual pages.
The EntryLo0 and EntryLo1 registers are read/write registers.   They

hold the physical page frame number (PFN) of the TLB entry for even and
odd pages, respectively, when performing TLB read and write operations.
Figure 4.10 on page 15 shows the format of these registers. 

PageMask Register (5)
The PageMask register is a read/write register used for reading from or

writing to the TLB; it holds a comparison mask that sets the variable page
size for each TLB entry, as shown in Table 4.9. 

TLB read and write operations use this register as either a source or a
destination; when virtual addresses are presented for translation into
physical address, the corresponding bits in the TLB identify which virtual
address bits among bits 24:13 are used in the comparison.  

When the Mask field is not one of the values shown in Table 4.9, the
operation of the TLB is undefined.

    

Field Description

Random TLB random index

0 Reserved.  Must be written as zeroes, and returns zeroes when read.

Table 4.8 Random Register Field Descriptions

Page Size

Bit 

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbyte 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbytes 1 1 1 1 1 1 1 1 1 1 1 1

Table 4.9 Mask Field Values for Page Sizes
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Wired Register (6)
The Wired register is a read/write register that specifies the boundary

between the wired and random entries of the TLB, as shown in Figure 4.13.
Wired entries are nonreplaceable entries, which cannot be overwritten by
a TLB write random operation.  Random entries can be overwritten.

  

Figure 4.13   Wired Register Boundary

The Wired register is set to 0 upon system reset.  Writing this register
also sets the Random register to the value of its upper bound (see Random
register, above).  Figure 4.14 shows the format of the Wired register;
Table 4.10, which follows the figure, describes the register fields.

Figure 4.14  Wired Register

EntryHi Register (CP0 Register 10)
The EntryHi register holds the high-order bits of a TLB entry for TLB

read and write operations. 
The EntryHi register is accessed by the TLB Probe, TLB Write Random,

TLB Write Indexed, and TLB Read Indexed instructions.
Figure 4.9 shows the format of this register.
When either a TLB refill, TLB invalid, or TLB modified exception occurs,

the EntryHi register is loaded with the virtual page number (VPN2) and the
ASID of the virtual address that did not have a matching TLB entry.  (See
Chapter 5 for more information about these exceptions.)

Field Description

Wired TLB Wired boundary (the number of wired TLB entries)

0 Reserved.  Must be written as zeroes, and returns zeroes 
when read.

Table 4.10 Wired Register Field Descriptions

47

Wired

Range of Random entries

0

TLB

Register

Range of Wired entries

Wired Register 
31 6 5 0

26 6

    Wired0
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Processor Revision Identifier (PRId) Register (15)
The 32-bit, read-only Processor Revision Identifier (PRId) register

contains information identifying the implementation and revision level of
the CPU and CP0.  Figure 4.15 shows the format of the PRId register;
Table 4.11 describes the PRId register fields.

Figure 4.15  Processor Revision Identifier Register Format

The low-order byte (bits 7:0) of the PRId register is interpreted as a
revision number, and the high-order byte (bits 15:8) is interpreted as an
implementation number. The implementation number of the R4600/
R4700 processor is 0x20.  The content of the high-order halfword (bits
31:16) of the register are reserved.

The revision number is stored as a value in the form y.x, where y is a
major revision number in bits 7:4 and x is a minor revision number in bits
3:0.

The revision number can distinguish some chip revisions, however there
is no guarantee that changes to the chip will necessarily be reflected in the
PRId register, or that changes to the revision number necessarily reflect
real chip changes.  For this reason, these values are not listed and software
should not rely on the revision number in the PRId register to characterize
the chip. Certain attributes, such as cache size, are independent of
implementation number.

Config Register (16)
The Config register specifies various configuration options selected on

R4600/R4700 processors; Table 4.12 lists these options.
Some configuration options, as defined by Config bits 31:3, are set by

the hardware during reset and are included in the Config register as read-
only status bits for the software to access.  The K0 field is the only read/
write field (as indicated by Config register bits 2:0) and controlled by
software; on reset these fields are undefined. 

Figure 4.16 shows the format of the Config register; Table 4.12, which
follows the figure, describes the Config register fields.

Figure 4.16  Config Register Format

Field Description

Imp Implementation number R4600:  Imp = 0x20
R4700:  Imp = 0x21

Rev Revision number

0 Reserved.  Must be written as zeroes, and returns zeroes when read.

Table 4.11 PRId Register Fields
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Load Linked Address (LLAddr) Register (17)
The read/write Load Linked Address (LLAddr) register contains the

physical address read by the most recent Load Linked instruction.
This register is for diagnostic purposes only, and serves no function

during normal operation. 
Figure 4.17 shows the format of the LLAddr register; PAddr represents

bits of the physical address, PA(35:4).

Field Description

EC

System clock ratio: 
0 → processor clock frequency divided by 2
1 → processor clock frequency divided by 3
2 → processor clock frequency divided by 4
3 → processor clock frequency divided by 5
4 → processor clock frequency divided by 6
5 → processor clock frequency divided by 7
6 → processor clock frequency divided by 8
7      Reserved

EP

Writeback data rate:
0 → DDDD Doubleword every cycle
1 → DDxDDx 2 Doublewords every 3 cycles
2 → DDxxDDxx 2 Doublewords every 4 cycles
3 → DxDxDxDx 2 Doublewords every 4 cycles
4 → DDxxxDDxxx 2 Doublewords every 5 cycles
5 → DDxxxxDDxxxx 2 Doublewords every 6 cycles
6 → DxxDxxDxxDxx 2 Doublewords every 6 cycles
7 → DDxxxxxDDxxxxx 2 Doublewords every 7 cycles
8 → DxxxDxxxDxxxDxxx 2 Doublewords every 8 cycles
9 - 15 Reserved

BE
BigEndianMem

0 → Little endian
1 → Big endian

IC Primary I-cache Size (I-cache size = 212+IC  bytes).  In the R4600/R4700 
processor, this is set to 16 Kbytes (IC = 010)

DC Primary D-cache Size (D-cache size = 212+DC  bytes).  In the R4600/R4700 
processor, this is set to 16 Kbytes (DC = 010)

IB Primary I-cache line size
1 → 32 bytes (8 Words)

DB Primary D-cache line size
1 → 32 bytes (8 Words)

K0 kseg0 coherency algorithm (see EntryLo0 and EntryLo1 registers)

Others Reserved. Returns indicated values when read.

Table 4.12 Config Register Fields
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Figure 4.17  LLAddr Register Format

Cache Tag Registers [TagLo (28) and TagHi (29)]
The TagLo and TagHi registers are 32-bit read/write registers that hold

the primary cache tag and parity during cache initialization, cache
diagnostics, or cache error processing.  The Tag registers are written by the
CACHE and MTC0 instructions.

The P field of these registers is ignored on Index Store Tag operations.
Parity is computed by the store operation. 

The Windows NT Operating System uses the TagLo cp0 register to save/
restore gp registers in the TLB refill exception handler.  Thus, all 32 bits
must be present, even though they have no use for the primary purpose of
TagLo.

Figure 4.18 shows the format of these registers for primary cache
operations.  Table 4.13 lists the field definitions of the TagLo and TagHi
registers.

Figure 4.18  TagLo and TagHi Register (P-cache) Formats
     

Field  Description

PTagLo Specifies the physical address bits 35:12

PState Specifies the primary cache state

P Specifies the primary tag even parity bit

F The FIFO bit used to implement FIFO refill of the cache

RWNT Read/Write bits required for Windows NT

0 Reserved.   Must be written as zeroes; returns zeroes when read

Table 4.13 Cache Tag Register Fields
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Virtual-to-Physical Address Translation Process
During virtual-to-physical address translation, the CPU compares the 

8-bit ASID (if the Global bit, G, is not set) of the virtual address to the ASID
of the TLB entry to see if there is a match.  

The following comparison is also made:
• For the 64-bit virtual addresses, the highest 15-to-27 bits (depending

upon the page size) of the virtual address are compared to the con-
tents of the TLB virtual page number.

If a TLB entry matches, the physical address and access control bits (C,
D, and V) are retrieved from the matching TLB entry.  While the V bit of the
entry must be set for a valid translation to take place, it is not involved in
the determination of a matching TLB entry.

Figure 4.19 illustrates the TLB address translation process.

Figure 4.19  TLB Address Translation
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TLB Misses
If there is no TLB entry that matches the virtual address, a TLB miss

exception occurs.  If the access control bits (D and V) indicate that the
access is not valid, a TLB modification or TLB invalid exception occurs.  If
the C bits equal 0102, the physical address that is retrieved accesses main
memory, bypassing the cache.

TLB Instructions
Table 4.14 lists the instructions that the CPU provides for working with

the TLB.  See Appendix A for a detailed description of these instructions.
    

Op Code Description of Instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Table 4.14 TLB Instructions
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CPU Exception 
Processing

Chapter 5

 

This chapter describes the CPU exception processing, including an
explanation of exception processing, followed by the format and use of
each CPU exception register.

The chapter concludes with a description of each exception’s cause,
together with the manner in which the CPU processes and services these
exceptions. For information about Floating-Point Unit exceptions, see
Chapter 7.

 

How Exception Processing Works

 

The processor receives exceptions from a number of sources, including
translation lookaside buffer (TLB) misses, arithmetic overflows, I/O
interrupts, and system calls. When the CPU detects one of these
exceptions, the normal sequence of instruction execution is suspended
and the processor enters Kernel mode (see Chapter 4 for a description of
system

 

 

 

operating modes). 
The processor then disables interrupts and forces execution of a

software exception processor (called a 

 

handler

 

) located at a fixed address.
The handler may save the context of the processor, including the contents
of the program counter, the current operating mode (User or Supervisor),
and the status of the interrupts (enabled or disabled). This context would
be saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the 

 

Exception Program
Counter

 

 (

 

EPC

 

) register with a location where execution can restart after the
exception has been serviced. The restart location in the 

 

EPC

 

 register is the
address of the instruction that caused the exception or, if the instruction
was executing in a branch delay slot, the address of the branch instruction
immediately preceding the delay slot.

The registers described later in the chapter assist in this exception
processing by retaining address, cause and status information.

For a description of the exception handling process, see the description
of the individual exception contained in this chapter, or the flowcharts at
the end of this chapter.

 

Exception Processing Registers

 

This section describes the CP0 registers that are used in exception
processing. Table 5.1 on page 5-2 lists these registers, along with their
number—each register has a unique identification number that is referred
to as its 

 

register number

 

. For instance, the 

 

ECC

 

 register is register number
26. The remaining CP0 registers are used in memory management, as
described in Chapter 4.

Software examines the CP0 registers during exception processing to
determine the cause of the exception and the state of the CPU at the time
the exception occurred. The registers in Table 5.1 are used in exception
processing, and are described in the sections that follow.
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Context Register (4)

 

The 

 

Context

 

 register is a read/write register containing the pointer to an
entry in the page table entry (PTE) array; this array is an operating system
data structure that stores virtual-to-physical address translations. When
there is a TLB miss, the CPU loads the TLB with the missing translation
from the PTE array. Normally, the operating system uses the 

 

Context

 

register to address the current page map which resides in the kernel-
mapped segment, 

 

kseg3

 

. The 

 

Context 

 

register duplicates some of the
information provided in the 

 

BadVAddr 

 

register, but the information is
arranged in a form that is more useful for a software TLB exception
handler. Figure 5.1 shows the format of the 

 

Context 

 

register; Table 5.2,
which follows the figure, describes the 

 

Context 

 

register fields. 

 

Figure 5.1  Context Register Format

 

The 19-bit 

 

BadVPN2

 

 field contains bits 31:13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry maps
to an even-odd page pair. For a 4-Kbyte page size, this format can directly
address the pair-table of 8-byte PTEs. For other page and PTE sizes,
shifting and masking this value produces the appropriate address.

 

Register Name Reg. No.

 

Context 4

BadVAddr (Bad Virtual Address) 8

Count 9

Compare register 11

Status 12

Cause 13

EPC (Exception Program Counter) 14

XContext 20

ECC 26

CacheErr (Cache Error and Status) 27

ErrorEPC (Error Exception Program Counter) 30

 

Table 5.1 

 

CP0 Exception Processing Registers

 

Field Description 

 

BadVPN2 This field is written by hardware on a miss. It contains 
the virtual page number (VPN) of the most recent virtual 
address that did not have a valid translation.

PTEBase This field is a read/write field for use by the operating 
system. It is normally written with a value that allows 
the operating system to use the 

 

Context

 

 register as a 
pointer into the current PTE array in memory.

 

Table 5.2 Context Register Fields

Context Register 
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PTEBase BadVPN2
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Bad Virtual Address Register (BadVAddr) (8)

 

The Bad Virtual Address register (

 

BadVAddr

 

) is a read-only register that
displays the most recent virtual address that caused one of the following
exceptions: Address Error (e.g., unaligned access), TLB Invalid, TLB
Modified, TLB Refill, Virtual Coherency Data Access, or Virtual Coherency
Instruction Fetch.

The processor does not write to the 

 

BadVAddr

 

 register when the 

 

EXL

 

 bit
in the 

 

Status

 

 register is set to a 1.
Figure 5.2 shows the format of the 

 

BadVAddr 

 

register.

 

Figure 5.2  BadVAddr Register Format

 

Note: 

 

The 

 

BadVAddr 

 

register does not save any information for bus
errors, since bus errors are not addressing errors. 

 

Count Register (9)

 

The 

 

Count

 

 register acts as a timer, incrementing at a constant rate—half
the maximum instruction issue rate—whether or not an instruction is
executed, retired, or any forward progress is made through the pipeline.

This register can be read or written. It can be written for diagnostic
purposes or system initialization; for example, to synchronize processors.

Figure 5.3 shows the format of the 

 

Count

 

 register.

 

Figure 5.3  Count Register Format

 

Compare Register (11)

 

The 

 

Compare

 

 register acts as a timer (see also the 

 

Count

 

 register); it
maintains a stable value that does not change on its own. 

When the value of the 

 

Count

 

 register equals the value of the 

 

Compare

 

register, interrupt bit

 

 IP(7)

 

 in the 

 

Cause

 

 register is set. This causes an
interrupt as soon as the interrupt is enabled.

Writing a value to the 

 

Compare

 

 register, as a side effect, clears the timer
interrupt.

For diagnostic purposes, the 

 

Compare

 

 register is a read/write register.
In normal use however, the 

 

Compare

 

 register is write-only. Figure 5.4
shows the format of the 

 

Compare 

 

register.

 

Figure 5.4  Compare Register Format
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Status Register (12)

 

The 

 

Status

 

 register (SR) is a read/write register that contains the
operating mode, interrupt enabling, and the diagnostic states of the
processor. The following list describes the more important 

 

Status

 

 register
fields; Figure 5.5 show the format of the entire register, including
descriptions of the fields. Some of the important fields include:

• The 8-bit 

 

Interrupt Mask

 

 (

 

IM

 

) field controls the enabling of eight inter-
rupt conditions. Interrupts must be enabled before they can cause the
exception, and the corresponding bits are set in both the 

 

Interrupt
Mask

 

 field of the 

 

Status

 

 register and the 

 

Interrupt Pending

 

 field of the

 

Cause

 

 register. For more information, refer to the 

 

Interrupt Pending

 

(

 

IP

 

) field of the 

 

Cause

 

 register. IM[1:0] are the masks for the two soft-
ware interrupts while IM[7:2] correspond to Int[5:0].

• The 4-bit 

 

Coprocessor

 

 

 

Usability

 

 (

 

CU

 

) field controls the usability of 4
possible coprocessors. Regardless of the 

 

CU0

 

 bit setting, CP0 is al-
ways usable in Kernel mode. For all other cases, an instruction for or
access to an unusable coprocessor causes an exception.

• The 9-bit 

 

Diagnostic

 

 

 

Status

 

 (

 

DS

 

) field (Status[24:16]) is used for self-
testing, and checks the cache and virtual memory system.

• The 

 

Reverse-Endian (RE)

 

 bit, bit 25, reverses the endianness of the
machine. The processor can be configured as either little-endian or
big-endian at system reset. This selection is always used in Kernel
and Supervisor modes, and also in User mode when the 

 

RE

 

 bit is 0.
Setting the 

 

RE

 

 bit to 1 inverts the User mode endianness.

 

Status Register Format

 

Figure 5.5 shows the format of the 

 

Status 

 

register. Table 5.3, which
follows the figure, describes the 

 

Status

 

 register fields.

 

Figure 5.5  Status Register
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Field Description

 

CU Controls the usability of each of the four coprocessor unit numbers. CP0 is always usable 
when in Kernel mode, regardless of the setting of the 

 

CU

 

0

 

 bit.
1 

 

→

 

 usable 0 

 

→

 

 unusable

FR Enables additional floating-point registers
0 

 

→

 

 16 registers 1 

 

→

 

 32 registers

RE

 

Reverse-Endian bit, valid in User mode.

BEV Controls the location of TLB refill and general exception vectors.
0 → normal 1→ bootstrap

SR 1→ Indicates a soft reset or NMI has occurred.

CH Hit (tag match and valid state) or miss indication for last CACHE Hit Invalidate, Hit Write 
Back Invalidate, Hit Write Back, or Hit Set Virtual for a primary cache.

0 → miss 1 → hit

CE Contents of the ECC register set or modify the check bits of the caches when CE = 1; see 
description of the ECC register.

DE Specifies that cache parity errors cannot cause exceptions.
0 → parity remains enabled 1 → disables parity

0 Reserved.   Must be written as zeroes, and returns zeroes when read.

IM Interrupt Mask: controls the enabling of each of the external, internal, and software inter-
rupts. An interrupt is taken if interrupts are enabled, and the corresponding bits are set in 
both the Interrupt Mask field of the Status register and the Interrupt Pending field of the Cause 
register. IM[7:2] correspond to interrupts Int[5:0] and IM[1:0] to the software interrupts.

0 → disabled 1→ enabled

KX KX controls whether the TLB Refill Vector or the XTLB Refill Vector address is used for TLB 
misses on kernel addresses

0 → TLB Refill Vector 1 → XTLB Refill Vector

SX Enables 64-bit virtual addressing and operations in Supervisor mode. The extended-address-
ing TLB refill exception is used for TLB misses on supervisor addresses.

0 → 32−bit 1 → 64−bit

UX Enables 64-bit virtual addressing and operations in User mode. The extended-addressing TLB 
refill exception is used for TLB misses on user addresses.

0 → 32−bit 1 → 64−bit

KSU Mode bits
102  → User 012  → Supervisor 002  → Kernel

ERL Error Level
0  → normal 1  → error

EXL Exception Level
0  → normal 1  → exception

Note: When going from 0 to 1, IE should be disabled (0) first.  This would be done when pre-
paring to return from the exception handler, such as before executing the ERET instruction.

IE Interrupt Enable
0  → disable interrupts 1 → enables interrupts

Table 5.3 Status Register Fields
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Status Register Modes and Access States

Fields of the Status register set the modes and access states described
in the sections that follow.

Interrupt Enable: Interrupts are enabled when all of the following
conditions are true:

• IE = 1
• EXL = 0
• ERL = 0
If these conditions are met, the settings of the IM bits identify the

interrupt.
Note: Setting the IE bit may be delayed by up to 3 cycles.  If performing

nested interrupts, re-enable the IE bit first.
  
Operating Modes: The following CPU Status register bit settings are

required for User, Kernel, and Supervisor modes (see Chapter 4 for more
information about operating modes).

• The processor is in User mode when KSU = 102, EXL = 0, and ERL = 0.
• The processor is in Supervisor mode when KSU = 012, EXL = 0, and

ERL = 0.
• The processor is in Kernel mode when KSU = 002, or EXL = 1, or ERL

= 1. 
32- and 64-bit Virtual Addressing: The following CPU Status register

bit settings select 32- or 64-bit virtual addressing for User and Supervisor
operating modes. Enabling 64-bit virtual addressing permits the execution
of 64-bit opcodes and translation of 64-bit virtual addresses. 64-bit virtual
addressing for User and Supervisor modes can be set independently but is
always used for Kernel mode.

• The KX field controls whether the TLB Refill Vector or the XTLB Refill
Vector address is used for TLB misses on Kernel addresses. 64-bit op-
codes are always valid in Kernel mode.

• 64-bit addressing and operations are enabled for Supervisor mode
when SX = 1.

• 64-bit addressing and operations are enabled for User mode when UX
= 1.

Kernel Address Space Accesses: Access to the kernel address space is
allowed when the processor is in Kernel mode.

Supervisor Address Space Accesses: Access to the supervisor address
space is allowed when the processor is in Kernel or Supervisor mode, as
described above in the paragraph titled Operating Modes.

User Address Space Accesses: Access to the user address space is
allowed in any of the three operating modes.

Status Register Reset
The contents of the Status register are undefined at reset, except for the

following bits — ERL  and BEV = 1.
The SR bit distinguishes between Reset and Soft Reset (Nonmaskable

Interrupt [NMI]).
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Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most
recent exception.

Figure 5.6 shows the fields of this register; Table 5.4, which follows the
figure, describes the Cause register fields. A 5-bit exception code (ExcCode)
indicates the cause of the most recent exception, as listed in Table 5.5 on
page 5-8.

All bits in the Cause register, with the exception of the IP(1:0) bits, are
read-only; IP(1:0) are used for software interrupts.

    

Figure 5.6  Cause Register Format
  

Field Description

BD Indicates whether the last exception taken occurred in a branch delay slot.
1 → delay slot
0 → normal

CE Coprocessor unit number referenced when a Coprocessor Unusable excep-
tion is taken.

IP Indicates an interrupt is pending.
1 → interrupt pending
0 → no interrupt

ExcCode Exception code field (see Table 5.5 on page 5-8)

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.4 Cause Register Fields

Cause Register
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IP
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0Exc
Code
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Exception Program Counter (EPC) Register (14)
The Exception Program Counter (EPC) is a read/write register that

contains the address at which processing resumes after an exception has
been serviced.

For synchronous exceptions, the EPC register contains either:
• the virtual address of the instruction that was the direct cause of the

exception, or
• the virtual address of the immediately preceding branch or jump in-

struction (when the instruction is in a branch delay slot, and the
Branch Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the
Status register is set to a 1.

Figure 5.7 shows the format of the EPC register.

Figure 5.7  EPC Register Format

Exception Mnemonic Description

Code 
Value

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 — Reserved

15 FPE Floating-Point exception

16–31 — Reserved

Table 5.5 Cause Register ExcCode Field

EPC Register
63 0

EPC

64
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XContext Register (20)
The read/write XContext register contains a pointer to an entry in the

page table entry (PTE) array, an operating system data structure that
stores virtual-to-physical address translations. When there is a TLB miss,
the operating system software loads the TLB with the missing translation
from the PTE array. The XContext register duplicates some of the
information provided in the BadVAddr register, and puts it in a form useful
for a software TLB exception handler. 

The XContext register is for use with the XTLB refill handler, which loads
TLB entries for references to a 64-bit address space, and is included solely
for operating system use. The operating system sets the PTE base field in
the register, as needed. Normally, the operating system uses the XContext
register to address the current page map, which resides in the kernel-
mapped segment kseg3. 

Figure 5.8 shows the format of the XContext register; Table 5.6, which
follows the figure, describes the XContext register fields. 

Figure 5.8  XContext Register Format

The 27-bit BadVPN2 field has bits 39:13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry maps
to an even-odd page pair. For a 4-Kbyte page size, this format may be used
directly to address the pair-table of 8-byte PTEs. For other page and PTE
sizes, shifting and masking this value produces the appropriate address.

  

Error Checking and Correcting (ECC) Register (26)
The 8-bit Error Checking and Correcting (ECC) register reads or writes

primary-cache data parity bits for cache initialization, cache diagnostics,
or cache error processing. (Tag parity is loaded from and stored to the
TagLo register.)

The ECC register is loaded by the Index Load Tag CACHE operation.
Content of the ECC register is:

• written into the primary data cache on store instructions (instead of
the computed parity) when the CE bit of the Status register is set

• substituted for the computed instruction parity for the CACHE oper-
ation Fill

To force a cache parity value use the Status CE bit and the ECC register.

Field Description

BadVPN2 The Bad Virtual Page Number/2 field is written by hardware on a 
miss. It contains the VPN of the most recent invalidly translated vir-
tual address.

R The Region field contains bits 63:62 of the virtual address.
002 = user
012 = supervisor
112 = kernel. 

PTEBase The Page Table Entry Base read/write field is normally written with 
a value that allows the operating system to use the Context register 
as a pointer into the current PTE array in memory.

Table 5.6 XContext Register Fields

XContext Register 

31 30 4 363 0

31

PTEBase BadVPN2

27 4

0R

2

33 32
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Figure 5.9 shows the format of the ECC register; Table 5.7, which follows
the figure, describes the register fields.

Figure 5.9  ECC Register Format
  

Cache Error (CacheErr) Register (27)
The 32-bit read-only CacheErr register processes parity errors in the

primary cache. Parity errors cannot be corrected. 
The CacheErr register holds cache index and status bits that indicate

the source and nature of the error; it is loaded when a Cache Error
exception is asserted.  When a read response returns with bad parity this
exception is also asserted.

Figure 5.10 shows the format of the CacheErr register; , which follows
the figure, describes the CacheErr register fields.

Figure 5.10  CacheErr Register Format

Field Description

ECC An 8-bit field specifying the parity bits read from or 
written to a primary cache.

0 Reserved. Must be written as zeroes, and returns 
zeroes when read.

Table 5.7 ECC Register Fields
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Error Exception Program Counter (Error EPC) Register (30)
The ErrorEPC register is similar to the EPC register, except that ErrorEPC

is used on parity error exceptions. It is also used to store the program
counter (PC) on Reset, Soft Reset, and nonmaskable interrupt (NMI)
exceptions. 

The read/write ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address
can be: 

• the virtual address of the instruction that caused the exception
• the virtual address of the immediately preceding branch or jump in-

struction, when this address is in a branch delay slot. 
There is no branch delay slot indication for the ErrorEPC register. 

Field Description

ER
Type of reference

0 → instruction
1 → data

EC
Cache level of the error

0 → primary
1 → reserved

ED
Indicates if a data field error occurred

0 → no error
1 → error

ET
Indicates if a tag field error occurred

0 → no error
1  → error

ES

Indicates the error occurred accessing processor-managed resources, in response to an external 
request.

0 → internal reference
1 → external reference

Since the R4600/R4700 doesn’t have any external events that would look in a cache (which is 
the only processor-managed resource), this bit would not be set under normal operating 
conditions.

EE
Set if the error occurred on the SysAD bus.

Taking a cache error exception sets/clears this bit.

EB Set if a data error occurred in addition to the instruction error (indicated by the remainder of 
the bits).   If so, this requires flushing the data cache after fixing the instruction error.

SIdx
Physical address 21:3 of the reference that encountered the error.  

The address may not be the same as the address of the double word in error, but it is sufficient 
to locate that double word in the secondary cache.

PIdx
Virtual address 13:12 of the double word in error.  

To be used with SIdx to construct a virtual index for the primary caches.  Only the lower two 
bits (bits 1 and 0) are vAddr; the high bit (bit 2) is zero.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.8 CacheErr Register Fields
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Figure 5.11 shows the format of the ErrorEPC register.

Figure 5.11  ErrorEPC Register Format

Processor Exceptions
This section describes the processor exceptions—it describes the cause

of each exception, its processing by the hardware, and servicing by a
handler (software). The types of exception, with exception processing
operations, are described in the next section.

Exception Types
This section gives sample exception handler operations for the following

exception types:
• reset
• soft reset
• nonmaskable interrupt (NMI)
• cache error
• remaining processor exceptions
When the EXL bit in the Status register is 0, either User or Supervisor

operating mode is specified by the KSU bits in the Status register. When
the EXL bit or the ERL bit is a 1, the processor is in Kernel mode. 

When the processor takes an exception, the EXL bit is set to 1, which
means the system is in Kernel mode. After saving the appropriate state, the
exception handler typically resets the EXL bit back to 0. When restoring
the state and restarting, the handler sets the EXL bit back to 1. 

Returning from an exception, also resets the EXL bit to 0 (see the ERET
instruction in Appendix A).

In the following sections, sample hardware processes for various
exceptions are shown, together with the servicing required by the handler
(software).

Reset Exception Process
Figure 5.12 shows the Reset exception process.

Figure 5.12  Reset Exception Processing

ErrorEPC Register

63 0

ErrorEPC

64

T: undefined
Random ← TLBENTRIES–1
Wired ← 0
Config <- 0 || EC || EP || 00000000 || BE || 110 || 010 || 010 || 1 || 1 || 0 || undefined3

ErrorEPC ← PC
SR ← SR31:23 || 1 || 0 || 0 || SR19:3 || 1 || SR1:0
PC ← 0xFFFF FFFF BFC0 0000
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Cache Error Exception Process
Figure 5.13 shows the Cache Error exception process.

Figure 5.13  Cache Error Exception Processing

Soft Reset and NMI Exception Process
Figure 5.14 shows the Soft Reset and NMI exception process.

Figure 5.14  Soft Reset and NMI Exception Processing

General Exception Process
Figure 5.15 shows the process used for exceptions other than Reset, Soft

Reset, NMI, and Cache Error.

Figure 5.15  General Exception Processing (Except Reset, Soft Reset, NMI, 
and Cache Error)

Exception Vector Locations
The Reset, Soft Reset, and NMI exceptions are always vectored to

location 0xFFFF FFFF BFC0 0000 (virtual address), corresponding to
kseg0.

Addresses for all other exceptions are a combination of a vector offset
and a base address. The base address is determined by the BEV bit of the
Status register, as shown in Table 5.9.  

T: ErrorEPC ← PC
CacheErr ← ER || EC || ED || ET || ES || EE || EB || 025

SR ← SR31:3 || 1 ||SR1:0
if SR22 = 1 then /* What is the BEV bit setting */
    PC ← 0xFFFF FFFF BFC0 0200 + 0x100 /* access boot-PROM area */
else
    PC ← 0xFFFF FFFF A000 0000 + 0x100 /* access main memory area */
endif

T: ErrorEPC ← PC
SR ← SR31:23 || 1 || 0 || 1 || SR19:3 || 1 || SR1:0
PC ← 0xFFFF FFFF BFC0 0000

T: Cause ← BD || 0 || CE || 012 || Cause15:8 || 0 || ExcCode || 02

if SR1 = 0 then /* system in User or Supervisor mode with no current exception */

    EPC ← PC
endif
SR ← SR31:2 || 1 || SR0
if SR22 = 1 then  /* What is the BEV bit setting */
    PC ← 0xFFFF FFFF BFC0 0200 + vector /* access to uncached space */
else
    PC ← 0xFFFF FFFF 8000 0000 + vector /* access to cached space */
endif
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Table 5.10 shows the vector offset that is added to the base address to
create the exception address.

       

As shown in Table 5.9, when BEV = 0, the vector base for the Cache
Error exception changes from kseg0 (0xFFFF FFFF 8000 0000) to kseg1
(0xFFFF FFFF A000 0000). 

When BEV = 1, the vector base for the Cache Error exception is 0xFFFF
FFFF BFC0 0200. This is an uncached and unmapped space, allowing the
exception to bypass the cache and TLB.

      

Priority of Exceptions
The remainder of this chapter describes exceptions in the order of their

priority, as shown in Table 5.11. While more than one exception can occur
for a single instruction, only the exception with the highest priority is
reported.

  

Generally speaking, the exceptions described in the following sections
are handled (“processed”) by hardware; these exceptions are then serviced
by software.

BEV R4600/R4700 Processor Vector Base Cache Error Base

0 0xFFFF FFFF 8000 0000 0xFFFF FFFF A000 0000

1 0xFFFF FFFF BFC0 0200 0xFFFF FFFF BFC0 0200

Table 5.9 Exception Vector Base Addresses

Exception
R4600/R4700 Processor 

Vector Offset

TLB refill, EXL = 0 0x000

XTLB refill, EXL = 0 (X = 64-bit TLB) 0x080

Cache Error 0x100

Others 0x180

Table 5.10 Exception Vector Offsets

Exception Priority

1 Reset (highest priority) 9 Integer overflow, Trap, System Call, Break-
point, Reserved Instruction, Coprocessor 
Unusable, or Floating-Point Exception

2 Soft Reset 10 Address error –– Data access

3 Nonmaskable Interrupt (NMI) 11 TLB refill –– Data access

4 Address error –– Instruction fetch 12 TLB invalid –– Data access

5 TLB refill –– Instruction fetch 13 TLB modified –– Data write

6 TLB invalid –– Instruction fetch 14 Cache error –– Data access 

7 Cache error –– Instruction fetch 15 Bus error –– Data access

8 Bus error –– Instruction fetch 16 Interrupt (lowest priority)

Table 5.11 Exception Priority Order
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Reset Exception
This section explains the Reset exception.

Cause
The Reset exception occurs when the ColdReset*1 signal is asserted and

then deasserted. This exception is not maskable.

Processing
The CPU provides a special exception vector for this exception of: 

0xFFFF FFFF BFC0 0000
The Reset vector resides in unmapped and uncached CPU address

space, so the hardware need not initialize the TLB or the cache to process
this exception. It also means the processor can fetch and execute
instructions while the caches and virtual memory are in an undefined
state.

The contents of all registers in the CPU are undefined when this
exception occurs, except for the following register fields:

• In the Status register, SR is cleared to 0, and ERL and BEV are set to
1. All other bits are undefined.

• The Random register is initialized to the value of its upper bound.
• The Wired register is initialized to 0.
• Some of the Config Register bits are initialized from the boot-time

mode stream.
Reset exception processing is shown in Figure 5.12 on page 12.

Servicing
The Reset exception is serviced by:
• initializing all processor registers, coprocessor registers, caches, and

the memory system
• performing diagnostic tests
• bootstrapping the operating system

1. In the following sections (and throughout this manual) a signal followed by an 
asterisk, such as Reset*, is low active.
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Soft Reset Exception
This section explains the Soft Reset exception.

Cause
The Soft Reset exception occurs in response to the Reset* input signal,

and execution begins at the Reset vector when Reset* is deasserted. This
exception is not maskable.

Processing
The Reset exception vector is used for this exception, located within

unmapped and uncached address space so that the cache and TLB need
not be initialized to process this exception. When a Soft Reset occurs, the
SR bit of the Status register is set to distinguish this exception from a Reset
exception.

The primary purpose of the Soft Reset exception is to reinitialize the
processor after a fatal error during normal operations. Unlike an NMI, all
cache and bus state machines are reset by this exception. Like Reset, it
can be used on the processor in any state; the caches, TLB, and normal
exception vectors need not be properly initialized.  Soft Reset preserves the
state of the caches and memory system, while resetting the bus state and
cache state machine.

When this exception occurs, the contents of all registers are preserved
except for:

• ErrorEPC register, which contains the restart PC
• ERL bit of the Status register, which is set to 1
• SR bit of the Status register, which is set to 1
• BEV bit of the Status register, which is set to 1
Because the Soft Reset can abort cache and bus operations, cache and

memory state is undefined when this exception occurs.
Soft reset exception processing is shown in Figure 5.14 on page 13.

Servicing
The Soft Reset exception is serviced by saving the current processor

state for diagnostic purposes, and reinitializing for the Reset exception.
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Nonmaskable Interrupt (NMI) Exception
This section explains the Nonmaskable Interrupt exception.

Cause
The Nonmaskable Interrupt (NMI) exception occurs in response to the

falling edge of the NMI pin, or an external write to the Int*[6] bit of the
Interrupt register.

Unlike all other interrupts, this interrupt is not maskable; it occurs
regardless of the settings of the EXL, ERL, and the IE bits in the Status
register.

Processing
The Reset exception vector is used for this exception. This vector is

located within unmapped and uncached address space so that the cache
and TLB need not be initialized to process an NMI interrupt. When an NMI
exception occurs, the SR bit of the Status register is set to differentiate this
exception from a Reset exception.

Because an NMI can occur in the midst of another exception, it is not
normally possible to continue program execution after servicing an NMI.

Unlike Reset and Soft Reset, but like other exceptions, NMI is taken only
at instruction boundaries. The state of the caches and memory system are
preserved by this exception.

To terminate a pending read that has hung the best approach is to
return a bus error.  However, if you wish to use a CPU exception to indicate
a hung read, Soft Reset is preferable to NMI.

When this exception occurs, the contents of all registers are preserved
except for:

• ErrorEPC register, which contains the restart PC
• ERL bit of the Status register, which is set to 1
• SR bit of the Status register, which is set to 1
• BEV bit of the Status register, which is set to 1
NMI exception processing is shown in Figure 5.14 on page 13.

Servicing
The NMI exception is serviced by saving the current processor state for

diagnostic purposes, and reinitializing the system for the Reset exception.
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Address Error Exception
This section explains the Address Error exception.

Cause
The Address Error exception occurs when an attempt is made to execute

one of the following:
• load or store a doubleword that is not aligned on a doubleword

boundary (except for use of special instruction)
• load, fetch, or store a word that is not aligned on a word boundary

(except for use of special instruction)
• load or store a halfword that is not aligned on a halfword boundary
• reference the kernel address space from User or Supervisor mode
• reference the supervisor address space from User mode
This exception is not maskable.

Processing
The common exception vector is used for this exception. The AdEL or

AdES code in the Cause register is set, indicating whether the instruction
(shown by the EPC register and BD bit in the Cause register) caused the
exception with an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr register retains the virtual
address that was not properly aligned or referenced protected address
space. The contents of the VPN field of the Context and EntryHi registers
are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the
exception, unless this instruction is in a branch delay slot. If it is in a
branch delay slot, the EPC register contains the address of the preceding
branch instruction and the BD bit of the Cause register is set as indication.

Address Error exception processing is shown in Figure 5.15 on page 13.

Servicing
Typically the process executing at the time is handed a segmentation

violation signal. This error is usually fatal to the process incurring the
exception.

To resume execution, the EPC register must be altered so that the
unaligned reference instruction does not re-execute; this is accomplished
by adding a value of 4 to the EPC register (EPC register + 4) before
returning. 

If an unaligned reference instruction is in a branch delay slot,
interpretation of the branch instruction is required to resume execution.
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TLB Exceptions
This section explains the TLB Exceptions.  For specifics on the

exceptions listed here, refer to the following three subsections.
Three types of TLB exceptions can occur:
• TLB Refill occurs when there is no TLB entry that matches an at-

tempted reference to a mapped address space.
• TLB Invalid occurs when a virtual address reference matches a TLB

entry that is marked invalid.
• TLB Modified occurs when a store operation virtual address reference

to memory matches a TLB entry which is marked valid but is not dirty
(the entry is not writable).

The following three subsections describe the TLB exceptions.

TLB Refill Exception
This subsection explains the TLB refill exception.

Cause
The TLB refill exception occurs when there is no TLB entry to match a

reference to a mapped address space. This exception is not maskable.

Processing
There are two special exception vectors for this exception; one for

references to 32-bit virtual address spaces, and one for references to 64-
bit virtual address spaces. The UX, SX, and KX bits of the Status register
determine whether the user, supervisor or kernel address spaces
referenced are 32-bit or 64-bit spaces. All references use these vectors
when the EXL bit is set to 0 in the Status register. This exception sets the
TLBL or TLBS code in the ExcCode field of the Cause register. This code
indicates whether the instruction, as shown by the EPC register and the
BD bit in the Cause register, caused the miss by an instruction reference,
load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers hold the virtual address that failed address translation.
The EntryHi register also contains the ASID from which the translation
fault occurred. The Random register normally suggests a valid location in
which to place the replacement TLB entry. The contents of the EntryLo
register are undefined. The EPC register contains the address of the
instruction that caused the exception, unless this instruction is in a
branch delay slot, in which case the EPC register contains the address of
the preceding branch instruction and the BD bit of the Cause register is
set.

TLB Refill exception processing is shown in Figure 5.15 on page 13.

Servicing
To service this exception, the contents of the Context or XContext register

are used as a virtual address to fetch memory locations containing the
physical page frame and access control bits for a pair of TLB entries. The
two entries are placed into the EntryLo0/EntryLo1 register; the EntryHi
and EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical address
and access control information is on a page that is not resident in the TLB.
This condition is processed by allowing a TLB refill exception in the TLB
refill handler. This second exception goes to the common exception vector
because the EXL bit of the Status register is set.
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TLB Invalid Exception
This subsection explains the TLB invalid exception.

Cause
The TLB invalid exception occurs when a virtual address reference

matches a TLB entry that is marked invalid (TLB valid bit cleared). This
exception is not maskable.

Processing
The common exception vector is used for this exception. The TLBL or

TLBS code in the ExcCode field of the Cause register is set. This indicates
whether the instruction, as shown by the EPC register and BD bit in the
Cause register, caused the miss by an instruction reference, load
operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers contain the virtual address that failed address
translation. The EntryHi register also contains the ASID from which the
translation fault occurred. The Random register normally contains a valid
location in which to put the replacement TLB entry. The contents of the
EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the
exception unless this instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

TLB Invalid exception processing is shown in Figure 5.15 on page 13.

Servicing
A TLB entry is typically marked invalid when one of the following is true:
• a virtual address does not exist
• the virtual address exists, but is not in main memory (a page fault)
• a trap is desired on any reference to the page (for example, to main-

tain a reference bit or during debug)
After servicing the cause of a TLB Invalid exception, the TLB entry is

located with TLBP (TLB Probe), and replaced by an entry with that entry’s
Valid bit set.
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TLB Modified Exception
This subsection explains the TLB modified exception.

Cause
The TLB modified exception occurs when a store operation virtual

address reference to memory matches a TLB entry that is marked valid but
is not dirty and therefore is not writable. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Mod

code in the Cause register is set.
When this exception occurs, the BadVAddr, Context, XContext and

EntryHi registers contain the virtual address that failed address
translation. The EntryHi register also contains the ASID from which the
translation fault occurred. The contents of the EntryLo registers are
undefined.

The EPC register contains the address of the instruction that caused the
exception unless that instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

TLB Modified exception processing is shown in Figure 5.15 on page 13.

Servicing
The kernel uses the failed virtual address or virtual page number to

identify the corresponding access control information. The page identified
may or may not permit write accesses; if writes are not permitted, a write
protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable
by the kernel in its own data structures. The TLBP instruction places the
index of the TLB entry that must be altered into the Index register. The
EntryLo register is loaded with a word containing the physical page frame
and access control bits (with the D bit set), and the EntryHi and EntryLo
registers are written into the TLB.
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Cache Error Exception
This section explains the Cache Error exception.

Cause
The Cache Error exception occurs when a primary cache parity error is

detected. This exception is maskable by the DE bit of the Status register.

Processing
The processor sets the ERL bit in the Status register, saves the exception

restart address in ErrorEPC register, and then transfers to a special vector
in uncached space:

If the BEV bit = 0, the vector is 0xFFFF FFFF A000 0100. 
If the BEV bit = 1, the vector is 0xFFFF FFFF BFC0 0300.
No other registers are changed.

Cache Error exception processing is shown in Figure 5.13 on page 13.

Servicing
All errors should be logged. To correct cache parity errors the system

uses the CACHE instruction to invalidate the cache block, overwrites the
old data through a cache miss, and resumes execution with an ERET. 

Other errors are not correctable and are likely to be fatal to the current
process.
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Bus Error Exception
This section explains the Bus Error exception.

Cause
A Bus Error exception is raised by board-level circuitry for events such

as bus time-out, backplane bus parity errors, and invalid physical memory
addresses or access types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached
reference, or unbuffered write occurs synchronously; a Bus Error
exception resulting from a buffered write transaction must be reported
using the general interrupt mechanism.

Processing
The common interrupt vector is used for a Bus Error exception. The IBE

or DBE code in the ExcCode field of the Cause register is set, signifying
whether the instruction (as indicated by the EPC register and BD bit in the
Cause register) caused the exception by an instruction reference, load
operation, or store operation.

The EPC register contains the address of the instruction that caused the
exception, unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of
the Cause register is set. Bus Error processing is shown in Figure 5.15 on
page 13.

Servicing
The physical address at which the fault occurred can be computed from

information available in the CP0 registers.
• If the IBE code in the Cause register is set (indicating an instruction

fetch reference), the virtual address is contained in the EPC register. 
• If the DBE code is set (indicating a load or store reference), the in-

struction that caused the exception is located at the virtual address
contained in the EPC register (or 4+ the contents of the EPC register
if the BD bit of the Cause register is set). 

The virtual address of the load and store reference can then be obtained
by interpreting the instruction. The physical address can be obtained by
using the TLBP instruction and reading the EntryLo register to compute
the physical page number.

The process executing at the time of this exception is handed a bus error
signal, which is usually fatal.
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Integer Overflow Exception
This section explains the Integer Overflow exception.

Cause
An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,

DADDI or DSUB1 instruction results in a 2’s complement overflow. This
exception is not maskable.

Processing
The common exception vector is used for this exception, and the OV

code in the Cause register is set.
The EPC register contains the address of the instruction that caused the

exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Integer Overflow exception processing is shown in Figure 5.15 on
page 13.

Servicing
The process executing at the time of the exception is handed a floating-

point exception/integer overflow signal. This error is usually fatal to the
current process.

1. See Appendix A for instruction description.
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Trap Exception
This section explains the Trap exception.

Cause
The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE,

TGEI, TGEUI, TLTI, TLTUI, TEQI, or TNEI1 instruction results in a TRUE
condition. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Tr code

in the Cause register is set.
The EPC register contains the address of the instruction causing the

exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Trap exception processing is shown in Figure 5.15 on page 13.

Servicing
The process executing at the time of a Trap exception is handed a

floating-point exception/integer overflow signal. This error is usually fatal.

1. See Appendix A for instruction description.
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System Call Exception
This section explains the System Call exception.

Cause
A System Call exception occurs during an attempt to execute the

SYSCALL instruction. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Sys

code in the Cause register is set.
The EPC register contains the address of the SYSCALL instruction

unless it is in a branch delay slot, in which case the EPC register contains
the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the
Status register is set; otherwise this bit is cleared.

System Call exception processing is shown in Figure 5.15 on page 13.

Servicing
When this exception occurs, control is transferred to the applicable

system routine. 
To resume execution, the EPC register must be altered so that the

SYSCALL instruction does not re-execute; this is accomplished by adding
a value of 4 to the EPC register (EPC register + 4) before returning. 

If a SYSCALL instruction is in a branch delay slot, a more complicated
algorithm, beyond the scope of this description, may be required.
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Breakpoint Exception
This section explains the Breakpoint exception.

Cause
A Breakpoint exception occurs when an attempt is made to execute the

BREAK instruction. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the BP code

in the Cause register is set.
The EPC register contains the address of the BREAK instruction unless

it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the
Status register is set, otherwise the bit is cleared.

Breakpoint exception processing is shown in Figure 5.15 on page 13.

Servicing
When the Breakpoint exception occurs, control is transferred to the

applicable system routine. Additional distinctions can be made by
analyzing the unused bits of the BREAK instruction (bits 25:6), and
loading the contents of the instruction whose address the EPC register
contains. A value of 4 must be added to the contents of the EPC register
(EPC register + 4) to locate the instruction if it resides in a branch delay
slot.

To resume execution, the EPC register must be altered so that the
BREAK instruction does not re-execute; this is accomplished by adding a
value of 4 to the EPC register (EPC register + 4) before returning. 

If a BREAK instruction is in a branch delay slot, interpretation of the
branch instruction is required to resume execution.
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Reserved Instruction Exception
This section explains the Reserved Instruction exception.

Cause
The Reserved Instruction exception occurs when one of the following

conditions occurs:
• an attempt is made to execute an instruction with an undefined major

opcode (bits 31:26) 
• an attempt is made to execute a SPECIAL instruction with an unde-

fined minor opcode (bits 5:0)
• an attempt is made to execute a REGIMM instruction with an unde-

fined minor opcode (bits 20:16)
• an attempt is made to execute 64-bit operations in 32-bit virtual ad-

dressing when in User or Supervisor modes
64-bit operations are always valid in Kernel mode regardless of the value

of the KX bit in the Status register. 
This exception is not maskable.
Reserved Instruction exception processing is shown in Figure 5.15 on

page 13.

Processing
The common exception vector is used for this exception, and the RI code

in the Cause register is set.
The EPC register contains the address of the reserved instruction unless

it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

Servicing
No instructions in the MIPS ISA are currently interpreted. The process

executing at the time of this exception is handed an illegal instruction/
reserved operand fault signal. This error is usually fatal.
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Coprocessor Unusable Exception
This sections explains the Coprocessor Unusable exception.

Cause
The Coprocessor Unusable exception occurs when an attempt is made

to execute a coprocessor instruction for either:
• a corresponding coprocessor unit that has not been marked usable,

or
• CP0 instructions, when the unit has not been marked usable and the

process executes in User mode.
This exception is not maskable.

Processing
The common exception vector is used for this exception, and the CPU

code in the Cause register is set. The contents of the Coprocessor Usage
Error field of the coprocessor Control register indicate which of the four
coprocessors was referenced. The EPC register contains the address of the
unusable coprocessor instruction unless it is in a branch delay slot, in
which case the EPC register contains the address of the preceding branch
instruction.

Coprocessor Unusable exception processing is shown in Figure 5.15 on
page 13.

Servicing
The coprocessor unit to which an attempted reference was made is

identified by the Coprocessor Usage Error field, which results in one of the
following situations:

• If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the corresponding user state is restored to the co-
processor. 

• If the process is entitled access to the coprocessor, but the coproces-
sor does not exist or has failed, interpretation of the coprocessor in-
struction is possible.

• If the BD bit is set in the Cause register, the branch instruction must
be interpreted; then the coprocessor instruction can be emulated and
execution resumed with the EPC register advanced past the coproces-
sor instruction.

• If the process is not entitled access to the coprocessor, the process ex-
ecuting at the time is handed an illegal instruction/privileged instruc-
tion fault signal. This error is usually fatal.
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Floating-Point Exception
This sections explains the Floating-Point exception.

Cause
The Floating-Point exception is used by the floating-point coprocessor.

This exception is not maskable.

Processing
The common exception vector is used for this exception, and the FPE

code in the Cause register is set.
The contents of the Floating-Point Control/Status register indicate the

cause of this exception.
Floating-Point exception processing is shown in Figure 5.15 on page 13.

Servicing
This exception is cleared by clearing the appropriate bit in the Floating-

Point Control/Status register.
For an unimplemented instruction exception, the kernel should emulate

the instruction; for other exceptions, the kernel should pass the exception
to the user program that caused the exception.
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Interrupt Exception
This sections explains the Interrupt exception.

Cause
The Interrupt exception occurs when one of the eight interrupt

conditions is asserted. The significance of these interrupts is dependent
upon the specific system implementation.

Each of the eight interrupts can be masked by clearing the
corresponding bit in the Int-Mask field of the Status register, and all of the
eight interrupts can be masked at once by clearing the IE bit of the Status
register.

Processing
The common exception vector is used for this exception, and the Int code

in the Cause register is set.
The IP field of the Cause register indicates current interrupt requests. It

is possible that more than one of the bits can be simultaneously set (or
even no bits may be set if the interrupt is asserted and then deasserted
before this register is read).

Interrupt exception processing is shown in Figure 5.15 on page 13.

Servicing
If the interrupt is caused by one of the two software-generated

exceptions (SW1 or SW0), the interrupt condition is cleared by setting the
corresponding Cause register bit to 0.

If the interrupt is hardware-generated, the interrupt condition is cleared
by correcting the condition causing the interrupt pin to be asserted.

NOTE: due to the write buffer, a store to an external device will not
necessarily occur until after other instructions in the pipeline finish. Thus,
the user must ensure that the store will occur before the return from
exception instruction (ERET) is executed otherwise the interrupt may be
serviced again even though there should be no interrupt pending.
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Exception Handling and Servicing Flowcharts
The remainder of this chapter contains figures of flowcharts for the

exceptions described in Table 5.12, and guidelines for their handlers.

Generally speaking, the exceptions are handled by hardware (HW), and
then the exceptions are serviced by software (SW).

Figure Description

Figure 5.16, 
Figure 5.17

General exceptions and their exception handler

Figure 5.18, 
Figure 5.19

TLB/XTLB miss exception and their exception handler

Figure 5.20 Cache error exception and its handler

Figure 5.21 Reset, soft reset and NMI exceptions, and a guideline to 
their handler.

Table 5.12 List of Exception Flowcharts
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Figure 5.16  General Exception Handler (HW)
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Figure 5.17  General Exception Servicing Guidelines (SW)
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Figure 5.18  TLB/XTLB Miss Exception Handler (HW)
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Figure 5.19  TLB/XTLB Exception Servicing Guidelines (SW)
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Figure 5.20  Cache Error Exception Handling (HW) 
and Servicing Guidelines (SW)

Set CacheErr Reg.
C

ac
h

e 
E

rr
o

r 
E

xc
ep

ti
o

n
 H

an
d

lin
g

 (
H

W
)

ERL ← 1

PC ← 0xFFFF FFFF BFC0 0200

BEV

PC ← 0xFFFF FFFF A000 0000

=1=0

(Base is sign extended for 64 bits)

(unmapped, uncached) (unmapped, uncached)

Note: Can be masked/disabled by DE (SR16) bit = 1

(bootstrap)(normal)

ErrEPC ← PC

Instr. in Yes

No

ErrEPC ← (PC - 4)

Br. Dly. Slot?

S
er

vi
ci

n
g

 G
u

id
el

in
es

 (
S

W
)

Service Code

ERET

* ERET is not allowed in the branch delay slot of 

* Unmapped Uncached vector so
TLB related & Cache Error Exception not possible

* ERL=1 so Interrupt exceptions disabled

*Only Reset, Soft Reset, NMI

* OS/System to avoid all other exceptions

* Processor does not execute the instruction which is

* PC ← ErrorEPC; ERL ← 0

* LLbit ← 0

Comments

 exceptions possible.

in the ERET’s branch delay slot

another Jump Instruction

+ 100 + 100



CPU Exception Processing Chapter 5

5 – 38

Figure 5.21  Reset, Soft Reset & NMI Exception Handling (HW) and Servicing 
Guidelines (SW)
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Floating-Point Unit Chapter 6

 

This chapter describes the R4600 and R4700 floating-point unit (FPU)
features, including the programming model, instruction set and formats,
and the pipeline.

The FPU, with associated system software, fully conforms to the
requirements of ANSI/IEEE Standard 754–1985, 

 

IEEE Standard for Binary
Floating-Point Arithmetic

 

. In addition, the MIPS architecture fully supports
the recommendations of the standard and precise exceptions. 

 

Overview

 

The FPU operates as a coprocessor for the CPU (it is assigned
coprocessor label 

 

CP1

 

), and extends the CPU instruction set to perform
arithmetic operations on floating-point values. 

 

The R4600/R4700 Floating-Point Coprocessor

 

The R4600/R4700 incorporates an entire floating-point coprocessor on
chip, including a floating-point register file and execution units.  The
floating-point coprocessor forms a seamless interface with the integer unit,
decoding and executing instructions in parallel with the integer unit.  In
comparison to the R4600, the floating point coprocessor of the R4700 has
improved floating multiply operations.

The R4600/R4700 uses the floating-point unit to perform integer
multiply and divide, and results are placed in the HI and LO registers.  The
values can then be transferred to the general purpose register file using the
MFHI/MFLO instructions.  The R4700 performs an integer multiply faster
than the R4600 by 2 clock cycles, but it takes the same number of clock
cycles for integer division.  The R4700 improves the multiply compared to
the R4600 by performing a single-precision multiply in 4 clock cycles, and
a double-precision multiply in 5 clock cycles.

Figure 6.1 illustrates the functional organization of the FPU.

 

Figure 6.1  FPU Functional Block Diagram
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FPU Features

 

This section briefly describes the operating model, the load/store
instruction set, and the coprocessor interface in the FPU. A more detailed
description is given in the sections that follow.

•

 

Full 64-bit Operation

 

. When the 

 

FR 

 

bit in the CPU 

 

Status 

 

register
equals 0, the FPU is configured for sixteen 64-bit registers for double-
precision values or thirty-two 32-bit registers for single-precision val-
ues. When the 

 

FR 

 

bit in the CPU 

 

Status 

 

register equals 1, the FPU is
configured for thirty-two 64-bit registers. Each register can hold sin-
gle- or double-precision values. The FPU also includes a 32-bit 

 

Con-
trol/Status

 

 register that provides access to all IEEE-Standard
exception handling capabilities.

•

 

Load and Store Instruction Set

 

. Like the CPU, the FPU uses a load-
and store-oriented instruction set, with single-cycle load and store
operations. Overlap of multiply and add is supported.

•

 

Tightly Coupled Coprocessor Interface

 

. The FPU resides on-chip to
form a tightly coupled unit with a seamless integration of floating-
point and fixed-point instruction sets.

 

FPU Programming Model

 

This section describes the set of FPU registers and their data
organization. The FPU registers include 

 

Floating-Point General Purpose

 

registers

 

 (FGR

 

s) and two control registers: 

 

Control/Status

 

 and

 

Implementation/Revision

 

.

 

Floating-Point General Registers (FGRs)

 

The FPU has a set of

 

 Floating-Point General Purpose 

 

registers

 

 (FGR

 

s) that
can be accessed in the following ways:

• As 32 general-purpose registers (32 FGRs), each of which is 32-bits
wide when the 

 

FR

 

 bit in the CPU

 

 Status

 

 register equals 0; or as 32 gen-
eral-purpose registers (32 FGRs), each of which is 64-bits wide when

 

FR

 

 equals 1. The CPU accesses these registers through move, load,
and store instructions.

• As 16 floating-point registers (see the next section for a description of
FPRs), each of which is 64-bits wide, when the 

 

FR

 

 bit in the CPU 

 

Sta-
tus 

 

register equals 0. The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds to adjacently
numbered FGRs as shown in Figure 6.2 on page 6-3.

• As 32 floating-point registers (see the next section for a description of
FPRs), each of which is 64-bits wide, when the 

 

FR

 

 bit in the CPU 

 

Sta-
tus 

 

register equals 1. The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds to an FGR as
shown in Figure 6.2.
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Figure 6.2  FPU Registers

 

Floating-Point Registers

 

The FPU provides:
• 16 

 

Floating-Point

 

 registers (

 

FPR

 

s) for 

 

Status.FR

 

 = 0, or 
• 32 

 

Floating-Point

 

 registers (

 

FPR

 

s) for 

 

Status

 

.

 

FR 

 

= 1. 
These 64-bit registers hold floating-point values during floating-point

operations and are physically formed from the 

 

General Purpose

 

 registers
(

 

FGRs

 

). When the 

 

FR

 

 bit in the 

 

Status 

 

register equals 1, the 

 

FPR

 

 references
a single 64-bit 

 

FGR.

 

The 

 

FPR

 

s hold values in either single- or double-precision floating-point
format. If the 

 

FR

 

 bit equals 0, only even numbers (the

 

 least

 

 register, as
shown in Figure 6.2) can be used to address 

 

FPR

 

s. When the 

 

FR

 

 bit is set
to a 1, all 

 

FPR 

 

register numbers are valid. 
If the 

 

FR

 

 bit equals 0 during a double-precision floating-point operation,
the general registers are accessed in double pairs. Thus, in a double-
precision operation, selecting 

 

Floating-Point Register 0

 

 (

 

FPR0

 

) actually
addresses adjacent 

 

Floating-Point General Purpose

 

 registers 

 

FGR0

 

 and

 

FGR1

 

.

 

Floating-Point Control Registers

 

The FPU has 32 control registers (

 

FCR

 

s) that can only be accessed by
move operations. The 

 

FCR

 

s are described below:
• The 

 

Implementation/Revision 

 

register

 

 (FCR0)

 

 holds revision informa-
tion about the FPU.

• The 

 

Control/Status 

 

register

 

 (FCR31)

 

 controls and monitors excep-
tions, holds the result of compare operations, and establishes round-
ing modes.

•

 

FCR1

 

 to 

 

FCR30

 

 are reserved.
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Table 6.1 lists the assignments of the 

 

FCR

 

s.
   

 

Implementation and Revision Register, (FCR0)

 

The read-only 

 

Implementation and Revision

 

 register (

 

FCR0

 

) specifies the
implementation and revision number of the FPU. This information can
determine the coprocessor revision and performance level, and can also be
used by diagnostic software. 

Figure 6.3 shows the layout of the register; Table 6.2, which follows the
figure, describes the 

 

Implementation and Revision

 

 register (

 

FCR0

 

) fields.

 

Figure 6.3  Implementation/Revision Register

 

   

The revision number is a value of the form 

 

y.x

 

, where:

•

 

y

 

 is a major revision number held in bits 7:4.
•

 

x

 

 is a minor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, there
is no guarantee that changes to the chip are necessarily reflected by the
revision number, or that changes to the revision number necessarily reflect
real chip changes. For this reason revision number values are not listed,
and software should not rely on the revision number to characterize the
chip. 

 

Control/Status Register (FCR31) 

 

The 

 

Control

 

/

 

Status

 

 register

 

 (FCR31

 

) contains control and status
information that can be accessed by instructions in either Kernel or User
mode. 

 

FCR31

 

 also controls the arithmetic rounding mode and enables
User mode traps, as well as identifying any exceptions that may have
occurred in the most recently executed instruction, along with any
exceptions that may have occurred without being trapped.

 

 FCR Number Use

 

FCR0 Coprocessor implementation and revision register

FCR1 to FCR30 Reserved

FCR31 Rounding mode, cause, trap enables, and flags

Table 6.1 Floating-Point Control Register Assignments

Field Description

Imp Implementation number R4600:  0x20
R4700:  0x21

Rev Revision number in the form of y.x

0 Reserved.

Table 6.2 FCR0 Fields

16 15 7

Implementation/Revision Register (FCR0)

31 0

16

Rev

8 8

8

0 Imp
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Figure 6.4 on page 6-5 shows the format of the Control/Status register,
and Table 6.3, which follows the figure, describes the Control/Status
register fields. Figure 6.5 on page 6-5 shows the Control/Status register
Cause, Flag, and Enable fields.

   

Figure 6.4  FP Control/Status Register Bit Assignments

    

Figure 6.5  Control/Status Register Cause, Flag, and Enable Fields

Field Description

FS When set, denormalized results are flushed to 0 instead of causing 
an unimplemented operation exception.

C Condition bit. See description of Control/Status register Condition 
bit.

Cause Cause bits. See Figure 6.5 and the description of Control/Status 
register Cause, Flag, and Enable bits.

Enables Enable bits. See Figure 6.5 and the description of Control/Status 
register Cause, Flag, and Enable bits.

Flags Flag bits. See Figure 6.5 and the description of Control/Status reg-
ister Cause, Flag, and Enable bits.

RM Rounding mode bits. See Table 6.4 on page 7 and the description 
of Control/Status register Rounding Mode Control bits.

Table 6.3 Control/Status Register Fields

Control/Status Register (FCR31)

31 24 23 22 18 17 12 11 7 6 2 1 0

7 1 5 6 5 5 2

C RMFlagsEnablesCause
0 0 E V Z O U I V Z O U I V Z O U I

25

FS

1

E Z O U IV

17 16 15 14 13 12

Unimplemented Operation

Invalid Operation
Division by Zero

Inexact Operation

Overflow
Underflow

Bit #

Z O U IV

11 10 9 8 7Bit #

Z O U IV

6 5 4 3 2Bit #

Cause
Bits

Flag
Bits

Enable
Bits
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Accessing the Control/Status Register
When the Control/Status register is read by a Move Control From

Coprocessor 1 (CFC1) instruction, all unfinished instructions in the
pipeline are completed before the contents of the register are moved to the
main processor. If a floating-point exception occurs as the pipeline
empties, the FP exception is taken and the CFC1 instruction is re-executed
after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing to
the register using a Move Control To Coprocessor 1 (CTC1) instruction.
CTC1 is not issued until all previous floating-point operations are
complete.

IEEE Standard 754
IEEE Standard 754 specifies that floating-point operations detect

certain exceptional cases, raise flags, and can invoke an exception handler
when an exception occurs. These features are implemented in the MIPS
architecture with the Cause, Enable, and Flag fields of the Control/Status
register. The Flag bits implement IEEE 754 exception status flags, and the
Cause and Enable bits implement exception handling.

Control/Status Register FS Bit
When the FS bit is set, denormalized results are flushed to 0 instead of

causing an unimplemented operation exception.

Control/Status Register Condition Bit
When a floating-point Compare operation takes place, the result is

stored at bit 23, the Condition bit, to save or restore the state of the
condition line. The C bit is set to 1 if the condition is true; the bit is cleared
to 0 if the condition is false. Bit 23 is affected only by compare and Move
Control To FPU instructions.

Control/Status Register Cause, Flag, and Enable Fields 
Figure 6.5 on page 6-5 illustrates the Cause, Flag, and Enable fields of

the Control/Status register.

Cause Bits
Bits 17:12 in the Control/Status register contain Cause bits, as shown

in Figure 6.5 on page 6-5, which reflect the results of the most recently
executed instruction. The Cause bits are a logical extension of the CP0
Cause register; they identify the exceptions raised by the last floating-point
operation and raise an interrupt or exception if the corresponding enable
bit is set. If more than one exception occurs on a single instruction, each
appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by
load, store, or move operations). The Unimplemented Operation (E) bit is
set to a 1 if software emulation is required, otherwise it remains 0. The
other bits are set to 0 or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception.

When a floating-point exception is taken, no results are stored, and the
only state affected is the Cause bits. Exceptions caused by an immediately
previous floating-point operation can be determined by reading the Cause
field. 

Enable Bits
A floating-point operation that sets an enabled Cause bit forces an

immediate exception, as does setting both Cause and Enable bits with
CTC1. The floating-point exception or interrupt is enabled when the
corresponding enable be is set.

There is no enable for Unimplemented Operation (E). Setting
Unimplemented Operation always generates a floating-point exception.
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Before returning from a floating-point exception, or doing a CTC1,
software must first clear the enabled Cause bits to prevent a repeat of the
interrupt. Thus, User mode programs can never observe enabled Cause
bits set; if this information is required in a User mode handler, it must be
passed somewhere other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no
exception occurs and the default result defined by IEEE 754 is stored. In
this case, the exceptions that were caused by the immediately previous
floating-point operation can be determined by reading the Cause field.

Flag Bits
When an exception case is detected and the exception Enable is not set,

the corresponding flag bit is set. If an exception is taken, none of the flag
bits are modified. Note however that system software may set the flag bits
before invoking a user exception handler.

The Flag bits are cumulative and indicate that an exception was raised
by an operation that was executed since they were explicitly reset. Flag bits
are set to 1 if an IEEE 754 exception is raised, otherwise they remain
unchanged. The Flag bits are never cleared as a side effect of floating-point
operations; however, they can be set or cleared by writing a new value into
the Status register, using a Move To Coprocessor Control instruction.

Control/Status Register Rounding Mode Control Bits 
Bits 1 and 0 in the Control/Status register constitute the Rounding Mode

(RM) field.
As shown in Table 6.4, these bits specify the rounding mode that the

FPU uses for all floating-point operations.

Floating-Point Formats
The FPU performs both 32-bit (single-precision) and 64-bit (double-

precision) IEEE standard floating-point operations. The 32-bit single-
precision format has a 24-bit signed-magnitude fraction field (f+s) and an
8-bit exponent (e), as shown in Figure 6.6.

Figure 6.6  Single-Precision Floating-Point Format

Rounding 
Mode RM(1:0)

Mnemonic    Description

0 RN Round result to nearest representable value; 
round to value with least-significant bit 0 when 
the two nearest representable values are equally 
near.

1 RZ Round toward 0: round to value closest to and not 
greater in magnitude than the infinitely precise 
result.

2 RP Round toward +∞: round to value closest to and 
not less than the infinitely precise result.

3 RM Round toward – ∞: round to value closest to and 
not greater than the infinitely precise result.

Table 6.4 Rounding Mode Bit Decoding

31 30 23 22 0

FractionSign Exponent

231 8

s e f
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The 64-bit double-precision format has a 53-bit signed-magnitude
fraction field (f+s) and an 11-bit exponent, as shown in Figure 6.7.

Figure 6.7  Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are
composed of three fields:

• sign field, s
• biased exponent, e = E + bias
• fraction, f =.b1b2....bp–1
The range of the unbiased exponent E includes every integer between

the two values Emin and Emax inclusive, together with two other reserved
values: 

• Emin -1 (to encode ±0 and denormalized numbers)

• Emax +1 (to encode ±• and NaNs [Not a Number])
For single- and double-precision formats, each representable nonzero

numerical value has just one encoding.
For single- and double-precision formats, the value of a number, v, is

determined by the equations shown in Table 6.5.

For all floating-point formats, if v is NaN, the most-significant bit of f
determines whether the value is a signaling or quiet NaN: v is a signaling
NaN if the most-significant bit of f is set, otherwise, v is a quiet NaN.

No. Equation

(1) if E = Emax+1 and f ≠ 0, then v is NaN, regardless of s

(2) if E = Emax+1 and f = 0, then v = (–1)s ∞

(3) if Emin ≤ E ≤ Emax, then v = (–1)s2E(1.f)

(4) if E = Emin–1 and f ≠ 0, then v = (–1)s2Emin(0.f)

(5) if E = Emin–1 and f = 0, then v = (–1)s0

Table 6.5 Equations for Calculating Values in Single and 
Double-Precision Floating-Point Format

63 62 52 51 0

FractionSign Exponent

521 11

s e f
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 defines the values for the format parameters.  Minimum and maximum
floating-point values are given in Table 6.7.

   

  

Binary Fixed-Point Format
Binary fixed-point values are held in 2’s complement format. Unsigned

fixed-point values are not directly provided by the floating-point
instruction set. Figure 6.8 illustrates binary fixed-point format; Table 6.8,
which follows the figure, lists the binary fixed-point format fields.

Figure 6.8  Binary Fixed-Point Format

Parameter
Format

Single Double

f 24 53

Emax +127 +1023

Emin –126 –1022

Exponent bias +127 +1023

Exponent width in bits 8 11

Integer bit hidden hidden

Fraction width in bits 24 53

Format width in bits 32 64

Table 6.6 Floating-Point Format Parameter Values

Type Value

Float Minimum 1.40129846e–45

Float Minimum Norm 1.17549435e–38

Float Maximum 3.40282347e+38

Double Minimum 4.9406564584124654e–324

Double Minimum Norm 2.2250738585072014e–308

Double Maximum 1.7976931348623157e+308

Table 6.7 Minimum and Maximum Floating-Point Values

Field Description

sign sign bit

integer integer value

Table 6.8 Binary Fixed-Point Format Fields

31 30 0

Sign

311

Integer
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Floating-Point Instruction Set Overview
All FPU instructions are 32-bits long, aligned on a word boundary. They

can be divided into the following groups:
• Load, Store, and Move instructions move data between memory, the

main processor, and the FPU General Purpose registers.
• Conversion instructions perform conversion operations between the

various data formats.
• Computational instructions perform arithmetic operations on float-

ing-point values in the FPU registers.
• Compare instructions perform comparisons of the contents of regis-

ters and set a conditional bit based on the results.
• Branch on FPU Condition instructions perform a branch to the spec-

ified target if the specified coprocessor condition is met.
Table 6.9 through Table 6.12 list the instruction set of the FPU. A

complete description of each instruction is provided in Appendix B.
In the instruction formats shown in Table 6.9 through Table 6.12, the

fmt appended to the instruction opcode specifies the data format: s
specifies single-precision binary floating-point, d specifies double-
precision binary floating-point, and w specifies binary fixed-point.

    

    

OpCode Description

LWC1 Load Word to FPU

SWC1 Store Word from FPU

LDC1 Load Doubleword to FPU

SDC1 Store Doubleword From FPU

MTC1 Move Word To FPU

MFC1 Move Word From FPU

CTC1 Move Control Word To FPU

CFC1 Move Control Word From FPU

DMTC1 Doubleword Move To FPU

DMFC1 Doubleword Move From FPU

Table 6.9 FPU Instruction Summary: Load, Move and Store Instructions

OpCode Description

CVT.S.fmt Floating-point Convert to Single FP

CVT.D.fmt Floating-point Convert to Double FP

CVT.W.fmt Floating-point Convert to Single Fixed Point 

ROUND.w.fmt Floating-point Round

TRUNC.w.fmt Floating-point Truncate

CEIL.w.fmt Floating-point Ceiling

FLOOR.w.fmt Floating-point Floor

Table 6.10 FPU Instruction Summary: Conversion Instructions
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Floating-Point Load, Store, and Move Instructions
This section discusses the manner in which the FPU uses the load, store

and move instructions listed in Table 6.9 on page 10; Appendix B provides
a detailed description of each instruction.

Transfers Between FPU and Memory
All data movement between the FPU and memory is accomplished by

using one of the following instructions: 
• Load Word To Coprocessor 1 (LWC1) or Store Word To Coprocessor 1

(SWC1) instructions, which reference a single 32-bit word of the FPU
general registers

• Load Doubleword (LDC1) or Store Doubleword (SDC1) instructions,
which reference a 64-bit doubleword.

These load and store operations are unformatted; no format conversions
are performed and therefore no floating-point exceptions can occur due to
these operations. 

With the LDC1 and SDC1 instructions the R4600/R4700 floating-point
unit can take advantage of the 64-bit wide data cache and issue a
coprocessor load or store double-word instruction with every cycle.

Transfers Between FPU and CPU
Data can also be moved directly between the FPU and the CPU by using

one of the following instructions:
• Move To Coprocessor 1 (MTC1)
• Move From Coprocessor 1 (MFC1)
• Doubleword Move To Coprocessor 1 (DMTC1)
• Doubleword Move From Coprocessor 1 (DMFC1)
Like the floating-point load and store operations, these operations

perform no format conversions and never cause floating-point exceptions.

OpCode Description

ADD.fmt Floating-point Add

SUB.fmt Floating-point Subtract

MUL.fmt Floating-point Multiply

DIV.fmt Floating-point Divide

ABS.fmt Floating-point Absolute Value

MOV.fmt Floating-point Move

NEG.fmt Floating-point Negate

SQRT.fmt Floating-point Square Root

Table 6.11 FPU Instruction Summary: Computational Instructions

OpCode Description

C.cond.fmt Floating-point Compare

BC1T Branch on FPU True

BC1F Branch on FPU False

BC1TL Branch on FPU True Likely

BC1FL Branch on FPU False Likely

Table 6.12 FPU Instruction Summary: Compare and Branch Instructions
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Load Delay and Hardware Interlocks
The instruction immediately following a load can use the contents of the

loaded register. In such cases the hardware interlocks, requiring
additional real cycles; for this reason, scheduling load delay slots is
desirable, although it is not required for functional code.

Data Alignment
All coprocessor loads and stores reference the following aligned data

items:
• For word loads and stores, the access type is always WORD, and the

low-order 2 bits of the address must always be 0.
• For doubleword loads and stores, the access type is always DOUBLE-

WORD, and the low-order 3 bits of the address must always be 0.

Endianness
Regardless of byte-numbering order (endianness) of the data, the

address specifies the byte that has the smallest byte address in the
addressed field. For a big-endian system, it is the leftmost byte; for a little-
endian system, it is the rightmost byte.

Floating-Point Conversion Instructions
Conversion instructions perform conversions between the various data

formats such as single- or double-precision, fixed- or floating-point
formats. Table 6.10 on page 10 lists conversion instructions; Appendix B
gives a detailed description of each instruction.

Floating-Point Computational Instructions
Computational instructions perform arithmetic operations on floating-

point values, in registers. Table 6.11 on page 11 lists the computational
instructions and Appendix B provides a detailed description of each
instruction. There are two categories of computational instructions:

• 3-Operand Register-Type instructions, which perform floating-point
addition, subtraction, multiplication, division, and square root.

• 2-Operand Register-Type instructions, which perform floating-point
absolute value, move, and negate.

Branch on FPU Condition Instructions
Table 6.12 on page 11 lists the Branch on FPU (coprocessor unit 1)

condition instructions that can test the result of the FPU compare (C.cond)
instructions. Appendix B gives a detailed description of each instruction.

Floating-Point Compare Operations
The floating-point compare (C.fmt.cond) instructions interpret the

contents of two FPU registers (fs, ft) in the specified format (fmt) and
arithmetically compare them. A result is determined based on the
comparison and conditions (cond) specified in the instruction. 

Table 6.12 on page 11 lists the compare instructions; Appendix B gives
a detailed description of each instruction. Table 6.13 on page 13 lists the
mnemonics for the compare instruction conditions.
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FPU Instruction Pipeline Overview
The FPU provides an instruction pipeline that parallels the CPU

instruction pipeline. It shares the same five-stage pipeline architecture
with the CPU (see Chapter 3).

Instruction Execution
Figure 6.9 illustrates the 5-stage FPU pipeline. This is the same as that

of the integer pipeline but allows for the longer execution times of the
floating-point instructions.

Figure 6.9  FPU Instruction Pipeline

Mnemonic Definition Mnemonic Definition

F False T True

UN Unordered OR Ordered

EQ Equal NEQ Not Equal

UEQ Unordered or Equal OLG Ordered or Less Than or Greater Than

OLT Ordered Less Than UGE Unordered or Greater Than or Equal

ULT Unordered or Less Than OGE Ordered Greater Than

OLE Ordered Less Than or Equal UGT Unordered or Greater Than

ULE Unordered or Less Than or Equal OGT Ordered Greater Than

SF Signaling False ST Signaling True

NGLE Not Greater Than or Less Than or Equal GLE Greater Than, or Less Than or Equal

SEQ Signaling Equal SNE Signaling Not Equal

NGL Not Greater Than or Less Than GL Greater Than or Less Than

LT Less Than NLT Not Less Than

NGE Not Greater Than or Equal GE Greater Than or Equal

LE Less Than or Equal NLE Not Less Than or Equal

NGT Not Greater Than GT Greater Than

Table 6.13 Mnemonics and Definitions of Compare Instruction Conditions

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

One Cycle
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Figure 6.9 on page 6-13 assumes that one instruction is completed
every PCycle. Most FPU instructions, however, require more than one cycle
in the EX stage. This means the FPU must stall the pipeline if an
instruction execution cannot proceed because of register or resource
conflicts.

Floating-point operations proceed in parallel with non-floating-point
operations. Floating-point operations are not allowed to overlap each
other, with two exceptions:

• An add operation may start 2 cycles after the start of a multiply and
thus will be completely overlapped by the multiply.

• A multiply operation may overlap for up to 2 cycles, as follows:
R4600: A new multiply may start 6 cycles after another multiply. 
R4700: A new multiply may start 4 cycles after another multiply

(for both single and double precision).

Non-floating-point operations as well as other integer operations may be
executed in parallel with the floating-point operations. All of this is
handled automatically by internal hardware in the R4600/R4700. 

Instruction Execution Cycle Time
Unlike the CPU, which executes almost all instructions in a single cycle,

more time may be required to execute FPU instructions. 
Table 6.14 gives the minimum latency of each floating-point operation.

Operation Pipeline Cycles Operation Pipeline Cycles

Single Double Single Double

ADD.fmt 4 4 BC1T 1

SUB.fmt 4 4 BC1F 1

MUL.fmt
R4600
R4700

8
4

8
5

BC1TL 1

DIV.fmt 32 61 BC1FL 1

SQRT.fmt 31 60 LWC1, LDC1 2

ABS.fmt 1 1 SWC1, SDC1 1

MOV.fmt 1 1 TRUNC.W.fmt 4 4

NEG.fmt 1 1 MTC1, DMTC1 2

ROUND.W.fmt 4 4 MFC1, DMFC1 2

CEIL.W.fmt 4 4 CTC1 3

FLOOR.W.fmt 4 4 CFC1 2

CVT.S.fmt (a) 4 CMP 3 3

CVT.D.fmt 2 (a) FIX 4 4

CVT.W.fmt 4 4 FLOAT 6 6

C.fmt.cond 3 3

Note: (a) These operations are illegal.

Table 6.14 Floating-Point Operation Latencies
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Instruction Scheduling Constraints
The FPU resource scheduler only issues instructions to the FPU op units

(adder and multiplier) when no hardware use conflicts will occur. In
addition, some overlap possibilities are disallowed to keep the scheduler
simple (and/or increase performance).

FPU Multiplier Constraints
The FPU multiplier is partially pipelined in the R4600, allowing a new

multiply to begin every 6 cycles.  It is more fully pipelined in the R4700,
allowing a new multiply to begin every 4 cycles.

FPU Adder Constraints
The FPU scheduler may issue an add operation (ADD.fmt or SUB.fmt) 2

cycles after a multiply (MUL.fmt).

Resource Scheduling Rules
The FPU Resource Scheduler issues instructions while adhering to the

rules described below. These scheduling rules optimize op unit executions;
if the rules are not followed, the hardware interlocks to guarantee correct
operation.

DIV.[S,D] can start only when all of the following conditions are met in
the 1A phase.

• The adder is idle (division is performed in the adder).
• The multiplier is idle.

MUL.[S,D] can start only when all of the following conditions are met in
the 1A phase.

• The multiplier is one of the following:
- idle.
- Started execution at least 6 cycles earlier on the current multiply

• The adder is idle.

SQRT.[S,D] can start when the following conditions are met in the 1A
phase.

• The adder is idle.
• The multiplier must be idle.

CVT.fmt instructions can only start when all of the following conditions
are met in the 1A phase.

• The adder is idle.
• The multiplier is idle.

ADD.[S,D] or SUB.[S,D] can start only when all of the following
conditions are met in the 1A phase.

• The adder is idle
• The multiplier is either:

- idle.
- started execution of the current multiply at least 2 cycles earlier.

NEG.[S,D] or ABS.[S,D] can start only when all of the following
conditions are met in the 1A phase.

• The adder is idle.
• The multiplier is idle.

C.COND.[S,D] can start only when all of the following conditions are met
in the 1A phase.

• The adder is idle.
• The multiplier is idle.
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Floating-Point Exceptions Chapter 7

 

This chapter describes FPU floating-point exceptions, including FPU
exception types, exception trap processing, exception flags, saving and
restoring state when handling an exception, and trap handlers for IEEE
Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle
either the operands or the results of a floating-point operation in its normal
way.   The FPU responds by generating an exception to initiate a software
trap or by setting a status flag.

 

Exception Types

 

The FP

 

 Control/Status

 

 register described in Chapter 6 contains an

 

Enable 

 

bit for each exception type; exception 

 

Enable

 

 bits determine
whether an exception will cause the FPU to initiate a trap or set a status
flag. 

• If a trap is taken, the FPU remains in the state found at the beginning
of the operation and a software exception handling routine executes.

• If no trap is taken, an appropriate value is written into the FPU des-
tination register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:
• Inexact (I)
• Underflow (U)
• Overflow (O)
• Division by Zero (Z)
• Invalid Operation (V)

 

Cause

 

 bits, 

 

Enables

 

, and 

 

Flag

 

 bits (status flags) are used.
The FPU adds a sixth exception type, Unimplemented Operation (E).

This exception indicates the use of a software implementation. The
Unimplemented Operation exception has no 

 

Enable

 

 or 

 

Flag

 

 bit; whenever
this exception occurs, an unimplemented exception trap is taken. 

Figure 7.1 illustrates the 

 

Control/Status

 

 register bits that support
exceptions.

  

 

Figure 7.1  Control/Status Register Exception/Flag/Trap/Enable Bits

E Z O U IV

17 16 15 14 13 12

Unimplemented Operation

Invalid Operation
Division by Zero

Inexact Operation

Overflow
Underflow

Bit #

Z O U IV

11 10 9 8 7Bit #

Z O U IV

6 5 4 3 2Bit #

Cause
Bits

Flag
Bits

Enable
Bits
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Each of the five IEEE Standard 754 exceptions (V, Z, O, U, I) is
associated with a trap under user control, and is enabled by setting one of
the five 

 

Enable

 

 bits.  When an exception occurs and its corresponding
Enable bit is not set, both the corresponding Cause and Flag bits are set.
When an exception occurs and its corresponding Enable bit is set, the
corresponding Cause bit is set and the subsequent exception processing
allows a trap to be taken.

 

Exception Trap Processing

 

When a floating-point exception trap is taken, the 

 

Cause

 

 register
indicates the floating-point coprocessor is the cause of the exception trap.
The Floating-Point Exception (FPE) code is used, and the 

 

Cause

 

 bits of the
floating-point 

 

Control/Status 

 

register indicate the reason for the floating-
point exception.  These bits are, in effect, an extension of the system
coprocessor 

 

Cause

 

 register.

 

Flags

 

A 

 

Flag

 

 bit is provided for each IEEE exception.  This 

 

Flag

 

 bit is set to a
1 on the assertion of its corresponding exception, with no corresponding
exception trap signaled.

The 

 

Flag

 

 bit is reset by writing a new value into the 

 

Status

 

 register; flags
can be saved and restored by software either individually or as a group.

When no exception trap is signaled, the floating-point coprocessor takes
a default action, providing a substitute value for the exception-causing
result of the floating-point operation.  The particular default action taken
depends upon the type of exception.  Table 7.1 lists the default action
taken by the FPU for each of the IEEE exceptions.

  

The FPU detects the eight exception causes internally.  When the FPU
encounters one of these unusual situations, it causes either an IEEE
exception or an Unimplemented Operation exception (E).

 

Field Description Rounding
Mode

Default action

 

 I Inexact exception Any Supply a rounded result

U Underflow exception Any Take unimplemented unless FCSR.FS bit is set.

O Overflow exception RN Modify overflow values to 

 

∞

 

 

 

with the sign of the 
intermediate result

RZ Modify overflow values to the format’s largest finite 
number with the sign of the intermediate result

RP Modify negative overflows to the format’s most nega-
tive finite number; modify positive overflows to + 

 

∞

 

RM Modify positive overflows to the format’s largest 
finite number; modify negative overflows to – 

 

∞

 

Z Division by zero Any Supply a properly signed 

 

∞

 

V Invalid operation Any Supply a quiet Not a Number (NaN)

 

Table 7.1 Default FPU Exception Actions
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 lists the exception-causing conditions of the IEEE Standard 754.

 

FPU Exceptions

 

The following sections describe the conditions that cause the FPU to
generate each of its exceptions, and details the FPU response to each
exception-causing condition.

 

Inexact Exception (I)

 

The FPU generates the Inexact exception if the rounded result of an
operation is not exact or if it overflows.  The FPU usually examines the
operands of floating-point operations before execution actually begins, to
determine (based on the exponent values of the operands) if the operation
can 

 

possibly 

 

cause an exception.  If there is a possibility of an instruction
causing an exception trap, the FPU uses a coprocessor stall to execute the
instruction.

It is impossible, however, for the FPU to predetermine if an instruction
will produce an inexact result.  If Inexact exception traps are enabled, the
FPU uses the coprocessor stall mechanism to execute all

 

 

 

floating-point
operations that require more than two cycles.  Since this mode of execution
can impact performance, Inexact exception traps should be enabled only
when necessary. 

 

Trap Enabled Results: 

 

If Inexact exception traps are enabled, the result
register is not modified and the source registers are preserved.

 

Trap Disabled Results: 

 

The rounded or overflowed result is delivered to
the destination register if no other software trap occurs. 

 

Invalid Operation Exception (V)

 

The Invalid Operation exception is signaled if one or both of the
operands are invalid for an implemented operation.  When the exception
occurs without a trap, the MIPS ISA defines the result as a quiet Not a
Number (NaN). The invalid operations are:

• Addition or subtraction: magnitude subtraction of infinities, such as:
(+ 

 

∞

 

) + (– 

 

∞

 

) or (– 

 

∞

 

) – (– 

 

∞

 

)
• Multiplication: 0 times

 

 ∞

 

, with any signs
• Division: 0/0, or 

 

∞

 

/

 

∞

 

, with any signs
• Comparison of predicates involving 

 

< 

 

or 

 

> 

 

without

 

?

 

, when the oper-
ands are unordered

• Any arithmetic operation on a signaling NaN.  A move (MOV) operation
is not considered to be an arithmetic operation, but absolute value
(ABS) and negate (NEG) are considered to be arithmetic operations
and cause this exception if one or both operands is a signaling NaN.

• Square root:

 

 √

 

x, where x is less than zero

 

FPA Internal
Result 

IEEE
Standard 754

Trap
Enable

Trap
Disable

Notes

 

Inexact result I I I Loss of accuracy

Exponent overflow O,I

 

a

 

O,I O,I Normalized exponent > E

 

max

 

Division by zero Z Z Z Zero is (exponent = E

 

min

 

-1, mantissa = 0)

Overflow on convert V E E Source out of integer range

Signaling NaN source V V V Signaling NaN source produces quiet NaN result

Invalid operation V V V 0/0, etc.

Exponent underflow U E E Normalized exponent < E

 

min

 

Denormalized source None E E Exponent = E-1 and mantissa <> 0

 

Note:

 

a

 

The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is disabled.

 

Table 7.2 FPU Exception-Causing Conditions
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Software can simulate the Invalid Operation exception for other
operations that are invalid for the given source operands.  Examples of
these operations include IEEE Standard 754-specified functions
implemented in software, such as Remainder: 

 

x

 

 REM 

 

y

 

, where 

 

y

 

 is 0 or 

 

x

 

is infinite; conversion of a floating-point number to a decimal format whose
value causes an overflow, is infinity, or is NaN; and transcendental
functions, such as ln (–5) or cos–1(3).  Refer to Appendix B for examples or
for routines to handle these cases.

 

Trap Enabled Results: 

 

The original operand values are undisturbed.

 

Trap Disabled Results:

 

 The FPU sets the Invalid Operation Exception
flag and a quiet NaN is delivered to the destination register. 

 

Division-by-Zero Exception (Z)

 

The Division-by-Zero exception is signaled on an implemented divide
operation if the divisor is zero and the dividend is a finite nonzero number.
Software can simulate this exception for other operations that produce a
signed infinity, such as ln(0), sec(

 

π

 

/2), csc(0), or 0

 

–1.

 

Trap Enabled Results: 

 

The result register is not modified, and the
source registers are preserved.

 

Trap Disabled Results: 

 

The result, when no trap occurs, is a correctly
signed infinity.

 

Overflow Exception (O)

 

The Overflow exception is signaled when the magnitude of the rounded
floating-point result, with an unbounded exponent range, is larger than
the largest finite number of the destination format.  (This exception also
sets the Inexact exception and 

 

Flag

 

 bits.) 

 

Trap Enabled Results: 

 

The result register is not modified, and the
source registers are preserved.

 

Trap Disabled Results: 

 

The result, when no trap occurs, is determined
by the rounding mode and the sign of the intermediate result.

 

Underflow Exception (U)

 

Two related events contribute to the Underflow exception:
• creation of a tiny nonzero result between 

 

±

 

2

 

Emin

 

 which can cause
some later exception because it is so tiny

• extraordinary loss of accuracy during the approximation of such tiny
numbers by denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but
requires they be detected the same way for all operations.

Tinniness can be detected by one of the following methods:
• after rounding (when a nonzero result, computed as though the expo-

nent range were unbounded, would lie strictly between 

 

±

 

2

 

Emin

 

)
• before rounding (when a nonzero result, computed as though the ex-

ponent range and the precision were unbounded, would lie strictly be-
tween 

 

±

 

2

 

Emin

 

).
The MIPS architecture requires that tininess be detected after rounding.
Loss of accuracy can be detected by one of the following methods:
• denormalization loss (when the delivered result differs from what

would have been computed if the exponent range were unbounded)
• inexact result (when the delivered result differs from what would have

been computed if the exponent range and precision were both un-
bounded).

The MIPS architecture requires that loss of accuracy be detected as an
inexact result.

 

Trap Enabled Results: 

 

When an underflow trap is enabled, underflow
is signaled when tininess is detected regardless of loss of accuracy.  If
underflow traps are enabled, the result register is not modified, and the
source registers are preserved.
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Trap Disabled Results: 

 

When an underflow trap is not enabled and
FCSR.FS is clear, then take an unimplemented exception. When an
underflow trap is not enabled and FCSR.FS is set, raise Inexact and return
either 0 or 

 

±

 

2

 

Emin

 

, as appropriate for the current rounding mode.

 

Unimplemented Instruction Exception (E)

 

Any attempt to execute an instruction with an operation code or format
code that has been reserved for future definition sets the 

 

Unimplemented

 

bit in the 

 

Cause

 

 field in the FPU 

 

Control/Status

 

 register and traps.  The
operand and destination registers remain undisturbed and the instruction
is emulated in software.  Any of the IEEE Standard 754 exceptions can
arise from the emulated operation, and these exceptions in turn are
simulated.

The Unimplemented Instruction exception can also be signaled when
unusual operands or result conditions are detected that the implemented
hardware cannot handle properly.  These include:

• Denormalized operand
• Quiet NaN operand
• Underflow
• Reserved opcodes
• Unimplemented formats
• Conversion of a floating-point number to a fixed point format when an

overflow occurs or the source operand value is Infinity or a NaN.
• Operations which are invalid for their format (for instance, CVT.S.S)
Denormalized and NaN operands are only trapped if the instruction is a

convert or computational operation. Moves and compares do not trap if
their operands are either denormalized or NaNs.

The use of this exception for such conditions is optional; most of these
conditions are newly developed and are not expected to be widely used in
early implementations.  Loopholes are provided in the architecture so that
these conditions can be implemented with assistance provided by
software, maintaining full compatibility with the IEEE Standard 754.

 

Trap Enabled Results: 

 

The original operand values are undisturbed.

 

Trap Disabled Results: 

 

This trap cannot be disabled.

 

Saving and Restoring State

 

Sixteen or thirty-two doubleword coprocessor load or store operations
save or restore the coprocessor floating-point register state in memory.
The remainder of control and status information can be saved or restored
through Move To/From Coprocessor Control Register instructions, and
saving and restoring the processor registers.  Normally, the 

 

Control

 

/Status
register is saved first and restored last.

When the coprocessor Control/Status register (FCR31) is read, and the
coprocessor is executing one or more floating-point instructions, the
instruction(s) in progress are either completed or reported as exceptions.
The architecture requires that no more than one of these pending
instructions can cause an exception. Information indicating the type of
exception is placed in the Control/Status register.  When state is restored,
state information in the status word indicates that exceptions are pending.

Writing a zero value to the Cause field of Control/Status register clears
all pending exceptions, permitting normal processing to restart after the
floating-point register state is restored.

The Cause field of the Control/Status register holds the results of only
one instruction; the FPU examines source operands before an operation is
initiated to determine if this instruction can possibly cause an exception.
If an exception is possible, the FPU executes the instruction in stall mode
to ensure that no more than one instruction (that might cause an
exception) is executed at a time.
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Trap Handlers for IEEE Standard 754 Exceptions
The IEEE Standard 754 strongly recommends that users be allowed to

specify a trap handler for any of the five standard exceptions that can
compute; the trap handler can either compute or specify a substitute
result to be placed in the destination register of the operation.

By retrieving an instruction using the processor Exception Program
Counter (EPC) register, the trap handler determines:

• exceptions occurring during the operation
• the operation being performed 
• the destination format
On Overflow or Underflow exceptions (except for conversions), and on

Inexact exceptions, the trap handler gains access to the correctly rounded
result by examining source registers and simulating the operation in
software.

On Overflow or Underflow exceptions encountered on floating-point
conversions, and on Invalid Operation and Divide-by-Zero exceptions, the
trap handler gains access to the operand values by examining the source
registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and
underflow traps take precedence over a separate inexact trap. This
prioritization is accomplished in software; hardware sets the bits for both
the Inexact exception and the Overflow or Underflow exception.
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Descriptions

Chapter 8

 

Introduction

 

This chapter describes the signals used by and in conjunction with the
R4600/R4700 processor. The signals include the System interface, the
Clock/Control interface, the Interrupt interface, the Joint Test Action
Group (JTAG) interface, and the Initialization interface.

Signals are listed in bold, and low active signals have a trailing asterisk
— for instance, the low-active Read Ready signal is 

 

RdRdy

 

*.  The signal
description also tells if the signal is an input (the processor receives it) or
output (the processor sends it out).

Figure 8.1 illustrates the functional groupings of the processor signals.

 

Figure 8.1  R4600/R4700 Processor Signals
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System Interface Signals

 

System interface signals provide the connection between the R4600/
R4700 processor and the other components in the system.  Table 8.1 lists
the system interface signals.

 

Name Definition Direction Description

 

ExtRqst* External request Input An external agent asserts 

 

ExtRqst

 

* to 
request use of the System interface. The pro-
cessor grants the request by asserting 

 

Release

 

*. 

Release* Release interface Output In response to the assertion of 

 

ExtRqst

 

* or a 
CPU read request, the processor asserts 

 

Release

 

*, signalling to the requesting device 
that the System interface is available.

RdRdy* Read ready Input The external agent asserts 

 

RdRdy

 

* to indi-
cate that it can accept a processor read 
request. 

SysAD(63:0) System address/
data bus

Input/
Output

A 64-bit address and data bus for communi-
cation between the processor and an external 
agent. 

SysADC(7:0) System address/
data check bus

Input/
Output

An 8-bit bus containing check bits for the 

 

SysAD

 

 bus. 

SysCmd(8:0) System com-
mand/data identi-
fier

Input/
Output

A 9-bit bus for command and data identifier 
transmission between the processor and an 
external agent. 

SysCmdP System com-
mand/data identi-
fier bus parity

Input/
Output

A single, even-parity bit for the 

 

SysCmd

 

 bus. 

ValidIn* Valid input Input The external agent asserts 

 

ValidIn

 

* when it 
is driving a valid address or data on the 
SysAD bus and a valid command or data 
identifier on the SysCmd bus. 

ValidOut* Valid output Output The processor asserts 

 

ValidOut

 

* when it is 
driving a valid address or data on the SysAD 
bus and a valid command or data identifier 
on the SysCmd bus. 

WrRdy* Write ready Input An external agent asserts 

 

WrRdy

 

* when it 
can accept a processor write request.

 

Table 8.1 System Interface Signals
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Clock/Control Interface Signals

 

The Clock/Control interface signals make up the interface for clocking
and maintenance.  

Table 8.2 lists the Clock/Control interface signals.

 

Name Definition Direction Description

 

IOOut I/O output Output Reserved for future output. 
Always High.

IOIn I/O input Input Reserved for future input. 
Should be driven High.

MasterClock Master clock Input Master clock input that estab-
lishes the processor operating 
frequency. It is 1/2 the pipeline 
frequency.

MasterOut Master clock out Output Master clock output aligned with 

 

MasterClock

 

. 

RClock(1:0) Receive clocks Output Two identical receive clocks that 
establish the System interface 
frequency.

SyncOut Synchronization
clock out

Output SyncOut must be connected to 

 

SyncIn

 

 through an interconnect 
that models the interconnect 
between 

 

MasterOut

 

, 

 

TClock

 

, 

 

RClock

 

, and the external agent.

SyncIn Synchronization
clock in

Input Synchronization clock input. 

TClock(1:0) Transmit clocks Output Two identical transmit clocks 
that establish the System inter-
face frequency. 

Fault* Fault Output Reserved for future output. 
Always High.

VccP Quiet Vcc for PLL Input Quiet Vcc for the internal phase 
locked loop.

VssP Quiet Vss for PLL Input Quiet Vss for the internal phase 
locked loop.

 

Table 8.2 Clock/Control Interface Signals
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Interrupt Interface Signals

 

The Interrupt interface signals make up the interface used by external
agents to interrupt the R4600/R4700 processor. Six hardware interrupts
(

 

Int*(5:0)

 

)

 

 

 

and one NMI are available on the R4600/R4700.  Table 8.3 lists
the Interrupt interface signals.

 

JTAG Interface Signals

 

The R4600/R4700 does not implement JTAG. The signals are provided
for compatibility with existing R4x00PC designs. 

Table 8.4 lists the JTAG interface signals.

 

Name Definition Direction Description

 

Int*(5:0) Interrupt Input Six general processor interrupts, bit-wise ORed 
with bits 5:0 of the interrupt register.

NMI* Nonmaskable 
interrupt

Input Nonmaskable interrupt, ORed with bit 6 of the 
interrupt register.

 

Table 8.3 Interrupt Interface Signals

 

Name Definition Direction Description

 

JTDI JTAG data in Input Connected directly to JTDO. No JTAG imple-
mented. Should be pulled High.

JTCK TAG clock input Input Unused input. Should be pulled High.

JTDO JTAG data out Output Connected directly to JTDI. If no external 
scan used, this is a no connect.

JTMS JTAG command Input Unused input. Should be pulled High.

 

Table 8.4 JTAG Interface Signals
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Initialization Interface Signals

 

The Initialization interface signals make up the interface by which an
external agent initializes the processor operating parameters.  Table 8.5
lists the Initialization interface signals.

 

Name Definition Direction Description

 

 ColdReset* Cold reset Input This signal must be asserted for a 
power on reset or a cold reset.  The 
clocks 

 

SClock

 

, 

 

TClock

 

, and 

 

RClock

 

 begin to cycle and are syn-
chronized with the deasserted edge 
of 

 

ColdReset

 

*. 

 

 ColdReset

 

* must 
be deasserted synchronously with 

 

MasterClock

 

.

ModeClock Boot mode clock Output Serial boot-mode data clock output; 
runs at the Master Clock frequency 
divided by 256: (

 

MasterClock

 

/
256).

ModeIn Boot mode data in Input Serial boot-mode data input. 

Reset* Reset Input This signal must be asserted for any 
reset sequence.  It can be asserted 
synchronously or asynchronously 
for a cold reset, or synchronously to 
initiate a warm reset. 

 

 Reset

 

* must 
be deasserted synchronously with 

 

MasterClock

 

.

VCCOk Vcc is OK Input When asserted, this signal indicates 
to the processor that V

 

CC 

 

> V

 

CC

 

min 
for more than 100 milliseconds and 
will remain stable.  The assertion of 

 

VCCOk

 

 initiates the initialization 
sequence.

 

Table 8.5 Initialization Interface Signals
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Table 8.6 lists the R4600/R4700 processor signals and their possible
states.

 

Description Name I/O
Asserted

State 3-State
Reset 
State

 

System address/data bus SysAD(63:0) I/O High Yes a

System address/data check bus SysADC(7:0) I/O High Yes a

System command/data identifier bus SysCmd(8:0) I/O High Yes a

System command/data identifier bus parity SysCmdP I/O High Yes a

Valid input ValidIn* I Low No NA

Valid output ValidOut* O Low Yes b

External request ExtRqst* I Low No NA

Release interface Release* O Low Yes b

Read ready RdRdy* I Low No NA

Write ready WrRdy* I Low No NA

Interrupts Int*(5:0) I Low No NA

Nonmaskable interrupt NMI* I Low No NA

Boot mode data in ModeIn I High No NA

Boot mode clock ModeClock O High No d

JTAG data in JTDI I High No NA

JTAG data out JTDO O High Yes b

JTAG command JTMS I High No NA

JTAG clock input JTCK I High No NA

Transmit clocks TClock(1:0) O High Yes c

Receive clocks RClock(1:0) O High Yes c

Master clock MasterClock I High No NA

Master clock out MasterOut O High Yes c

Synchronization clock out SyncOut O High Yes c

Synchronization clock in SyncIn I High No NA

I/O output IOOut O High Yes b

I/O input IOIn I High No NA

Vcc is OK VCCOk I High No NA

Cold reset ColdReset* I Low No NA

Reset Reset* I Low No NA

Fault Fault* O Low Yes b

 

Key to Reset State Column:

 

a All I/O pins (SysAD[63:0], SysADC[7:0], etc.) remain 3-stated until the Reset* signal deasserts.
b All output only pins (ValidOut*, Release*, etc.), except the clocks, are 3-stated until the ColdReset*

signal deasserts.
c All clocks, except ModeClock, are 3-stated until VCCOk asserts.
d ModeClock is always driven.
NA Not applicable to input pins.

 

Table 8.6 R4600/R4700 Processor Signal Summary
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Initialization Interface Chapter 9

 

Introduction

 

This chapter describes the R4600/R4700 Initialization interface.  This
includes the reset signal description and types, initialization sequence,
with signals and timing dependencies, and boot modes, which are set at
initialization time.

Signal names are listed in bold letters—for instance the signal 

 

VCCOk

 

indicates the Vcc voltage is stable.  Low-active signals are indicated by an
asterisk at the end of the name, as in 

 

ColdReset*

 

.

 

Functional Overview

 

The R4600/R4700 processor has the following three types of resets.
Refer to Figure 9.1 on page 9-4, Figure 9.2 on page 9-5, and Figure 9.3 on
page 9-6  for timing diagrams of these resets. 

•

 

Power-on reset

 

: Starts when the power supply is turned on and
completely reinitializes the internal state machine of
the processor without saving any state information.

•

 

Cold reset

 

:  Restarts all clocks, but the power supply remains
stable.  A cold reset completely reinitializes the
internal state machine of the processor without
saving any state information.

•

 

Warm reset

 

: Restarts processor, but does not affect clocks.  A
warm reset preserves the processor internal state.

These resets use the 

 

VCCOk, ColdReset*

 

,

 

 

 

and

 

 Reset* 

 

input signals,
which are summarized in the next subsection.  Descriptions of each type
of reset operation is described 

The Initialization interface is a serial interface that operates at the
frequency of the 

 

MasterClock

 

 divided by 256 (i.e. 

 

MasterClock

 

/256). This
low-frequency operation allows the initialization information to be stored
in a low-cost EPROM or PLD.

 

Reset and Initialization Signal Descriptions

 

This section describes the three reset signals, 

 

VCCOk, ColdReset*

 

,

 

 

 

and

 

Reset*

 

, and the two initialization signals, 

 

ModeIn

 

 and 

 

ModeClock

 

.

 

VCCOk:

 

 When asserted

 

1

 

, 

 

VCCOk

 

 indicates to the processor that the 5.0
(3.3) volt power supply (Vcc) has been above 4.75 (3.0) volts for
more than 100 milliseconds (ms) and is expected to remain
stable.  The assertion of 

 

VCCOk

 

 initiates the reading of the
boot-time mode control serial stream.   This is described in the
subsection “Initialization Sequence” on page 9-4.

 

ColdReset*:

 

 The

 

 ColdReset*

 

 signal must be asserted (low) for either a
power-on reset or a cold reset. The clocks 

 

SClock

 

, 

 

TClock

 

, and

 

RClock

 

 begin to cycle and are synchronized with the
de-asserted edge (high) of 

 

ColdReset*

 

. 

 

 ColdReset*

 

 must be
de-asserted synchronously with 

 

MasterClock

 

.

 

Reset*: 

 

The

 

 Reset*

 

 signal must be asserted for any reset sequence.  It
can be asserted synchronously or asynchronously for a cold
reset, or synchronously to initiate a warm reset. 

 

Reset*

 

 must
be de-asserted synchronously with 

 

MasterClock

 

.

 

ModeIn

 

: Serial boot mode data in.

 

ModeClock

 

: Serial boot mode data out, at the 

 

MasterClock

 

 frequency
divided by 256 (

 

MasterClock

 

/256).

 

1. 

 

 

 

Asserted

 

 means the signal is true, or in its valid state.  For example, the low-
active 

 

Reset

 

* signal is said to be asserted when it is in a low (true) state; the high-
active 

 

VCCOk

 

 signal is true when it is asserted high.
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Table 9.1 lists the processor signals and their possible states.

 

Description Name I/O Asserted State 3-State Reset State

 

System address/data bus SysAD(63:0) I/O High Yes a

System address/data check bus SysADC(7:0) I/O High Yes a

System command/data identifier bus SysCmd(8:0) I/O High Yes a

System command/data identifier bus parity SysCmdP I/O High Yes a

Valid input ValidIn* I Low No NA

Valid output ValidOut* O Low Yes b

External request ExtRqst* I Low No NA

Release interface Release* O Low Yes b

Read ready RdRdy* I Low No NA

Write ready WrRdy* I Low No NA

Interrupts Int*(5:0) I Low No NA

Nonmaskable interrupt NMI* I Low No NA

Boot mode data in ModeIn I High No NA

Boot mode clock ModeClock O High No d

JTAG data in JTDI I High No NA

JTAG data out JTDO O High Yes b

JTAG command JTMS I High No NA

JTAG clock input JTCK I High No NA

Transmit clocks TClock(1:0) O High Yes c

Receive clocks RClock(1:0) O High Yes c

Master clock MasterClock I High No NA

Master clock out MasterOut O High Yes c

Synchronization clock out SyncOut O High Yes c

Synchronization clock in SyncIn I High No NA

I/O output IOOut O High Yes b

I/O input IOIn I High No NA

Vcc is OK VCCOk I High No NA

Cold reset ColdReset* I Low No NA

Reset Reset* I Low No NA

Fault Fault* O Low Yes b

 

Key to Reset State Column:

 

a All I/O pins (SysAD[63:0], SysADC[7:0], etc.) remain 3-stated until the Reset* signal deasserts.
b All output only pins (ValidOut*, Release*, etc.), except the clocks, are 3-stated until the ColdReset* signal

deasserts.
c All clocks, except ModeClock, are 3-stated until VCCOk asserts.
d ModeClock is always driven.
NA Not applicable to input pins.

 

Table 9.1 R4600/R4700 Processor Signal Summary
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Power-on Reset

 

 Figure 9.1, Figure 9.2, and Figure 9.3 illustrate the power-on, warm,
and cold resets.

This is the sequence for a power-on reset:
1. Power-on reset applies a stable Vcc of at least 4.5 (3.0)  volts from the

5.0 (3.3) volt power supply to the processor.  During this time, 

 

VCCOk

 

 is
deasserted, 

 

ColdReset*

 

 and 

 

Reset*

 

 are asserted and the 

 

MasterClock

 

input oscillates.
2. After at least 100 ms of stable Vcc and 

 

MasterClock

 

, the 

 

VCCOk

 

signal is asserted to the processor. The assertion of 

 

VCCOk

 

 begins the
initialization of the processor. After the mode bits have been read in, the
processor allows its internal phase locked loops to lock, stabilizing the
processor internal clock, 

 

PClock

 

, the 

 

SyncOut

 

-

 

SyncIn

 

 clock path
(described in Chapter 10), and the master clock output, 

 

MasterOut

 

. 
3. 

 

ColdReset*

 

 is asserted for at least 64K (or 2

 

16

 

)

 

 MasterClock

 

 cycles
after the assertion of 

 

VCCOk

 

.   Once the processor reads the boot-time
mode control serial data stream, 

 

ColdReset*

 

 can be deasserted.

 

ColdReset*

 

 must be deasserted synchronously with 

 

MasterClock

 

. 
4. The deasserted edge of 

 

ColdReset*

 

 synchronizes the edges of 

 

SClock

 

,

 

TClock

 

, and 

 

RClock

 

 (to all processors, if in a multiprocessor system).
5. After

 

 ColdReset*

 

 is deasserted synchronously and 

 

SClock

 

, 

 

TClock

 

,
and 

 

RClock

 

 have stabilized, 

 

Reset*

 

 is deasserted to allow the processor to
begin running.  (

 

Reset*

 

 must be held asserted for at least 64 

 

MasterClock

 

cycles after the deassertion of 

 

ColdReset*

 

.)

 

  Reset*

 

 must be deasserted
synchronously with 

 

MasterClock

 

. 

 

Note:  ColdReset*

 

 must be asserted when 

 

VCCOk

 

 asserts.  The behavior of the
processor is undefined if 

 

VCCOk

 

 asserts while 

 

ColdReset*

 

 is deasserted.

 

Cold Reset

 

A cold reset can begin anytime after the processor has read the
initialization data stream, causing the processor to start with the Reset
exception.

A cold reset requires the same sequence as a power-on reset except that
the power is presumed to be stable before the assertion of the reset inputs
and the deassertion of 

 

VCCOk

 

. 
To begin the reset sequence, 

 

VCCOk

 

 must be deasserted for a minimum
of 100 ms before reassertion.

 

Warm Reset

 

To execute a warm reset, the 

 

Reset*

 

 input is asserted synchronously
with 

 

MasterClock

 

.  It is then held asserted for at least 64 

 

MasterClock

 

cycles before being deasserted synchronously with 

 

MasterClock

 

.  The
processor internal clocks, 

 

PClock

 

 and SClock, and the System interface
clocks, TClock and RClock, are not affected by a warm reset.  The boot-
time mode control serial data stream is not read by the processor on a
warm reset.   A warm reset forces the processor to start with a Soft Reset
exception.

The master clock output, MasterOut, generates any reset-related
signals for the processor that must be synchronous with MasterClock.

After a power-on reset, cold reset, or warm reset, all processor internal
state machines are reset, and the processor begins execution at the reset
vector.  All processor internal states are preserved during a warm reset,
although the precise state of the caches depends on whether or not a cache
miss sequence has been interrupted by resetting the processor state
machines.
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Initialization Sequence
The boot-mode initialization sequence begins immediately after VCCOk

is asserted.  As the processor reads the serial stream of 256 bits through
the ModeIn pin, the boot-mode bits initialize all fundamental processor
modes.  (The signals used are described in Chapter 8).

This is the initialization sequence:
1. The system deasserts the VCCOk signal.  The ModeClock output

is held asserted.
2. The processor synchronizes the ModeClock output at the time

VCCOk is asserted.  The first rising edge of ModeClock occurs at least 256
MasterClock cycles after VCCOk is asserted.  There could be more clock
cycles due to internal delays on the VccOK signal.  After the first rising
edge, each additional rising edge will be 256 master clock cycles.

3. Each bit of the initialization stream is presented at the ModeIn pin
after each rising edge of the ModeClock.  The processor samples 256
initialization bits from the ModeIn input.

Figure 9.1  Power-on Reset
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Figure 9.2  Cold Reset
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Figure 9.3  Warm Reset

Boot-Mode Settings 
Unlike the R4000, the speed of the R4600/R4700 output drivers is

statically controlled at boot time. 
Table 9.2 lists the processor boot-mode settings.  The following rules

apply to the boot-mode settings listed in the table:
• Bit 0 of the stream is presented to the processor when VCCOk

is first asserted.
• Selecting a reserved value results in undefined processor behav-

ior.
• Bits 19 to 255 are reserved bits.
• Zeros must be scanned in for all reserved bits.
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ColdReset*

Reset*
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Serial
Bit

Value Mode Setting Serial
Bit

Value Mode Setting

0 Reserved (must be zero) 9:10 Non-block Write: Selects the manner in 
which non-block writes are handled, bit 10 
is most significant

1:4 XmitDatPat: System interface data rate for 
block writes only (bit 4 most significant)

0 R4x00 compatible

0 DDDD 1 Reserved

1 DDxDDx 2 Pipelined Writes

2 DDxxDDxx 3 Write re-issue

3 DxDxDxDx 11 TmrIntEn: Disables the timer interrupt on 
Int*[5]

4 DDxxxDDxxx 0 Enabled Timer Interrupt

5 DDxxxxDDxxxx 1 Disabled Timer Interrupt

6 DxxDxxDxxDxx 12 Reserved (must be zero)

7 DDxxxxxxDDxxxxxx 13:14 Drv_Out:  Output driver slew rate control. 
Bit 14 is most significant. Affects only out-
puts that are not clocks.

8 DxxxDxxxDxxxDxxx 10 100% strength (fastest)

9-15 Reserved 11 83% strength

5:7 SysCkRatio: PClock to SClock divisor, fre-
quency relationship between SClock, RClock, 
and TClock and PClock, bit 7 most significant. 

00 67% strength

0 Divide by 2 01 50% strength (slowest)

1 Divide by 3 15 Tclock[0]:

2 Divide by 4 [0]  Enabled. [1]  Disabled. 

3 Divide by 5 16 Tclock[1]:

4 Divide by 6 [0]  Enabled. [1]  Disabled. 

5 Divide by 7 17 Rclock[0]:

6 Divide by 8 [0]  Enabled. [1]  Disabled. 

7 Reserved 18 Rclock[1]:

8 EndBIt: Specifies byte ordering [0]  Enabled. [1]  Disabled. 

0 Little-endian 
ordering

19:255 Reserved (must be zero)

1 Big-endian 
ordering

Table 9.2 Boot-Mode Settings
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Introduction

 

This chapter describes the clock signals (“clocks”) used in the R4600/
R4700 processor and the processor status reporting mechanism.

The subject matter includes basic system clocks, system timing
parameters, connecting clocks to a phase-locked system, connecting
clocks to a system without phase locking, and processor status outputs.

 

Signal Terminology

 

The following terminology is used in this chapter (and book) when
describing signals:

•

 

Rising edge

 

 indicates a low-to-high transition.
•

 

Falling edge

 

 indicates a high-to-low transition.
•

 

Clock-to-Q delay

 

 is the amount of time it takes for a signal to move
from the input of a device (

 

clock

 

) to the output of the device (

 

Q

 

).
Figure 10.1 and Figure 10.2 illustrate these terms. 

 

Figure 10.1  Signal Transitions

Figure 10.2  Clock-to-Q Delay

 

Basic System Clocks

 

The various clock signals used in the R4600/R4700 processor are
described below, starting with 

 

MasterClock

 

, upon which the processor
bases all internal and external clocking. Note: All output clocks will have
approximately a 50% duty cycle 

 

±

 

 the jitter and any difference in rise and/
or fall times.

 

MasterClock

 

The processor bases all internal and external clocking on the single

 

MasterClock

 

 input signal.  The processor generates the clock output
signal,

 

 MasterOut

 

, at the same frequency as 

 

MasterClock

 

 and aligns

 

MasterOut

 

 with 

 

MasterClock

 

, if 

 

SyncIn

 

 is properly connected to

 

SyncOut

 

. 
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MasterOut

 

The processor generates the clock output signal,

 

 MasterOut

 

, at the
same frequency as 

 

MasterClock

 

 and aligns 

 

MasterOut

 

 with 

 

MasterClock

 

,
if 

 

SyncIn

 

 is properly connected to 

 

SyncOut

 

.

 

  MasterOut 

 

clocks certain
external logic, such as the reset logic.

 

SyncIn/SyncOut

 

The processor generates 

 

SyncOut

 

 at the same frequency as

 

MasterClock

 

 and aligns 

 

SyncIn

 

 with 

 

MasterClock

 

. 

 

SyncOut

 

 must be connected to 

 

SyncIn

 

 either directly, or through an
external buffer.  The processor can compensate for both output driver and
input buffer delays (and, when necessary, delay caused by an external
buffer according to the connections of 

 

TClock

 

 and 

 

RClock

 

 to the rest of
the system) when aligning 

 

SyncIn

 

 with 

 

MasterClock

 

.  Figure 10.8 on
page 10-9 gives an illustration of 

 

SyncOut

 

 connected to 

 

SyncIn

 

 through
an external buffer.

 

PClock

 

The processor generates an internal clock, 

 

PClock

 

, at twice the
frequency of 

 

MasterClock

 

 and precisely aligns every other rising edge of

 

PClock

 

 with the rising edge of 

 

MasterClock

 

. 

All internal registers and latches use 

 

PClock

 

, which is the pipeline clock
rate.

 

SClock

 

The R4600/R4700 processor divides 

 

PClock

 

 by 2, 3, 4, 5, 6, 7 or 8,
programmed at boot-mode initialization to generate the internal clock
signal, 

 

SClock

 

. The processor uses

 

 SClock

 

 to sample data at the system
interface and to clock data into the processor system interface output
registers.  

The first rising edge of 

 

SClock

 

, after 

 

ColdReset

 

* is deasserted, is
aligned with the first rising edge of 

 

MasterClock

 

.

 

TClock
TClock

 

 (transmit clock) clocks the output registers of an external agent,
and can be a global system clock for any other logic in the external agent.

 

TClock

 

 is identical to 

 

SClock

 

.  The edges of 

 

TClock

 

 align precisely with
the edges of 

 

SClock

 

 and

 

 TClock

 

 can also be aligned with 

 

MasterClock

 

,
when 

 

SyncIn

 

 is properly connected to 

 

SyncOut

 

.

 

RClock

 

The external agent uses

 

 RClock

 

 (receive clock) to clock its input
registers. The processor generates 

 

RClock

 

 at the same frequency as

 

SClock

 

, although 

 

RClock

 

 leads 

 

TClock

 

 and 

 

SClock

 

 by 25 percent of

 

SClock

 

 cycle time.
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Figure 10.3 shows the clocks for a 

 

PClock

 

-to-

 

SClock

 

 division by 2.
.

 

Figure 10.3   Processor Clocks, PClock-to-SClock Division by 2

 

System Timing Parameters

 

As shown in Figure 10.3, data provided to the processor must be stable
a minimum of t

 

DS

 

 nanoseconds (ns) before the rising edge of 

 

SClock

 

 and
be held valid for a minimum of t

 

DH

 

 ns after the rising edge of 

 

SClock

 

.

 

Alignment to SClock

 

Processor data becomes stable a minimum of t

 

DM

 

 ns and a maximum of
t

 

DO

 

 ns after the rising edge of 

 

SClock

 

.  This drive-time is the sum of the
maximum delay through the processor output drivers together with the
maximum clock-to-Q delay of the processor output registers.

 

Alignment to MasterClock

 

Certain processor inputs (specifically 

 

VCCOk

 

, 

 

ColdReset*

 

, and 

 

Reset*

 

)
are sampled based on 

 

MasterClock

 

, while others are output based on
MasterClock.  The same setup, hold, and drive-off parameters, tDS, tDH,
tDM, and tDO, shown in Figure 10.3, apply to these inputs and outputs, but
they are measured relative to MasterClock instead of SClock.

Phase-Locked Loop (PLL)
The processor aligns SyncOut, PClock, SClock, TClock, and RClock

with internal phase-locked loop (PLL) circuits that generate aligned clocks
based on SyncOut/SyncIn. By their nature, PLL circuits are only capable
of generating aligned clocks for MasterClock frequencies within a limited
range. 

Cycle 1 2 3 4

MasterClock

tMCkHigh

tMCkLow

tMCkP

MasterOut

PClock

SClock

TClock

RClock

SysAD Driven D D D D

tDM

tDO

SysAD Received D D D D

tDS

tDH
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Clocks generated using PLL circuits contain some inherent inaccuracy,
or jitter; a clock aligned with MasterClock by the PLL can lead or trail
MasterClock by as much as the related maximum jitter specified in the
data sheet.

PLL Components and Operation
The passive components required for the Phase Locked Loop circuit are

contained in the packages for the R4600 and R4700. There are no required
external passive components.

Passive Components
The Phase Locked Loop circuit requires several passive components for

proper operation, which are connected to PLLCap0, PLLCap1, VccP, and
VssP, as illustrated in Figure 10.4.

Figure 10.4  PLL Passive Components

It is essential to isolate the analog power and ground for the PLL circuit
(VccP/VssP) from the regular power and ground (Vcc/Vss).  Initial
evaluations have yielded good results with the following values:

 R = 5 ohms
C1 = 1 nF
C2 = 82 nF
C3 = 10 µF
Cp = 470 pF

Since the optimum values for the filter components depend upon the
application and the system noise environment, these values should be
considered as starting points for further experimentation within your
specific application.  

VccP

R4600/R4700

C1 C3

VssP

Vss

Vcc

R

R

C2

Note:  C1, C2, C3, Rs
and Ls are Board Caps 
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Figure 10.5 shows the internal PLL and clock distribution network of the
R4600/R4700.              

Figure 10.5  R4600/R4700 PLL Network

Connecting Clocks to a Phase-Locked System 
When the processor is used in a phase-locked system, the external agent

must phase lock its operation to a common MasterClock. In such a
system, the delivery of data and data sampling have common
characteristics, even if the components have different delay values.  For
example, transmission time (the amount of time a signal takes to move from
one component to another along a trace on the board) between any two
components A and B of a phase-locked system can be calculated from the
following equation:

Transmission Time = (SClock period) –  (tDO for A) – (tDS for B) –
(Clock Jitter for A Max) – (Clock Jitter for B Max)
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Figure 10.6 shows a block-level diagram of a phase-locked system using
the R4600/R4700 processor.

Figure 10.6  R4600/R4700Processor Phase-Locked System

Connecting Clocks to a System without Phase Locking 
When the R4600/R4700 processor is used in a system in which the

external agent cannot lock its phase to a common MasterClock, the
output clocks RClock and TClock can clock the remainder of the system.
Two clocking methodologies are described in this section: connecting to a
gate-array device or connecting to discrete CMOS logic devices.

Connecting to a Gate-Array Device
When connecting to a gate-array device, both RClock and TClock are

used within the gate-array.  The gate array internally buffers RClock and
uses this buffered version to clock registers that sample processor
outputs.

These sampling registers should be immediately followed by staging
registers clocked by an internally buffered version of TClock. This buffered
version of TClock should be the global system clock for the logic inside the
gate array and the clock for all registers that drive processor inputs.
Figure 10.7 on page 10-7 is a block diagram of this circuit.

Staging registers place a constraint on the sum of the clock-to-Q delay
of the sample registers and the setup time of the synchronizing registers
inside the gate arrays, as shown in the following equation:

Clock-to-Q Delay + Setup of Synch Register ≤ 0.25 (RClock period) 
– (Max Clock Jitter for RClock)
– (Max Delay Mismatch for Clock Buffers on RClock and TClock)

MasterClock
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TClock

RClock
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Figure 10.7 is a block diagram of a system without phase lock, using the
R4600/R4700 processor with an external agent implemented as a gate
array.

Figure 10.7  Gate-Array System Without Phase Lock, Using the 
R4600/R4700 Processor

In a system without phase lock, the transmission time for a signal from
the processor to an external agent composed of gate arrays can be
calculated from the following equation:

Transmission Time = (75 percent of TClock period) – (tDO for R4600/R4700)
+ (Min External Clock Buffer Delay)
– (External Sample Register Setup Time)
– (Max Clock Jitter for R4600/R4700 Internal Clocks)
– (Max Clock Jitter for RClock)
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The transmission time for a signal from an external agent composed of
gate arrays to the processor in a system without phase lock can be
calculated from the following equation:

Transmission Time = (TClock period) – (tDS for R4600/R4700)
– (Max External Clock Buffer Delay)
– (Max External Output Register Clock-to-Q Delay)
– (Max Clock Jitter for TClock)
– (Max Clock Jitter for R4600/R4700 Internal Clocks)

Connecting to a CMOS Logic System
The processor uses matched delay clock buffers to generate aligned

clocks to external CMOS logic.  A matched delay clock buffer is inserted in
the SyncOut/SyncIn alignment path of the processor, skewing SyncOut,
MasterOut, RClock, and TClock to lead MasterClock by the buffer delay
amount, while leaving PClock aligned with MasterClock.

The remaining matched delay clock buffers are available to generate a
buffered version of TClock aligned with MasterClock.  Alignment error of
this buffered TClock is the sum of the maximum delay mismatch of the
matched delay clock buffers, and the maximum clock jitter of TClock.

As the global system clock for the discrete logic that forms the external
agent, the buffered version of TClock clocks registers that sample
processor outputs, as well as clocking the registers that drive the processor
inputs.

The transmission time for a signal from the processor to an external
agent composed of discrete CMOS logic devices can be calculated from the
following equation:

Transmission Time = (TClock period) – (tDO for R4600/R4700)
– (External Sample Register Setup Time)
– (Max External Clock Buffer Delay Mismatch)
– (Max Clock Jitter for R4600/R4700 Internal Clocks)
– (Max Clock Jitter for TClock)
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Figure 10.8 is a block diagram of a system without phase lock,
employing the R4600/R4700 processor and an external agent composed of
both a gate array and discrete CMOS logic devices.

Figure 10.8  Gate Array and CMOS System Without Phase Lock, Us-
ing the R4600/R4700 Processor

The transmission time for a signal from an external agent composed of
discrete CMOS logic devices can be calculated from the following equation:

Transmission Time = (TClock period) – (tDS for R4600/R4700)
– (Max External Output Register Clock-to-Q Delay)
– (Max External Clock Buffer Delay Mismatch)
– (Max Clock Jitter for R4600/R4700 Internal Clocks)
– (Max Clock Jitter for TClock)

In this clocking methodology, the hold time of data driven from the
processor to an external sampling register is a critical parameter.  To
guarantee hold time, the minimum output delay of the processor, tDM,
must be greater than the sum of the following:

Min hold time for the external sampling register  
+ max clock jitter for R4600/R4700 internal clocks 
+ max clock jitter for TClock 
+ max delay mismatch of the external clock buffers
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Chapter 11

 

Introduction

 

This chapter describes in detail the cache memory: its place in the
R4600/R4700 memory organization and individual operations of the
primary cache.  

This chapter uses the following terminology:
• The primary cache may also be referred to as the P-cache.
• The primary data cache may also be referred to as the D-cache.
• The primary instruction cache may also be referred to as the I-cache.
These terms are used interchangeably throughout this book.

 

Memory Organization

 

Figure 11.1 shows the R4600/R4700 system memory hierarchy.  In the
logical memory hierarchy, caches lie between the CPU and main memory.
They are designed to make the speedup of memory accesses transparent
to the user.  Each functional block in Figure 11.1 has the capacity to hold
more data than the block above it.  For instance, physical main memory
has a larger capacity than the primary cache.  At the same time, each
functional block takes longer to access than any block above it.  For
instance, it takes longer to access data in main memory than in the CPU
on-chip registers.

 

Figure 11.1  Logical Hierarchy of Memory

 

The R4600/R4700 processor has two on-chip primary caches: one holds
instructions (the instruction cache), the other holds data (the data cache).
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Overview of Cache Operations

 

As described earlier, caches provide fast temporary data storage, and
they make the speedup of memory accesses transparent to the user.  In
general, the processor accesses cache-resident instructions or data
through the following procedure:

1. The processor, through the on-chip cache controller, attempts to
access the next instruction or data in the primary cache.

2. The cache controller checks to see if this instruction or data is present
in the primary cache.

• If the instruction/data is present, the processor retrieves it.  This is
called a primary-cache

 

 hit

 

.
• If the instruction/data is not present in the primary cache, it is re-

trieved as a cache line from memory and is written into the primary
cache.

3. The processor retrieves the instruction/data from the primary cache
and operation continues. For a data cache miss, the processor can restart
the pipeline after the first doubleword (the one at the miss address) is
retrieved and continues the cache line refill in parallel.

It is possible for the same data to be in two places simultaneously: main
memory and the primary cache.  This data is kept consistent through the
use of either a write-back or a write-through methodology. For a write-back
cache, the modified data is not written back to memory until the cache line
is replaced. In a write-through cache, the data is written to memory as the
cached data is modified (with a possible delay due to the write buffer).

 

R4600/R4700 Cache Description

 

This section describes the organization of on-chip primary caches.  As
Figure 11.1 on page 1 shows, the R4600/R4700 contains separate primary
instruction and data caches.

Figure 11.2 provides block diagrams of the R4600/R4700 memory
model.

 

Figure 11.2  Cache Support in the R4600/R4700 

 

Cache Line Size

 

A 

 

cache line

 

 is the smallest unit of information that can be fetched from
memory to be filled into the cache.  A primary cache line is 8 words in
length, and is represented by a single tag.

Upon a cache miss in the primary cache, the missing cache line is
loaded from memory into the primary cache.

 

Cache Organization and Accessibility

 

This section describes the organization of the primary cache, including
the manner in which it is mapped, the addressing used to index the cache,
and composition of the cache lines. The primary instruction and data
caches are indexed with a virtual address (VA).
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Organization of the Primary Instruction Cache (I-Cache)

 

Each line of primary I-cache data (although it is actually an instruction,
it is referred to as data to distinguish it from its tag) has an associated 28-
bit tag that contains a 24-bit physical address, a single valid bit, a reserved
bit, a single parity bit and the FIFO replacement bit.  Word parity is used
on I-cache data.

The R4600/R4700 processor primary I-cache has the following
characteristics:

• two-way set associative
• indexed with a virtual address
• checked with a physical tag
• organized with 8-word (32-byte) cache line.
Figure 11.3 shows the format of a primary I-cache line.

 

Figure 11.3  R4600/R4700 Primary I-Cache Line Format

 

Organization of the Primary Data Cache (D-Cache)

 

Each line of primary D-cache data has an associated 30-bit tag that
contains a 24-bit physical address, 2-bit cache line state, a write-back bit,
a parity bit for the physical address and cache state fields, a parity bit for
the write-back bit and the FIFO replacement bit.

The R4600/R4700 processor primary D-cache has the following
characteristics:

• write-back or write-through on a per-page basis
• two-way set associative
• indexed with a virtual address
• checked with a physical tag
• organized with 8-word (32-byte) cache line.
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Figure 11.4 shows the format of a primary D-cache line.

 

Figure 11.4   R4600/R4700 8-Word Primary Data Cache Line Format

 

In the R4600/R4700, the 

 

W

 

 (write-back) bit, not the cache state,
indicates whether or not the primary cache contains modified data that
must be written back to memory.

 

Note:  

 

There is no hardware support for cache coherency. Thus the only
cache states used are Dirty Exclusive and Invalid.
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Accessing the Primary Caches

 

Figure 11.5 shows the virtual address (VA) index into the primary
caches.  Each instruction and data cache size is 16 Kbytes.

 

Figure 11.5  Primary Cache Data and Tag Organization

 

Cache States

 

The terms below are used to describe the 

 

state

 

 of a cache line:
•

 

Exclusive

 

: a cache line that is present in exactly one cache in the sys-
tem is exclusive. This is always the case for the R4600/R4700. All
cache lines are in an exclusive state.

•

 

Dirty

 

: a cache line that contains data that has changed since it was
loaded from memory is dirty. 

•

 

Clean

 

: a cache line that contains data that has not changed since it
was loaded from memory is clean.

•

 

Shared

 

: a cache line that is present in more than one cache in the
system. The R4600/R4700 does not provide for hardware cache co-
herency. This state should never happen in normal operations.

The R4600/R4700 only supports the four cache states as shown in
Table 11.1 on page 6. The only states that will occur in the R4600/R4700,
under normal operations are the Dirty Exclusive and Invalid states. 

 

Note:  

 

Even though valid data is in the Dirty Exclusive state, it may still
be consistent with memory. One must look at the dirty bit, W, to determine
if the cache line is to be written back to memory when it is replaced.
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Each primary cache line in the R4600/R4700 system is in one of the
states described in Table 11.1.

 

Primary Cache States

 

Each primary data cache line is normally in one of the following states:
• invalid
• dirty exclusive
Each primary instruction cache line is in one of the following states:
• invalid
• valid

 

Cache Line Ownership

 

The processor is the owner of a cache line when it is in the dirty
exclusive state and is responsible for the contents of that line. There can
only be one owner for each cache line.

The ownership of a cache line is set and maintained through the rules
described below.

• A processor assumes ownership of the cache line if the state of the
primary cache line is dirty exclusive. 

• A processor that owns a cache line is responsible for writing the cache
line back to memory if the line is replaced during the execution of a
Write-back or Write-back Invalidate cache instruction if the line is in
a write-back page. The Cache instruction is explained in Appendix A.

• Memory always owns clean cache lines
• The processor gives up ownership of a cache line when the state of the

cache line changes to invalid. 
Therefore, based on these rules and that any valid data cache line is in

the Dirty Exclusive state (under normal operating conditions), the
processor is considered to be the owner of the cache line.

 

Cache Write Policy

 

The R4600/R4700 processor manages its primary data cache by using
either a  write-back or a write-through policy on a per-page basis.  In a
write-back cache, the data is not written back to memory until the cache
line is replaced. A write-through policy means the store data is written to
the cache and to memory. The write of the data to memory may not occur
at the same time as the write to cache due to the write buffer.

For a write-back entry, if the cache line is valid and has been modified
(the 

 

W

 

 bit is set), the processor writes this cache line back to memory when
the line is replaced, either in the course of satisfying a cache miss or during
the execution of a Write-back or Write-back Invalidate CACHE instruction.

 

Cache Line 
State Description

 

Invalid A cache line that does not contain valid information must be marked invalid, and cannot 
be used. A cache line in any other state than invalid is assumed to contain valid informa-
tion.

Shared A cache line that is present in more than one cache in the system is shared. This state will 
not occur for normal operations.

Clean Exclusive A clean exclusive cache line contains valid information and this cache line is not present 
in any other cache.  The cache line is consistent with memory and is not owned by the pro-
cessor (see “Cache Line Ownership” on page 6 in this chapter). This state will not occur 
for normal operations.

Dirty Exclusive A dirty exclusive cache line contains valid information and is not present in any other 
cache.  The cache line may or may not be consistent with memory and is owned by the 
processor (see “Cache Line Ownership” on page 6 in this chapter). Use the W bit to deter-
mine if the line must be written back on replacement.

 

Table 11.1 Cache States
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For a write-through entry, whenever a store hits in the cache line, the
data is also written to memory via the write buffer. The store will not set or
clear the 

 

W

 

 bit for a write-through cache line. This is to allow a different
virtual address that maps to the same physical address and with a write-
back policy to still set the 

 

W

 

 bit. For a miss to a write-through line, the
action taken will be determined by the write-allocation policy. For a write-
allocate entry, the cache line is first retrieved from memory and the store
will then continue. A no write-allocate entry will just post the write to the
system interface, via the write buffer, in the same manner as an uncached
write.

When the processor writes a cache line back to memory, it does not
ordinarily retain a copy of the cache line, and the state of the cache line is
changed to invalid. However, there are exceptions. For example, the
processor retains a copy of the cache line if a cache line is written back by
the Hit Write-back cache instruction.  If the W bit is set, the cache line is
written back and the W bit is cleared. The processor signals this line
retention during a write by setting 

 

SysCmd(2)

 

 to a 1, as described in
Chapter 12.

 

Cache State Transition Diagrams

 

The following sections describe the cache state diagrams that illustrate
the cache state transitions for the primary cache.  Figure 11.6 shows the
state diagram of the primary cache.

When an external agent supplies a cache line, it need not return the
initial state of the cache line, for normal operations (see Chapter 12 for a
definition of an external agent). This is because the only read request the
R4600/R4700 should issue are for non-coherent data and the lower three
bits for the data identifier are reserved. The initial state will automatically
be set to DE by the R4600/R4700. Otherwise, the processor changes the
state of the cache line during one of the following events:

• A store to a dirty exclusive line remains in a dirty exclusive state.
• The state is changed to invalid for:

- A Cache invalidate operation.
- If the line is replaced

.

 

Figure 11.6  Primary Data Cache State Diagram

 

Cache Coherency Overview

 

Systems using more than one master must have a mechanism to
maintain data consistency throughout the system. This mechanism is
called a cache coherency protocol.  The R4600/R4700 does not provide
any hardware cache coherency. Cache coherency must be handled with
software.

 

Cache Coherency Attributes

 

Cache coherency attributes are necessary to ensure the consistency of
data throughout the system.

Write hit
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Dirty ExclusiveInvalid

Index Invalidate
Hit Invalidate
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Bits in the translation look-aside buffer (TLB) control coherency on a
per-page basis.  Specifically, the TLB contains 3 bits per entry that provide
two possible coherency attribute types; they are listed below and described
more fully in the following sections.

• uncached
• noncoherent (includes 3 attribute values)
Table 11.2 summarizes the behavior of the processor on load misses and

store misses for each of the coherency attribute types listed above. The
following sections describe in detail these coherency attribute types

.

 

Uncached

 

Lines within an 

 

uncached

 

 page are never in a cache. When a page has
the uncached coherency attribute, the processor issues a doubleword,
partial-doubleword, word, or partial-word read or write request directly to
main memory (bypassing the cache) for any load or store to a location
within that page. 

 

Noncoherent

 

Lines with a 

 

noncoherent

 

 attribute type can reside in a cache; a load
miss causes the processor to issue a noncoherent block read request to a
location within the cached page. For a store miss to a write-allocate page,
the processor issues a noncoherent block read request to a location within
the cached page and then does the write-through. If the page has the no
write-allocate attribute, a store miss will generate a write to the memory as
in the uncached case.

 

Cache Operation Modes

 

The R4600/R4700 processor only supports the no-secondary-cache
mode (only uncached and noncoherent coherency attributes are
applicable) of R4x00 operation.

 

R4600/R4700 Processor Synchronization Support

 

In a multiprocessor system, it is essential that two or more processors
working on a common task execute without corrupting each other’s
subtasks. Synchronization, an operation that guarantees an orderly
access to shared memory, must be implemented for a properly functioning
multiprocessor system. Two of the more widely used methods are
discussed in this section: test-and-set, and counter. Even though the
R4600/R4700 does not support symmetric multi-processing (SMP), these
are useful for multi-master and heterogenous multi-processing.

 

Test-and-Set

 

Test-and-set uses a variable called the 

 

semaphore

 

, which protects data
from being simultaneously modified by more than one processor. In other
words, a processor can lock out other processors from accessing shared
data when the processor is in a 

 

critical section

 

, a part of program in which
no more than a fixed number of processors is allowed to execute. In the
case of test-and-set, only one processor can enter the critical section.

 

Attribute Type Load Miss Store Miss

 

Uncached Main memory read Main memory write

Noncoherent Noncoherent read Noncoherent read (write-allocate page)
Main memory write (no write-allocate page)

 

Table 11.2 Coherency Attributes and Processor Behavior
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Figure 11.7 illustrates a test-and-set synchronization procedure that
uses a semaphore; when the semaphore is set to 0, the shared data is
unlocked, and when the semaphore is set to 1, the shared data is locked.

 

Figure 11.7  Synchronization with Test-and-Set

 

The processor begins by loading the semaphore and checking to see if it
is unlocked (set to 0) in steps 1 and 2. If the semaphore is not 0, the
processor loops back to step 1.  If the semaphore is 0, indicating the shared
data is not locked, the processor next tries to lock out any other access to
the shared data (step 3).  If not successful, the processor loops back to step
1, and reloads the semaphore.

If the processor is successful at setting the semaphore (step 4), it
executes the critical section of code (step 5) and gains access to the shared
data, completes its task, unlocks the semaphore (step 6), and continues
processing.

 

Counter

 

Another common synchronization technique uses a 

 

counter.  A counter
is 

 

a designated memory location that can be incremented or decremented.
In the test-and-set method, only one processor at a time is permitted to

enter the critical section.  Using a counter, up to 

 

N

 

 processors are allowed
to concurrently execute the critical section.  All processors after the 

 

N

 

th
processor must wait until one of the 

 

N

 

 processors exits the critical section
and a space becomes available.

The counter works by not allowing more than one processor to modify it
at any given time.  Conceptually, the counter can be viewed as a variable
that counts the number of limited resources (for example, the number of
processes, or software licenses, etc.).  
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Figure 11.8 shows this process.

 

Figure 11.8  Synchronization Using a Counter

 

Load Linked and Store Conditional

 

The R4600/R4700 instructions 

 

Load Linked

 

 (LL) and 

 

Store Conditional

 

(SC) provide support for processor synchronization.  These two
instructions work very much like their simpler counterparts, load and
store.  The LL instruction, in addition to doing a simple load, has the side
effect of setting a bit called the 

 

link bit

 

.  This link bit forms a breakable link
between the LL instruction and the subsequent SC instruction.  The SC
performs a simple store if the link bit is set when the store executes.  If the
link bit is not set, then the store fails to execute.  The success or failure of
the SC is indicated in the target register of the store.

The link is broken upon completion of an ERET (return from exception)
instruction.

The most important features of LL and SC are:
• They provide a mechanism for generating all of the common synchro-

nization primitives including test-and-set, counters, sequencers, etc.,
with no additional overhead.

• When they operate, bus traffic is generated only if the state of the
cache line changes; lock words stay in the cache until some other pro-
cessor takes ownership of that cache line.
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Examples Using LL and SC

 

Figure 11.9 shows how to implement test-and-set using LL and SC
instructions.

 

Figure 11.9  Test-and-Set using LL and SC
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Figure 11.10 shows synchronization using a counter. 

 

Figure 11.10  Counter Using LL and SC
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Introduction

 

The System interface allows the processor to access external resources
needed to satisfy cache misses and uncached operations, while permit-
ting an external agent access to some of the processor internal resources.

This chapter describes the system interface from the point of view of
both the processor and the external agent.

 

Terminology

 

The following terms are used in this chapter: 
An 

 

external agent

 

 is any logic device connected to the processor, over
the system interface, that allows the processor to issue requests.

A 

 

system event

 

 is an event that occurs within the processor and
requires access to external system resources.

 

Sequence

 

 refers to the precise series of requests that a processor gener-
ates to service a system event. 

 

Protocol

 

 refers to the cycle-by-cycle signal transitions that occur on the
system interface pins to assert a processor or external request. 

 

Syntax

 

 refers to the precise definition of bit patterns on encoded buses,
such as the command bus. 

 

System Interface Description

 

The R4600/R4700 processor supports a 64-bit address/data interface
that can construct a simple uniprocessor with main memory. The System
interface consists of:

• 64-bit address and data bus, 

 

SysAD

 

• 8-bit SysAD check bus, 

 

SysADC (even parity only)

 

• 9-bit command bus, 

 

SysCmd

 

• six handshake signals: 
-

 

RdRdy

 

*, 

 

WrRdy

 

*
-

 

ExtRqst

 

*, 

 

Release

 

*
-

 

ValidIn

 

*, 

 

ValidOut

 

*
The processor uses the system interface to access external resources in

order to service processor requests such as cache misses, cache line
write-backs, write-through stores and uncached operations. 
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Interface Buses

 

Figure 12.1 shows the primary communication paths for the system
interface: a 64-bit address and data bus, 

 

SysAD(63:0)

 

, and a 9-bit
command bus, 

 

SysCmd(8:0)

 

.  These 

 

SysAD

 

 and the 

 

SysCmd

 

 buses are
bidirectional; that is, they are driven by the processor to issue a processor
request, and by the external agent to issue an external request (see
“Processor and External Request Protocols” on page 12-14 for more infor-
mation).

A request through the system interface consists of:
• an address
• a System interface command that specifies the precise nature of the

request
• a series of data elements if the request is for a write or read response.
   

 

Figure 12.1  System Interface Buses

 

Address and Data Cycles

 

Cycles in which the 

 

SysAD

 

 bus contains a valid address are called

 

address cycles

 

.  Cycles in which the 

 

SysAD

 

 bus contains valid data are
called 

 

data cycles

 

.  Validity is determined by the state of the 

 

ValidIn

 

* and

 

ValidOut

 

* signals (described in “Interface Buses” on page 12-2).
The 

 

SysCmd

 

 bus identifies the contents of the 

 

SysAD

 

 bus during any
cycle in which it is valid.  The most significant bit of the 

 

SysCmd

 

 bus is
always used to indicate whether the current cycle is an address cycle or a
data cycle. 

• During address cycles [

 

SysCmd(8)

 

 = 0], the remainder of the 

 

SysCmd

 

bus, 

 

SysCmd(7:0)

 

, contains a 

 

System interface command

 

 (the encod-
ing of system interface commands is detailed in “System Interface
Commands and Data Identifiers” on page 12-32).

• During data cycles [

 

SysCmd(8)

 

 = 1], the remainder of the 

 

SysCmd

 

bus, 

 

SysCmd(7:0)

 

, contains a 

 

data identifier

 

 (the encoding of data
identifiers is detailed later in this chapter).

R4600/R4700
External Agent

SysAD(63:0)

SysCmd(8:0)
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Issue Cycles

 

There are two types of processor issue cycles:
• processor read request issue cycles
• processor write request issue cycles.
The processor samples the signal 

 

RdRdy*

 

 to determine the 

 

issue cycle

 

for a processor read request; the processor samples the signal 

 

WrRdy*

 

 to
determine the 

 

issue

 

 

 

cycle

 

 of a processor write request.
As shown in Figure 12.2, 

 

RdRdy*

 

 must be asserted for one clock cycle,
two cycles prior to the address cycle of the processor read request to
define the address cycle as the issue cycle (cycle 5 in Figure 12.2).

 

RdRdy*

 

 does not need to be asserted during the issue cycle.

 

Figure 12.2  State of RdRdy* Signal for Read Requests

 

As shown in Figure 12.3, 

 

WrRdy*

 

 must be asserted for one clock cycle,
two cycles prior to the first address cycle of the processor write request to
define the address cycle as the issue cycle (cycle 5 in Figure 12.3).

 

WrRdy*

 

 does not need to be asserted during the issue cycle.

 

Figure 12.3  State of WrRdy* Signal for Write Requests

 

The processor repeats the address cycle for the request until the condi-
tions for a valid issue cycle are met.  After the issue cycle, if the processor
request requires data to be sent, the data transmission begins.  There is
only one issue cycle for any processor request.

The processor accepts external requests, even while attempting to issue
a processor request, by releasing the system interface to slave state in
response to an assertion of 

 

ExtRqst*

 

 by the external agent. 

SCycle 1 2 3 4 5 6

SClock

SysAD Bus Addr

RdRdy*

Issue*

Note:  RdRdy* must be sampled LOW at the end of cycle 3,
which is marked with an asterisk.

SCycle 1 2 3 4 5 6

SClock

SysAD Bus Addr

WrRdy*

Issue

Data

Note:  WrRdy* must be sampled LOW at the end of cycle 3,
which is marked with an asterisk.

*
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Note that the rules governing the issue cycle of a processor request are
strictly applied to determine the action the processor takes.  The
processor either:

• completes the issuance of the processor request in its entirety before
the external request is accepted, or

• releases the system interface to slave state without completing the is-
suance of the processor request.

In the latter case, the processor issues the processor request (provided
the processor request is still necessary) after the external request is
complete.  The rules governing an issue cycle again apply to the processor
request.

 

 Handshake Signals

 

The processor manages the flow of requests through the following six
control signals:

•

 

RdRdy

 

*, 

 

WrRdy

 

* are used by the external agent to indicate when it
can accept a new read (

 

RdRdy

 

*) or write (

 

WrRdy

 

*) transaction.
•

 

ExtRqst

 

*, 

 

Release

 

* are used to transfer control of the 

 

SysAD

 

 and

 

SysCmd

 

 buses.  

 

ExtRqst

 

* is used by an external agent to indicate a
need to control the interface.  

 

Release

 

* is asserted by the processor
when it transfers the mastership of the system interface to the exter-
nal agent.

• The R4600/R4700 processor uses

 

 ValidOut

 

* and the external agent
uses 

 

ValidIn

 

* to indicate valid command/data on the 

 

SysCmd

 

/

 

SysAD

 

 buses.

 

System Interface Protocols

 

Figure 12.4 shows the system interface operates from register to
register.   That is, processor outputs come directly from output registers
and begin to change with the rising edge of 

 

SClock.

 

1

 

Processor inputs are fed directly to input registers that latch these
input signals with the rising edge of 

 

SClock

 

.  This allows the system
interface to run at the highest possible clock frequency.

 

Figure 12.4  System Interface Register-to-Register Operation

 

1. 

 

SClock

 

 is an internal clock used by the processor to sample data at the system 
interface and to clock data into the processor system interface output registers; 
see Chapter 10 for more details.

Input data

Output data

SClock

R4600/R4700
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Master and Slave States

 

When the R4600/R4700 processor is driving the 

 

SysAD

 

 and 

 

SysCmd

 

buses, the system interface is in 

 

master state

 

. When the external agent is
driving the 

 

SysAD

 

 and SysCmd buses, the system interface is in slave
state.

In master state, the processor drives the SysAD and SysCmd buses and
will assert the signal ValidOut* whenever these buses are valid.

In slave state, the external agent drives the SysAD and SysCmd buses
and asserts the signal ValidIn* whenever these buses are valid.

Moving from Master to Slave State 
The system interface remains in master state unless one of the following

occurs:
• The external agent requests and is granted the system interface (ex-

ternal arbitration).
• The processor issues a read request and performs an uncompelled

change to slave state.

External Arbitration
The system interface must be in slave state for the external agent to

issue an external request through the system interface.  The transition
from master state to slave state is arbitrated by the processor using the
system interface handshake signals ExtRqst* and Release*. This transi-
tion is described by the following procedure:

1. An external agent signals that it wishes to issue an external request
by asserting ExtRqst*.

2. When the processor is ready to accept an external request, it releases
the system interface from master to slave state by asserting Release* for
one cycle.

3. The system interface returns to master state as soon as the issue of
the external request is complete.

This process is described in “External Arbitration Protocol” on page 12-
24.

Uncompelled Change to Slave State
An uncompelled change to slave state is the transition of the system

interface from master state to slave state, initiated by the processor when
a processor read request is pending.  Release* is asserted automatically
after a read request. An uncompelled change to slave state occurs during
the issue cycle of a read request. 

After an uncompelled change to slave state, the processor returns to
master state at the end of the next external request.  This can be a read
response, or some other type of external request.

An external agent must note that the processor has performed an
uncompelled change to slave state and begin driving the SysAD bus along
with the SysCmd bus.  As long as the system interface is in slave state,
the external agent can begin a single external request without arbitrating
for the system interface; that is, without asserting ExtRqst*. 

After the external request, the system interface returns to master state. 
Whenever a processor read request is pending, after the issue of a read

request, the processor automatically switches the system interface to
slave state, even though the external agent is not arbitrating to issue an
external request.  This transition to slave state allows the external agent
to quickly return read response data. 
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Processor and External Requests
There are two broad categories of requests: processor requests and

external requests.  These two categories are described in this section.
When a system event occurs, the processor issues either a single

request or a series of requests—called processor requests—through the
system interface, to access an external resource and service the event.
For this to work, the processor system interface must be connected to an
external agent that is compatible with the system interface protocol, and
can coordinate access to system resources.

An external agent requesting access to a processor status register
generates an external request.  This access request passes through the
system interface.  System events and request cycles are shown in
Figure 12.5.

Figure 12.5  Requests and System Events

Rules for Processor Requests
The following rules apply to processor requests.
• After issuing a processor read request, the processor cannot issue a

subsequent read request until it has received a read response. 
• After the processor has issued a write request in R4x00 compatible

write mode (set at boot time), the processor cannot issue a subsequent re-
quest until at least four cycles after the issue cycle of the write request.
This means back-to-back write requests with a single data cycle are sepa-
rated by two unused system cycles, as shown in Figure 12.6.

• After the processor has issued a write request in either of the two new
write modes, write reissue and pipelined writes, the processor can issue a
subsequent write immediately provided the WrRdy* requirement is meet.
This is discussed in more detail later in this chapter.

R4600/R4700 External Agent

Processor Requests
• Read
• Write External Requests

• Read
• Write
• Null

System Events
• Load Miss
• Store Miss
• Store Hit on write-through
• Uncached Load/Store
• CACHE operations
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Figure 12.6  Back-to-Back Write Cycle Timing 
(R4000 compatible mode)

Processor Requests
A processor request is a request or a series of requests, through the

system interface, to access some external resource.  As shown in
Figure 12.7, processor requests include only reads and writes.

Figure 12.7  Processor Requests

Read request asks for a block, doubleword, partial doubleword, word, or
partial word of data either from main memory or from another system
resource. 

Write request provides a block, doubleword, partial doubleword, word,
or partial word of data to be written either to main memory or to another
system resource.

Processor requests are managed by the processor in the equivalent of
the R4000/R4400 no-secondary-cache mode. 

In no-secondary-cache mode, the processor issues requests in a strict
sequential fashion; that is, the processor is only allowed to have one
request pending at any time.  For example, the processor issues a read
request and waits for a read response before issuing any subsequent
requests.  The processor submits a write request only if there are no read
requests pending.

The processor has the input signals RdRdy* and WrRdy* to allow an
external agent to manage the flow of processor requests.  RdRdy*
controls the flow of processor read requests, while WrRdy* controls the
flow of processor write requests. 

The processor request cycle sequence is shown in Figure 12.8. 

SCycle 1 2 3 4 5 6 7 8 9 10

SClock

SysAD Bus Data Addr Data

WrRdy*

Addr

1 2

Write #1 Write #2

3 4Cycles

R4600/R4700 External Agent

Processor Requests
• Read
• Write
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Figure 12.8  Processor Request

Processor Read Request
When a processor issues a read request, the external agent must access

the specified resource and return the requested data.  (Processor read
requests are described in this section; external read requests are
described in “External Requests” on page 12-9.)

A processor read request can be split from the external agent’s return of
the requested data; in other words, the external agent can initiate an
unrelated external request before it returns the response data for a
processor read.  A processor read request is completed after the last word
of response data has been received from the external agent. 

Note that the data identifier (see “System Interface Commands and Data
Identifiers” on page 12-32) associated with the response data can signal
that the returned data is erroneous, causing the processor to take a bus
error.

Processor read requests that have been issued, but for which data has
not yet been returned, are said to be pending.  A read remains pending
until the requested read data is returned.

In no-secondary-cache mode, the external agent must be capable of
accepting a processor read request any time the following two conditions
are met:

• There is no processor read request pending.
• The signal RdRdy* has been asserted for one clock cycle, two cycles

before the issue cycle.

Processor Write Request
When a processor issues a write request, the specified resource is

accessed and the data is written to it.  (Processor write requests are
described in this section; external write requests are described in
“External Requests” on page 12-9.)

A processor write request is complete after the last word of data has
been transmitted to the external agent.

In no-secondary-cache mode, the external agent must be capable of
accepting a processor write request any time the following two conditions
are met:

• No processor read request is pending.
• The signal WrRdy* has been asserted for one clock cycle, two cycles

before the issue cycle.

R4600/R4700 External Agent

1. Processor issues read or 
write request

2. External system controls 
acceptance of requests by 
asserting RdRdy* or WrRdy*
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The R4600/R4700 has added two new modes to enhance the
throughput of non-block writes. These modes allow for 2 cycle throughput
on back-to-back non-block writes. The actual protocol is discussed in the
write protocol section of this chapter. The external agent must be capable
of accepting a processor write request in these modes under the same
conditions as for the R4x00 compatibility mode (except as explained in
the protocol section. 

External Requests
External requests include read, write and null requests, as shown in

Figure 12.9. This section also includes a description of read response, a
special case of an external request.

Figure 12.9  External Requests

Read request asks for a word of data from the processor’s internal
resource. 

Write request provides a word of data to be written to the processor’s
internal resource. 

Null request requires no action by the processor; it provides a mecha-
nism for the external agent to return control of the system interface to the
master state without affecting the processor.

The processor controls the flow of external requests through the arbi-
tration signals ExtRqst* and Release*, as shown in Figure 12.10.  The
external agent must acquire mastership of the system interface before it
is allowed to issue an external request; the external agent arbitrates for
mastership of the system interface by asserting ExtRqst* and then
waiting for the processor to assert Release* for one cycle. 

Figure 12.10  External Request

R4600/R4700 External Agent

External Requests
• Read
• Write
• Null

R4600/R4700 External Agent

1. External system requests bus 
mastership by asserting ExtRqst*

2. Processor grants mastership by 
asserting Release*

3. External system issues an 
External Request

4. Processor regains bus mastership
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Mastership of the system interface always returns to the processor after
an external request is issued.  The processor does not accept a subse-
quent external request until it has completed the current request.

If there are no processor requests pending, the processor decides, based
on its internal state, whether to accept the external request, or to issue a
new processor request. The processor can issue a new processor request
even if the external agent is requesting access to the system interface.

The external agent asserts ExtRqst* indicating that it wishes to begin
an external request.  The external agent then waits for the processor to
signal that it is ready to accept this request by asserting Release*.  The
processor signals that it is ready to accept an external request based on
the criteria listed below.

• The processor completes any processor request that is in progress.
• While waiting for the assertion of RdRdy* to issue a processor read

request, the processor can accept an external request if the request is
delivered to the processor one or more cycles before RdRdy* is assert-
ed. 

• While waiting for the assertion of WrRdy* to issue a processor write
request, the processor can accept an external request provided the re-
quest is delivered to the processor one or more cycles before WrRdy*
is asserted.

• If waiting for the response to a read request after the processor has
made an uncompelled change to a slave state, the external agent can
issue an external request before providing the read response data.

External Read Request
In contrast to a processor read request, data is returned directly in

response to an external read request; no other requests can be issued
until the processor returns the requested data.  An external read request
is complete after the processor returns the requested word of data. 

The data identifier (see “System Interface Commands and Data Identi-
fiers” on page 12-32) associated with the response data can signal that
the returned data is erroneous, causing the processor to take a bus error.

Note: The R4600/R4700 does not contain any resources that are
readable by an external read request; in response to an external read
request the processor returns undefined data and a data identifier with
its Erroneous Data bit, SysCmd(5), set.

External Write Request
When an external agent issues a write request, the specified resource is

accessed and the data is written to it.  An external write request is
complete after the word of data has been transmitted to the processor.

The only processor resource available to an external write request is the
IP field of the Cause register.

Read Response
A read response returns data in response to a processor read request,

as shown in Figure 12.11.  While a read response is technically an
external request, it has one characteristic that differentiates it from all
other external requests—it does not perform system interface arbitration.
For this reason, read responses are handled separately from all other
external requests, and are simply called read responses.  When a read
response comes back with bad parity for the first datum, a cache error
exception results.
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Figure 12.11  Read Response

Handling Requests
This section details the sequence, protocol, and syntax (see “Termi-

nology” on page 12-1 for definitions of these terms) of both processor and
external requests.  The following system events are discussed:

• load miss (no-secondary-cache mode)
• store miss (no-secondary-cache mode)
• store hit
• uncached loads/stores
• CACHE operations
• load linked store conditional.

Load Miss
When a processor load misses in the primary cache, before the

processor can proceed it must obtain the cache line that contains the
data element to be loaded from the external agent.

If the new cache line replaces a current cache line with a W bit set, the
current cache line must be written back.

The processor examines the coherency attribute (cache coherency
attributes are described in Chapter 11) in the TLB entry for the page that
contains the requested cache line, and executes the following request:

• The coherency attribute is noncoherent, the processor issues a non-
coherent read request.

Table 12.1 shows the actions taken on a load miss to primary cache.

Page Attribute State of Data Cache Line Being Replaced

Clean/Invalid Dirty (W=1)

Noncoherent NCR NCR/W

NCR Processor noncoherent block read request
NCR/W Processor noncoherent block read request followed by processor

block write request

Table 12.1  Load Miss to Primary Cache

R4600/R4700 External Agent

1.  Read request

2. Read response
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No-Secondary-Cache Mode — Load Miss
In no-secondary-cache mode, if the cache line must be written back on

a load miss, the read request is issued and completed before the write
request is handled.  The processor takes the following steps:

1. The processor issues a noncoherent read request for the cache line
that contains the data element to be loaded. 

2. The processor then waits for an external agent to provide the read
response. 

3. The processor will restart the pipeline after the first doubleword (the
data that missed is fetched first). The rest of the data cache line will be
placed into the cache in parallel.

If the current cache line must be written back, the processor issues a
write request to save the dirty cache line in memory. 

Store Miss
When a processor store misses in the primary cache, the processor may

request, from the external agent, the cache line that contains the target
location of the store for pages that are either write-back or write-through
with write-allocate only. The processor examines the coherency attribute
in the TLB entry for the page (TLB page coherency attributes are listed in
Chapter 4) that contains the requested cache line to see if the line is
write-allocate or no-write-allocate.

The processor then executes one of the following requests:
• If the coherency attribute is noncoherent, write-back or noncoherent,

write-through with write-allocate, a noncoherent block read request
is issued.

• If the coherency attribute is noncoherent, write-through with no
write-allocate, the processor issues a non-block write request.

Table 12.1 shows the actions taken on a store miss to the primary
cache.

No-Secondary-Cache Mode — Store Miss
If the coherency attribute is write-back or write-through with write-allo-

cate, the processor issues a read request for the cache line that contains
the data element to be loaded, then awaits the external agent to provide
read data in response to the read request.  Then, if the current cache line
must be written back, the processor issues a write request for the current
cache line. For a write-through, no write-allocate store miss, the
processor issues a write request only.

Page Attribute State of Data Cache Line Being Replaced

Clean/Invalid Dirty (W=1)

Noncoherent, write-back or
Noncoherent, write-through with 
write-allocate

NCR NCR/W

Noncoherent, write-through with 
no write-allocate

NCW NA

NCR Processor noncoherent block read request
NCR/W Processor noncoherent block read request followed by processor

block write request
NCW Processor noncoherent write request

Table 12.2  Store Miss to Primary Cache
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In no-secondary-cache mode, if the new cache line replaces a current
cache line whose Write back (W) bit is set, the current cache line moves to
an internal write buffer before the new cache line is loaded in the primary
cache.

Store Hit
This section describes store hits in no-secondary-cache mode for both

write-back and write-through lines.

No-Secondary-Cache Mode — Store Hit
In no-secondary-cache mode, the action on the system interface will be

determined by whether the line is write-back or write-through.  All lines
that use a write-back policy are set to the dirty exclusive cache state and
there is no bus transactions generated. For lines with a write-through
policy, the store will also generate a processor write request for the store
data.

Uncached Loads or Stores
When the processor performs an uncached load, it issues a nonco-

herent word read request (the actual access can be for a doubleword,
word, partial word or byte, but the request is called a word read request
to differentiate it from the block read request).  When the processor
performs an uncached store, it issues a doubleword, partial doubleword,
word, or partial word write request.

The CPU expects valid parity and data in the full SysAD bus (all 64
bits), even if it is looking for less than a double word.  Even if you do not
want to return the full double word, you still must tell it not to check the
parity if you are not using all 64 bits.  In other words, either return 64
bits with parity, or tell it not to check parity.

All writes by the processor will be buffered from the system interface by
the 4-deep write buffer. The write requests are sent to the system inter-
face when there are no other requests in progress. If the write buffer
contains any entries when a block request is needed, the write buffer is
first flushed before any read request will occur (cache miss or uncached
load).

Both a data cache miss and an uncached data load will flush the write
buffer.

CACHE Operations
The processor provides a variety of CACHE operations to maintain the

state and contents of the primary cache.  During the execution of the
CACHE operation instructions, the processor can issue write requests.
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Load Linked/Store Conditional Operation
Generally, the execution of a Load Linked/Store Conditional instruction

sequence is not visible at the system interface; that is, no special requests
are generated due to the execution of this instruction sequence. 

There is, however, one situation in which the execution of a Load
Linked/Store Conditional instruction sequence is visible, as indicated by
the link address retained bit during a processor read request, as
programmed by the SysCmd(2) bit.  This situation occurs when the data
location targeted by a Load-Linked-Store-Conditional instruction
sequence maps to the same cache line to which the instruction area
containing the Load Linked/Store Conditional code sequence is mapped.
In this case, immediately after executing the Load Linked instruction, the
cache line that contains the link location is replaced by the instruction
line containing the code.  The link address is kept in a register separate
from the cache, and remains active as long as the link bit, set by the Load
Linked instruction, is set.

The link bit, which is set by the load linked instruction, is cleared by a
change of cache state for the line containing the link address, or by a
Return From Exception.

For more information, refer to Chapter 11, or see the specific Load
Linked and Store Conditional instructions described in Appendix A.

Processor and External Request Protocols 
The following sections contain a cycle-by-cycle description of the bus

arbitration protocols for each type of processor and external request.
Table 12.3 lists the abbreviations and definitions for each of the buses
that are used in the timing diagrams that follow.

Processor Request Protocols
Processor request protocols described in this section include:
• read
• write
Note: In the timing diagrams, the two closely spaced, wavy vertical

lines (see SCycle 2 in Figure 12.20 on page 12-24) indicate one or more
identical cycles. 

Scope Abbreviation Meaning

Global Unsd Unused

SysAD bus Addr Physical address

Data<n> Data element number n of a block of data

SysCmd bus Cmd An unspecified system interface command

Read A processor or external read request command

Write A processor or external write request command

SINull A system interface release external null request 
command

NData A noncoherent data identifier for a data element 
other than the last data element

NEOD A noncoherent data identifier for the last data 
element

Table 12.3  System Interface Requests
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Processor Read Request Protocol  Steps
The following sequence describes the protocol for a processor read

request (the numbered steps below correspond to the numbers in
Figure 12.12 on page 12-16).

1. RdRdy* is asserted low, indicating the external agent is ready to
accept a read request.

2. With the system interface in master state, a processor read request is
issued by driving a read command on the SysCmd bus and a read address
on the SysAD bus.

3. At the same time, the processor asserts ValidOut* for one cycle,
indicating valid data is present on the SysCmd and the SysAD buses. 

Note:  Only one processor read request can be pending at a time.
4. The processor makes an uncompelled change to slave state at the

issue cycle of the read request by asserting the Release* signal for one
cycle. 

Note:  The external agent must not assert the signal ExtRqst* for the
purposes of returning a read response, but rather must wait for the
uncompelled change to slave state.  The signal ExtRqst* can be asserted
before or during a read response to perform an external request other than
a read response.

5. The processor releases the SysCmd and the SysAD buses one SCycle
after the assertion of Release*.

6. The external agent drives the SysCmd and the SysAD buses within
two cycles after the assertion of Release*.

Once in slave state (starting at cycle 5 in Figure 12.12), the external
agent can return the requested data through a read response.  The read
response can return the requested data or, if the requested data could not
be successfully retrieved, an indication that the returned data is erro-
neous.  If the returned data is erroneous, the processor takes a bus error
exception.

Note: The R4600/R4700 only check the error bit for the first
doubleword of read response data, all other error bits are ignored.
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Figure 12.12 illustrates a processor read request, coupled with an
uncompelled change to slave state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Figure 12.12  Processor Read Request Protocol

The assertion of Release* indicates either an uncompelled change to
slave state, or a response to the assertion of ExtRqst*, whereupon the
processor accepts either a read response, or any other external request.
If any external request other than a read response is issued, the
processor performs another uncompelled change to slave state after
processing the external request.

The actual read response, where the external agent returns the
requested data, is shown later in this chapter.

External Instruction Read Response Time
The R4600/R4700 accesses the external bus due to instruction cache

miss or an uncached reference.  The length of time for an external read is
based on the overhead at the beginning and end of the read along with the
time to drive the address and get the response data.
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Figure Note:  Numbers in boxes correspond to numbered steps in preceding text.



System Interface Chapter 12

12 – 17

Instruction Read Latency Steps for System Clock
The read latency for a system clock in the divide-by-two mode is as

follows:
1. The startup overhead is one to two pipeline cycles (PCycle) for the CPU

to transfer the address to the pads to be output.  The second PCycle is
needed if the miss is detected on a PCycle not aligned with the rising edge
of SClock.

2.  The CPU drives the address on the SysAD bus for two PCycles.
3.  The CPU tri-states the SysAD bus for two PCycles.
4.  The CPU waits for the main memory to return the data.  This is

expressed as n x 2 PCycles.
5.  The first double word is driven in the SysAD from the main memory

for two PCycles.
6.  The remaining three double words of instruction are driven on

SysAD for 3*2 PCycles.
Notes on the Instruction Read Latency Steps:
a.For instruction misses the pipeline starts after all the instructions are

returned.
b.n is the total number of idle cycles (even between double word

instruction).  For zero wait state systems, n = 0.  

Example of Instruction Block Read With Zero Wait State
The following example shows an instruction block read with a zero wait

state:
StepDescriptionPCycles
1.  CPU overhead for cache miss detection:1-2 
2.  Address driven on SysAD bus:2 
3.  SysAD bus tri-stated:2 
4.  Memory latency to return the data:0*2 
5.  First double word driven on SysAD bus:2 
6.  Remaining three instructions returned:2*3=6
Total PCycles:13-14

External Data Read Response Time
The R4600/R4700 accesses the external bus due to data cache miss or

an uncached reference.  The length of time for an external read is based
on the overhead at the beginning and end of the read along with the time
to drive the address and get the response data.
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Data Read Latency Steps for System Clock
The read latency for a system clock in the divide-by-two mode is as

follows:
1.  The startup overhead is one to two pipeline cycles (PCycle) for the

CPU to generate the parity for the address to be output.  The second PCycle
is needed if the miss is detected or a PCycle not aligned with the rising edge
of SClock.

2.  The CPU drives the address on the SysAD bus for two PCycles.
3.  The CPU tri-states the SysAD bus for two PCycles.
4.  The CPU waits for the main memory to return the data.  This is

expressed as n x 2 PCycles where n is the number of SClock cycles for the
first data to be returned in a block read, or the latency for the single read.
For zero wait state memory system n should be zero.

5.  The first double word is driven in the SysAD from the main memory
for two PCycles.

6.  The end of the overhead is two PCycles: one to transfer the data from
the pads and generate the parity, and one to write to the register (or cache,
if it is cacheable data).

Notes on the Data Read Latency Steps:
a. If n=0 and the line being replaced is dirty, the CPU takes one to two

additional PCycles of overhead to move the dirty data into the write
buffer.

b. The additional latency for returning the remaining three data
elements should be added in a similar fashion.

c. If cache line needs to be written back the read request is posted first,
then the write is completed.

Example of Data Single Read With Zero Wait State
The following example shows a data block read with a zero wait state:
StepDescriptionPCycles
1.  CPU overhead for cache miss detection:1-2 
2.  Address driven on SysAD bus:2 
3.  SysAD bus tri-stated:2 
4.  Memory latency to return the data:0*2 
5.  First double word driven on SysAD bus:2 
6.  CPU overhead to write the data cache, 

do the fixup, and then restart:2
Total PCycles:9-10

External Cycles for Read Latency
The external cycles to get the response data will look similar to Figure

12.13.  For a larger “divide by” it will take longer to get the response data.

Figure 12.13  Uncached Read—External Cycles 
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The same operation is shown in greater detail in Figure 12.14.  These
figures assume the following: 

1. Data is returned immediately after the Release* is asserted, and after
the bus turn-around cycle (when the CPU tri-states the bus to allow the
external agent to drive it).

2. The data meets the setup and hold requirements for the rising edge
of the SClock that is identified in the preceding and following  figures with
an asterisk.

Figure 12.14  Processor Read Cycle

Processor Write Request Protocol 
Processor write requests are issued using one of two protocols. 
• Doubleword, partial doubleword, word, or partial word writes use a

word1 write request protocol. 
• Block writes use a block write request protocol. 
Processor word write requests are issued with the system interface in

master state, as described in the following steps.  Figure 12.15 shows a
processor noncoherent word write request cycle.

1. A processor single word write request is issued by driving a write
command on the SysCmd bus and a write address on the SysAD bus.

2. The processor asserts ValidOut*. 
3. The processor drives a data identifier on the SysCmd bus and data

on the SysAD bus.
4. The data identifier associated with the data cycle must contain a last

data cycle indication.  At the end of the cycle, ValidOut* is deasserted.
Note: Timings for the SysADC and SysCmdP buses are the same as

those of the SysAD and SysCmd buses, respectively.

1. Called word to distinguish it from block request protocol.  Data transferred can 
actually be doubleword, partial doubleword, word, or partial word.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Data0

SysCmd Bus NEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

Master Slave

Addr

Read

Master

*

RdRdy*



System Interface Chapter 12

12 – 20

Figure 12.15  Processor Noncoherent Word Write Request Protocol 

The R4600/R4700 interface requires that WrRdy* be asserted two
system cycles prior to the issue of a write, for one clock cycle. An external
agent that deasserts WrRdy* immediately upon receiving the write that
fills its buffer will stop a subsequent write for four system cycles in R4000
non-block write compatible mode. This leaves two null system cycles after
a write address/data pair to give the external agent time to stop the next
write. This is illustrated in Figure 12.6 on page 12-7.

An Address/data pair every four system cycles is not sufficiently high
performance for all applications.  For this reason, the R4600/R4700
provides two new protocol options that modify the R4000 back-to-back
write protocol to allow an address/data pair every two system cycles. The
first protocol, called write re-issue, allows WrRdy* to be deasserted during
the address cycle and forces a write to be re-issued. The second, called
pipelined writes, leaves the sample point of WrRdy* unchanged and
requires that the external agent accept one more write than the R4000
protocol.
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The write re-issue protocol is shown in Figure 12.16. Writes issue when
WrRdy* is asserted both two cycles prior to the address cycle and during
the address cycle.

Figure 12.16  Write re-issue

The pipelined write protocol is shown in Figure 12.17. This protocol
maintains the R4000 write issue rule (issue if WrRdy* asserted two cycles
prior to the address cycle, for one clock cycle), but simply eliminates the
two null cycles between writes. The external agent is then required to
accept one more write after it deasserts WrRdy*.

  

Figure 12.17  Pipelined Writes

All three write protocols apply for both single write and block writes.
This means that in pipeline write, for example, a single write can be
followed immediately by a block write that the external agent must
accept.

Processor block write requests are issued with the system interface in
master state, as described below; a processor noncoherent block request
for eight words of data is illustrated in Figure 12.18 on page 12-22.

1. The processor issues a write command on the SysCmd bus and a
write address on the SysAD bus

2. The processor asserts ValidOut*. 
3. The processor drives a data identifier on the SysCmd bus and data

on the SysAD bus.
4. The processor asserts ValidOut* for a number of cycles sufficient to

transmit the block of data. 
5. The data identifier associated with the last data cycle must contain a

last data cycle indication. 
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Figure 12.18 illustrate a processor noncoherent block request for eight
words of data with a data pattern of DDDD.

Figure 12.18  Processor Noncoherent Block Write Request Protocol

Processor Request and Flow Control 
The external agent uses RdRdy* to control the flow of processor read

requests. Figure 12.19 on page 12-23 illustrates this flow control, as
described in the steps below.

1. The processor samples the signal RdRdy* to determine if the external
agent is capable of accepting a read request. 

2. The signal WrRdy* controls the flow of a processor write request. 
3. The processor does not complete the issue of a read request, until it

issues an address cycle in response to the request for which the signal
RdRdy* was asserted two cycles earlier. 

4. The processor does not complete the issue of a write request until it
issues an address cycle in response to the write request for which the
signal WrRdy* was asserted two cycles earlier.
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Figure 12.19 illustrates two processor write requests in which the issue
of the second is delayed for the assertion of WrRdy*. 

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Figure 12.19  Two Processor Write Requests, Second Write Delayed for the Assertion of 
WrRdy*

External Request Protocols
External requests can only be issued with the system interface in slave

state.  An external agent asserts ExtRqst* to arbitrate (see “External
Arbitration Protocol” on page 12-24) for the system interface, then waits
for the processor to release the system interface to slave state by
asserting Release* before the external agent issues an external request.
If the system interface is already in slave state—that is, the processor has
previously performed an uncompelled change to slave state—the external
agent can begin an external request immediately.

After issuing an external request, the external agent must return the
system interface to master state.  If the external agent does not have any
additional external requests to perform, ExtRqst* must be deasserted
two cycles after the cycle in which Release* was asserted.  For a string of
external requests, the ExtRqst* signal is asserted until the last request
cycle, whereupon it is deasserted two cycles after the cycle in which
Release* was asserted. 

The processor continues to handle external requests as long as
ExtRqst* is asserted; however, the processor cannot release the system
interface to slave state for a subsequent external request until it has
completed the current request.  As long as ExtRqst* is asserted, the
string of external requests is not interrupted by a processor request.

This section describes the following external request protocols:
• read
• null
• write
• read response
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External Arbitration Protocol
System interface arbitration uses the signals ExtRqst* and Release* as

described above.  Figure 12.20 is a timing diagram of the arbitration
protocol, in which slave and master states are shown.

The arbitration cycle consists of the following steps:
1. The external agent asserts ExtRqst* when it wishes to submit an

external request. 
2. The processor waits until it is ready to handle an external request,

whereupon it asserts Release* for one cycle.
3. The processor sets the SysAD and SysCmd buses to tri-state. 
4. The external agent must begin driving the SysAD bus and the

SysCmd bus two cycles after the assertion of Release*. 
5. The external agent deasserts ExtRqst* two cycles after the assertion

of Release*, unless the external agent wishes to perform an additional
external request. 

6. The external agent sets the SysAD and the SysCmd buses to tri-state
at the completion of an external request.

The processor can start issuing a processor request one cycle after the
external agent sets the bus to tri-state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Figure 12.20  Arbitration Protocol for External Requests

External Read Request Protocol
External reads are requests for a word of data from a processor internal

resource, such as a register.  External read requests cannot be split; that
is, no other request can occur between the external read request and its
read response.
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Figure 12.21 shows a timing diagram of an external read request, which
consists of the following steps:

1. An external agent asserts ExtRqst* to arbitrate for the system
interface.

2. The processor releases the system interface to slave state by asserting
Release* for one cycle and then deasserting Release*.

3. After Release* is deasserted, the SysAD and SysCmd buses are set
to a tri-state for one cycle.

4. The external agent drives a read request command on the SysCmd
bus and a read request address on the SysAD bus and asserts ValidIn* for
one cycle. 

5. After the address and command are sent, the external agent releases
the SysCmd and SysAD buses by setting them to tri-state and allowing the
processor to drive them.  The processor, having accessed the data that is
the target of the read, returns this data to the external agent. The
processor accomplishes this by driving a data identifier on the SysCmd
bus, the response data on the SysAD bus, and asserting ValidOut* for one
cycle.  The data identifier indicates that this is last-data-cycle response
data. 

6. The system interface is in master state.  The processor continues
driving the SysCmd and SysAD buses after the read response is returned.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

External read requests are only allowed to read a word of data from the
processor.  The processor response to external read requests for any data
element other than a word is undefined.

Figure 12.21  External Read Request, System Interface in Master State

External Null Request Protocol
The R4600/R4700 only supports one external null request. A system

interface release external null request returns the system interface to
master state from slave state without otherwise affecting the processor. 

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Data0

SysCmd Bus Read NEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

6

1

2

3

5

6

4

Master Slave Master

Note: The processor does not contain any resources that are readable by an external read
request; in response to an external read request the processor returns undefined data and
a data identifier with its Erroneous Data bit, SysCmd(5), set.
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External null requests require no action from the processor other than
to return the system interface to master state.

Figure 12.22 show timing diagram of the external null request cycle,
which consist of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the system
interface.

2. The processor releases the system interface to slave state by asserting
Release*.

3. The external agent drives a system interface release external null
request command on the SysCmd bus, and asserts ValidIn* for one cycle
to return the system interface back to master state.

4. The SysAD bus is unused (does not contain valid data) during the
address cycle associated with an external null request. 

5. After the address cycle is issued, the null request is complete.
For a system interface release external null request, the external agent

releases the SysCmd and SysAD buses, and expects the system interface
to return to master state.

Figure 12.22  System Interface Release External Null Request

External Write Request Protocol 
External write requests use a protocol identical to the processor single

word write protocol except the ValidIn* signal is asserted instead of
ValidOut*.  Figure 12.23 on page 12-27 shows a timing diagram of an
external write request, which consists of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the system
interface.

2. The processor releases the system interface to slave state by asserting
Release*.

3. The external agent drives a write command on the SysCmd bus, a
write address on the SysAD bus, and asserts ValidIn*. 

4. The external agent drives a data identifier on the SysCmd bus, data
on the SysAD bus, and asserts ValidIn*. 

5. The data identifier associated with the data cycle must contain a
coherent or noncoherent last data cycle indication. 

6. After the data cycle is issued, the write request is complete and the
external agent sets the SysCmd and SysAD buses to a tri-state, allowing
the system interface to return to master state.  Timings for the SysADC
and SysCmdP buses are the same as those of the SysAD and SysCmd
buses, respectively.
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External write requests are only allowed to write a word of data to the
processor.  Processor behavior in response to an external write request for
any data element other than a word is undefined.

Figure 12.23  External Write Request, with System Interface initially Master State

Read Response Protocol 
An external agent must return data to the processor in response to a

processor read request by using a read response protocol.  A read
response protocol consists of the following steps: 

1. The external agent waits for the processor to perform an uncompelled
change to slave state.

2. The external agent returns the data through a single data cycle or a
series of data cycles. 

3. After the last data cycle is issued, the read response is complete and
the external agent sets the SysCmd and SysAD buses to a tri-state.

4. The system interface returns to master state.
Note: The processor always performs an uncompelled change to slave

state in the same cycle that it issues a read request.
5. The data identifier for data cycles must indicate the fact that this data

is response data.
6. The data identifier associated with the last data cycle must contain a

last data cycle indication. 
For read responses to non-coherent block read requests (which is the

only read request for normal operations of the R4600/R4700,) the
response data will not need to identify an initial cache state.  The cache
state will automatically be assigned as dirty exclusive by the R4600/
R4700.

The data identifier associated with a data cycle can indicate that the
data transmitted during that cycle is erroneous; however, an external
agent must return a data block of the correct size regardless of the fact
that the data may be in error. The R4600/R4700 only checks the error bit
for the first doubleword of a block, the other error bits for the block of
data are ignored If an initial erroneous data cycle is detected, the
processor takes a bus error at the completion of the data transfer.
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Read response data must only be delivered to the processor when a
processor read request is pending.  The behavior of the processor is unde-
fined when a read response is presented to it and there is no processor
read pending.

Figure 12.24 illustrates a processor word read request followed by a
word read response.  Figure 12.25 illustrates a read response for a
processor block read with the system interface already in slave state.
Figure 12.26 illustrates a block read transaction with one wait state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively. 

Figure 12.24  Processor Word Read Request, followed by a Word Read Response

Figure 12.25  Block Read Response With Zero Wait State
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Figure 12.26  Block Read Transaction With One Wait State

Data Rate Control 
The system interface supports a maximum data rate of one doubleword

per cycle.  The data rate the processor can support is directly related to
the rate at which the external agent can accept data.

Read Data Pattern
The rate at which data is delivered to the processor can be determined

by the external agent—for example, the external agent can drive data and
assert ValidIn* every n cycles, instead of every cycle.  An external agent
can deliver data at any rate it chooses, but must not deliver data to the
processor any faster than the processor is capable of receiving it.

The processor only accepts cycles as valid when ValidIn* is asserted
and the SysCmd bus contains a data identifier. If the external agent
sends more data items then requested (e.g., a fifth doubleword of read
response data with ValidIn* asserted) or the last data (i.e., the fourth
doubleword) of a block read is not tagged as the last data item, it is an
error and the resulting actions of the processor for these cases will be
undefined.
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Figure 12.27 shows a read response with reduced data rate and with
the system interface in slave state.

Figure 12.27  Read Response, Reduced Data Rate, System Interface in Slave State

Write Data Transfer Patterns
The write data pattern specifies the pattern the R4600/R4700 uses

when writing a block to the external agent.  This pattern is specified
through the mode bits.

A data pattern is a sequence of letters indicating the data and unused
cycles that repeat to provide the appropriate data rate.  For example, the
data pattern DDxx specifies a repeatable data rate of two doublewords
every four cycles, with the last two cycles unused.  

Table 12.4 lists the maximum processor data rate and the data pattern
for each data rate.

In Table 12.4 data patterns are specified using the letters D and x; D
indicates a data cycle and x indicates an unused cycle. During the
unused cycles, the data bus will maintain the last data value (D).  

Maximum Data Transmit Rate Block writes Data Pattern

1 Double/1 SClock Cycle DDDD

2 Doubles/3 SClock Cycles DDxDDx

1 Double/2 SClock Cycles DDxxDDxx

1 Double/2 SClock Cycles DxDxDxDx

2 Doubles/5 SClock Cycles DDxxxDDxxx

1 Double/3 SClock Cycles DDxxxxDDxxxx

1 Double/3 SClock Cycles DxxDxxDxxDxx

1 Double/4 SClock Cycles DDxxxxxxDDxxxxxx

1 Double/4 SClock Cycles DxxxDxxxDxxxDxxx

Table 12.4  Transmit Data Rates and Patterns
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Independent Transmissions on the SysAD Bus
In most applications, the SysAD bus is a point-to-point connection,

running from the processor to a bidirectional registered transceiver
residing in an external agent.  For these applications, the SysAD bus has
only two possible drivers, the processor or the external agent. 

Certain applications may require connection of additional drivers and
receivers to the SysAD bus, to allow transmissions over the SysAD bus
that the processor is not involved in.  These are called independent trans-
missions.  To effect an independent transmission, the external agent must
coordinate control of the SysAD bus by using arbitration handshake
signals and external null requests.

An independent transmission on the SysAD bus follows this procedure:
1. The external agent requests mastership of the SysAD bus, to issue an

external request. 
2. The processor releases the system interface to slave state.
3. The external agent then allows the independent transmission to take

place on the SysAD bus, making sure that ValidIn* is not asserted while
the transmission is occurring. 

4. When the transmission is complete, the external agent must issue a
system interface release external null request to return the system interface
to master state.

System Interface Endianness
The endianness of the system interface is programmed at boot time

through the boot-time mode control interface (see chapter 9, Initialization
Interface), and remains fixed until the next time the processor boot-time
mode bits are read. Software cannot change the endianness of the system
interface and the external system; software can set the reverse endian bit
to reverse the interpretation of endianness inside the processor, but the
endianness of the system interface remains unchanged. 

System Interface Cycle Time
The processor specifies minimum and maximum cycle counts for

various processor transactions and for the processor response time to
external requests.  Processor requests themselves are constrained by the
system interface request protocol, and request cycle counts can be deter-
mined by examining the protocol.  The following system interface interac-
tions can vary within minimum and maximum cycle counts:

• waiting period for the processor to release the system interface to
slave state in response to an external request (release latency)

• response time for an external request that requires a response (exter-
nal response latency).

The remainder of this section describes and tabulates the minimum and
maximum cycle counts for these system interface interactions.
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Release Latency
Release latency is generally defined as the number of cycles the

processor can wait to release the system interface to slave state for an
external request.  When no processor requests are in progress, internal
activity can cause the processor to wait some number of cycles before
releasing the system interface.  Release latency is therefore more specifi-
cally defined as the number of cycles that occur between the assertion of
ExtRqst* and the assertion of Release*. 

There are three categories of release latency:
• Category 1: when the external request signal is asserted two cycles

before the last cycle of a processor request.
• Category 2: when the external request signal is not asserted during a

processor request, or is asserted during the last cycle of a processor
request.

• Category 3: when the processor makes an uncompelled change to
slave state.

Table 12.5 summarizes the minimum and maximum release latencies
for requests that fall into categories 1, 2 and 3.  Note that the maximum
and minimum cycle count values are subject to change.

The differences in the minimum and maximum times are due to
internal conditions not readily observable externally.

System Interface Commands and Data Identifiers
System interface commands specify the nature and attributes of any

system interface request; this specification is made during the address
cycle for the request. System interface data identifiers specify the
attributes of data transmitted during a system interface data cycle. 

The following sections describe the syntax, that is, the bitwise encoding
of system interface commands and data identifiers.

Reserved bits and reserved fields in the command or data identifier
should be set to 1 for system interface commands and data identifiers
associated with external requests. For system interface commands and
data identifiers associated with processor requests, reserved bits and
reserved fields in the command and data identifier are undefined.

Command and Data Identifier Syntax 
System interface commands and data identifiers are encoded in 9 bits

and are transmitted on the SysCmd bus from the processor to an
external agent, or from an external agent to the processor, during address
and data cycles. Bit 8 (the most-significant bit) of the SysCmd bus deter-
mines whether the current content of the SysCmd bus is a command or a
data identifier and, therefore, whether the current cycle is an address
cycle or a data cycle.  For system interface commands, SysCmd(8) must
be set to 0. For system interface data identifiers, SysCmd(8) must be set
to 1.

Category Minimum PCycles Maximum PCycles

1 4 6

2 4 24

3 0 0

Table 12.5  Release Latency for External Requests
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System Interface Command Syntax 
This section describes the SysCmd bus encoding for system interface

commands.  Figure 12.28 shows a common encoding used for all system
interface commands.

Figure 12.28  System Interface Command Syntax Bit Definition

SysCmd(8) must be set to 0 for all system interface commands.
SysCmd(7:5) specify the system interface request type which may be

read, write or null; Table 12.6 lists the encoding of SysCmd(7:5).
Table 12.6 shows the types of requests encoded by the SysCmd(7:5)

bits.

SysCmd(4:0) are specific to each type of request and are defined in
each of the following sections.

Read Requests
Figure 12.29 shows the format of a SysCmd read request.

Figure 12.29  Read Request SysCmd Bus Bit Definition

SysCmd(7:5) Command

0 Read Request

1 Reserved

2 Write Request

3 Null Request

4 - 7 Reserved

Table 12.6  Encoding of SysCmd(7:5) for System Interface Commands

Request Type0 Request Specific

8 7 5 4 0

000 0

8 7 5 4 03 2 1

Read Request Specific
(see tables)
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Table 12.7, Table 12.8, and Table 12.9 list the encoding of SysCmd(4:0)
for read requests. 

      

      

   

Write Requests
Figure 12.30 shows the format of a SysCmd write request.

Figure 12.30  Write Request SysCmd Bus Bit Definition 

SysCmd(4:3) Read Attributes

0 - 1 Reserved

2 Noncoherent block read

3 Doubleword, partial doubleword, word, or partial word

Table 12.7  Encoding of SysCmd(4:3) for Read Requests

SysCmd(2) Link Address Retained Indication

0 Link address not retained

1 Link address retained

SysCmd(1:0) Read Block Size

0 Reserved

1 8 words

2 - 3 Reserved

Table 12.8  Encoding of SysCmd(2:0) for Block Read Request

SysCmd(2:0) Read Data Size

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte)

3 4 bytes valid (Word)

4 5 bytes valid (Quintibyte)

5 6 bytes valid (Sextibyte)

6 7 bytes valid (Septibyte)

7 8 bytes valid (Doubleword)

Table 12.9  Doubleword, Word, or Partial-word Read Request Data Size 
Encoding of SysCmd(2:0)

010 0

8 7 5 4 03 2 1

Write Request Specific
(see tables)
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Table 12.10 lists the write attributes encoded in bits SysCmd(4:3).
Table 12.11 lists the block write replacement attributes encoded in bits
SysCmd(2:0).  Table 12.12 lists the write request bit encoding in
SysCmd(2:0).

     

    

    

SysCmd(4:3) Write Attributes

0 Reserved

1 Reserved

2 Block write

3 Doubleword, partial doubleword, word, or partial word

Table 12.10  Write Request Encoding of SysCmd(4:3)

SysCmd(2) Cache Line Replacement Attributes

0 Cache line replaced

1 Cache line retained

SysCmd(1:0) Write Block Size

0 Reserved

1 8 words

2 - 3 Reserved

Table 12.11  Block Write Request Encoding of SysCmd(2:0)

SysCmd(2:0) Write Data Size

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte)

3 4 bytes valid (Word)

4 5 bytes valid (Quintibyte)

5 6 bytes valid (Sextibyte)

6 7 bytes valid (Septibyte)

7 8 bytes valid (Doubleword)

Table 12.12  Doubleword, Word, or Partial-word Write Request Data Size 
Encoding of SysCmd(2:0)
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Null Requests
Figure 12.31 shows the format of a SysCmd null request.

Figure 12.31  Null Request SysCmd Bus Bit Definition

System interface release external null requests use the null request
command. Table 12.13 lists the encoding of SysCmd(4:3) for external
null requests. SysCmd(2:0) are reserved for both instances of null
requests.

System Interface Data Identifier Syntax 
This section defines the encoding of the SysCmd bus for system inter-

face data identifiers.  Figure 12.32 shows a common encoding scheme
used for all system interface data identifiers.

Figure 12.32  Data Identifier SysCmd Bus Bit Definition

SysCmd(8) must be set to 1 for all system interface data identifiers. 
system interface data identifiers use the format for noncoherent data.

Noncoherent Data
Noncoherent data is defined as follows:
• data that is associated with processor block write requests and pro-

cessor doubleword, partial doubleword, word, or partial word write re-
quests

• data that is returned in response to a processor noncoherent block
read request or a processor doubleword, partial doubleword, word, or
partial word read request

• data that is associated with external write requests
• data that is returned in response to an external read request

SysCmd(4:3) Null Attributes

0 System Interface release

1 - 3 Reserved

Table 12.13  External Null Request Encoding of SysCmd(4:3)

0110

8 7 5 4 03 2 1

Null Request Specific
(see table)

Last
Data

1

8 7 5 4 03

Resp
Data

6

Good 
Data Reserved

2

Data 
Check
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Data Identifier Bit Definitions
SysCmd(7) marks the last data element and SysCmd(6) indicates

whether or not the data is response data, for both processor and external
coherent and noncoherent data identifiers.  Response data is data
returned in response to a read request. 

SysCmd(5) indicates whether or not the data element is error free. Erro-
neous data contains an uncorrectable error and is returned to the
processor, forcing a bus error.  The processor delivers data with the good
data bit deasserted if a primary parity error is detected for a transmitted
data item. 

SysCmd(4) indicates to the processor whether to check the data and
check bits for this data element.

SysCmd(3) is reserved for external data identifiers.
SysCmd(4:3) are reserved for noncoherent processor data identifiers.
SysCmd(2:0) are reserved for noncoherent  data identifiers.
Table 12.14 lists the encoding of SysCmd(7:3) for processor data identi-

fiers. 
   

SysCmd(7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd(6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd(5) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd(4:3) Reserved

Table 12.14  Processor Data Identifier Encoding of SysCmd(7:3)
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Table 12.15 lists the encoding of SysCmd(7:3) for external data identi-
fiers.

      

System Interface Addresses
System interface addresses are full 36-bit physical addresses presented

on the least-significant 36 bits (bits 35 through 0) of the SysAD bus
during address cycles; the remaining bits of the SysAD bus are unused
during address cycles. 

Addressing Conventions
Addresses associated with doubleword, partial doubleword, word, or

partial word transactions, are aligned for the size of the data element.
The system uses the following address conventions:

• Addresses associated with block requests are aligned to double-word
boundaries; that is, the low-order 3 bits of address are 0.

• Doubleword requests set the low-order 3 bits of address to 0.
• Word requests set the low-order 2 bits of address to 0.
• Halfword requests set the low-order bit of address to 0.
• Byte, tribyte, quintibyte, sextibyte, and septibyte requests use the

byte address.

Subblock Ordering
The order in which data is returned in response to a processor block

read request is subblock ordering. In subblock ordering, the processor
delivers the address of the requested doubleword within the block.  An
external agent must return the block of data using subblock ordering,
starting with the addressed doubleword. 

A block of data elements (whether bytes, halfwords, words, or double-
words) can be retrieved from storage in two ways: in sequential order, or
using a subblock order.  This section describes these retrieval methods,
with an emphasis on subblock ordering. Note that the R4600/R4700 only
uses subblock ordering for block reads.

SysCmd(7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd(6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd(5) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd(4) Data Checking Enable

0 Check the data and check bits

1 Do not check the data and check bits

SysCmd(3) Reserved

Table 12.15  External Data Identifier Encoding of SysCmd(7:3)
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Example of Sequential Ordering
Sequential ordering retrieves the data elements of a block in serial, or

sequential, order.
Figure 12.33 shows a sequential order in which DW0 is taken first and

DW3 is taken last.

Figure 12.33  Retrieving a Data Block in Sequential Order

Example of Subblock Ordering
Subblock ordering allows the system to define the order in which the

data elements are retrieved.  The smallest data element of a block transfer
for the R4600/R4700 is a doubleword, and Figure 12.34 shows the
retrieval of a block of data that consists of 4 doublewords (the cache line
size is 8 words), in which DW2 is taken first.

Figure 12.34  Retrieving Data in a Subblock Order

Using the subblock ordering shown in Figure 12.34, the doubleword at
the target address is retrieved first (DW2), followed by the remaining
doubleword (DW3) in this quadword. Next, the quadword that fills out the
octalword are retrieved in the same order as the prior quadword (in this
case DW0 is followed by DW1).

DW0 DW1 DW2 DW3

DW0
taken first

DW1
taken second DW2

taken third

DW3
taken fourth

DW0 DW1 DW2 DW3

DW0
taken third

DW1
taken fourth DW2

taken first

DW3
taken second

2 3 0 1Order of retrieval

quadword

octalword
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It may be easier way to understand subblock ordering by taking a look
at the method used for generating the address of each doubleword as it is
retrieved.  The subblock ordering logic generates this address by
executing a bit-wise exclusive-OR (XOR) of the starting block address with
the output of a binary counter that increments with each doubleword,
starting at doubleword zero (002).

Using this scheme, Table 12.16, Table 12.17, and Table 12.18 list the
subblock ordering of doublewords for an 8-word block, based on three
different starting-block addresses: 102, 112, and 012.  The subblock
ordering is generated by an XOR of the subblock address (either 102, 112,
or 012) with the binary count of the doubleword (002 through 112).  Thus,
the third doubleword retrieved from a block of data with a starting
address of 102 is found by taking the XOR of address 102 with the binary
count of DW2, 102.  The result is 002, or DW0 (shown in Table 12.16).

    

    

   

For block write requests, the processor always delivers the address of
the doubleword at the beginning of the block; the processor delivers data
beginning with the doubleword at the beginning of the block and
progresses sequentially through the doublewords that form the block.

Cycle Starting Block 
Address

Binary Count Double Word 
Retrieved

1 10 00 10

2 10 01 11

3 10 10 00

4 10 11 01

Table 12.16  Sequence of Doublewords Transferred Using Subblock 
Ordering: Address 102

Cycle Starting Block 
Address

Binary Count Double Word 
Retrieved

1 11 00 11

2 11 01 10

3 11 10 01

4 11 11 00

Table 12.17  Sequence of Doublewords Transferred Using Subblock 
Ordering: Address 112

Cycle Starting Block 
Address

Binary Count Double Word 
Retrieved

1 01 00 01

2 01 01 00

3 01 10 11

4 01 11 10

Table 12.18  Sequence of Doublewords Transferred Using Subblock 
Ordering: Address 012
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During data cycles, the valid byte lines depend upon the position of the
data with respect to the aligned doubleword (this may be a byte, halfword,
tribyte, quadbyte/word, quintibyte, sextibyte, septibyte, or an octalbyte/
doubleword).  For example, in little-endian mode, on a byte request where
the address modulo 8 is 0, SysAD(7:0) are valid during the data cycles.

Table 12.19  shows the byte lanes used for partial word transfers for
both little and big endian.

# Bytes Address SysAD byte lanes used (big endian)

SysCmd(2:0) Mod 8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

1
(000)

0 •

1 •

2 •

3 •

4 •

5 •

6 •

7 •

2
(001)

0 • •

2 • •

4 • •

6 • •

3
(010)

0 • • •

1 • • •

4 • • •

5 • • •

4
(011)

0 • • • •

4 • • • •

5
(100)

0 • • • • •

3 • • • • •

6
(101)

0 • • • • • •

2 • • • • • •

7
(110)

0 • • • • • • •

1 • • • • • • •

8 (111) 0 • • • • • • • •

7:0 15:8 23:16 31:24 39:32 47:40 55:48 63:56

SysAD byte lanes used (little endian)

Table 12.19  Partial Word Transfer Byte Lane Usage
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Processor Internal Address Map
External reads and writes provide access to processor internal

resources that may be of interest to an external agent.  The processor
decodes bits SysAD(6:0) of the address associated with an external read
or write request to determine which processor internal resource is the
target.  

However, the R4600/R4700 does not contain any resources that are
readable through an external read request.  Therefore, in response to an
external read request the processor returns undefined data and a data
identifier with its Erroneous Data bit, SysCmd(5), set.  

The Interrupt register is the only processor internal resource available
for write access by an external request.  The Interrupt register is accessed
by an external write request with an address of 0002 on bits 6:4 of the
SysAD bus. 

The interrupt register is described in detail in Chapter 13,
“R4600/R4700 Processor Interrupts.”
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R4600/R4700 Processor 
Interrupts

Chapter 13

 

Introduction

 

The R4600/R4700 processor supports the following interrupts: six
hardware interrupts, one internal “timer interrupt,” two software
interrupts, and one nonmaskable interrupt. The processor takes an
exception on any interrupt.

This chapter describes the six hardware and single nonmaskable
interrupts. A description of the software and the timer interrupts can be
found in Chapter 5.  CPU exception processing is also described in Chapter
5.  Floating-point exception processing is described in Chapter 6.

 

Hardware Interrupts

 

The six CPU hardware interrupts can be caused by external write
requests to the R4600/R4700, or can be caused through dedicated
interrupt pins. These pins are latched into an internal register by the rising
edge of 

 

SClock

 

.

 

Nonmaskable Interrupt (NMI)

 

The nonmaskable interrupt is caused either by an external write request
to the R4600/R4700 or by a dedicated pin in the R4600/R4700. This pin
is latched into an internal register by the rising edge of 

 

SClock

 

.

 

Asserting Interrupts

 

External writes to the CPU are directed to various internal resources,
based on an internal address map of the processor.  When 

 

SysAD[6:0]

 

 = 0
during an ADDR cycle of external write request, an external write to any
address writes to an architecturally transparent register called the

 

Interrupt

 

 register; this register is available for external write cycles, but not
for external reads. 

During a data cycle, 

 

SysAD[22:16]

 

 are the write enables for the seven
individual 

 

Interrupt

 

 register bits (0 = disabled, 1 = enabled) and 

 

SysAD[6:0]

 

are the values to be written into these bits (0 = no interrupt, 1 = interrupt).
This allows any subset of the 

 

Interrupt

 

 register to be set or cleared with a
single write request. Figure 13.1 shows the mechanics of an external write
to the 

 

Interrupt

 

 register.

 

Figure 13.1  Interrupt Register Bits and Enables

3 2 015 46
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SysAD(6:0) Interrupt Value

SysAD(22:16) Write Enables

Interrupt register

See Figure 13.2 
and Figure 13.3.

2

1

0

4

3

5

6



 

R4600/R4700 Processor Interrupts Chapter 13

13 – 2

 

Figure 13.2 shows how the R4600/R4700 interrupts are readable
through the 

 

Cause

 

 register.  The interrupt bits, 

 

Int*(5:0)

 

, are latched into
the internal register by the rising edge of 

 

SClock

 

.
• Bit 5 of the 

 

Interrupt

 

 register in the R4600/R4700 is ORed with the

 

Int*(5)

 

 pin and then multiplexed with the internal 

 

TimerInterrupt

 

signal.  This result is directly readable as bit 15 of the 

 

Cause

 

 register. 
• Bits 4:0 of the 

 

Interrupt

 

 register are bit-wise ORed with the current
value of the interrupt pins 

 

Int*[4:0

 

] and the result is directly readable
as bits 14:10 of the 

 

Cause

 

 register. 

 

Figure 13.2  R4600/R4700 Interrupt Signals

 

Figure 13.3 shows the internal derivation of the 

 

NMI

 

 signal, for the
R4600/R4700 processor.

The 

 

NMI

 

* pin is latched into an internal register by the rising edge of

 

SClock

 

.  Bit 6 of the 

 

Interrupt

 

 register is then ORed with the inverted value
of 

 

NMI*

 

 to form the nonmaskable interrupt. Only the one falling edge of the
latched signal will cause the NMI.

 

Figure 13.3  R4600/R4700 Nonmaskable Interrupt Signal
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Figure 13.4 shows the masking of the R4600/R4700 interrupt signal.
•

 

Cause

 

 register bits 15:8 (IP7-IP0) are AND-ORed with 

 

Status

 

 register
interrupt mask bits 15:8 (IM7-IM0) to mask individual interrupts.

•

 

Status

 

 register bit 0 is a global Interrupt Enable (IE).  It is ANDed with
the output of the AND-OR logic to produce the R4600/R4700 inter-
rupt signal.

 

Figure 13.4  Masking of the R4600/R4700 Interrupts
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Chapter 14

 

Introduction

 

This chapter describes the Error Checking mechanism used in the
R4600/R4700 processor.

 

Error Checking in the Processor

 

Error checking codes allow the processor to detect and sometimes
correct errors made when moving data from one place to another.

Two major types of data errors can occur in data transmission:
• hard errors, which are permanent, arise from broken interconnects,

internal shorts, or open leads
• soft errors, which are transient, are caused by system noise, power

surges, and alpha particles.
Hard errors must be corrected by physical repair of the damaged

equipment and restoration of data from backup.  Soft errors can be
corrected by using error checking and correcting codes.

 

Types of Error Checking

 

The R4600/R4700 uses parity (error detection only).

 

Parity Error Detection

 

Parity is the simplest error detection scheme.  By appending a bit to the
end of an item of data—called a 

 

parity bit

 

—single bit errors can be
detected; however, these errors cannot be corrected. 

There are two types of parity: 
•

 

Odd Parity

 

 adds 1 to any even number of 1s in the data, making the
total number of 1s odd (including the parity bit).

•

 

Even Parity

 

 adds 1 to any odd number of 1s in the data, making the
total number of 1s even (including the parity bit).

Odd and even parity are shown in the example below:

 

Data(3:0) Odd Parity Bit Even Parity Bit

 

0  0  1  0 0 1

The example above shows a single bit in 

 

Data(3:0)

 

 with a value of 1; this
bit is 

 

Data(1)

 

.
• In even parity, the parity bit is set to 1.  This makes 2 (an even num-

ber) the total number of bits with a value of 1.
• Odd parity makes the parity bit a 0 to keep the total number of 1-val-

ue bits an odd number—in the case shown above, the single bit 

 

Da-
ta(1)

 

.
The example below shows odd and even parity bits for various data

values:

 

Data(3:0) Odd Parity Bit Even Parity Bit

 

0  1  1  0 1 0
0  0  0  0 1 0
1  1  1  1 1 0
1  1  0  1 0 1

Parity allows single-bit error detection, but it does not indicate which bit
is in error—for example, suppose an odd-parity value of 00011 arrives.
The last bit is the parity bit, and since odd parity demands an odd number
(1,3,5) of 1s, this data is in error: it has an even number of 1s.  However it
is impossible to tell 

 

which

 

 bit is in error.
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Error Checking Operation

 

The processor verifies data correctness by using parity as it passes data
from/to the system interface to/from the primary caches.

 

System Interface

 

The processor generates correct check bits for doubleword, word, or
partial-word data transmitted to the system interface.  As it checks for data
correctness, the processor passes data check bits from the primary cache,
directly without changing the bits, to the system interface.

The processor does not check data received from the system interface for
external writes.  By setting the 

 

NChck

 

 bit in the data identifier, it is possible
to prevent the processor from checking read response data from the
system interface.  

For cache refill, if the NChck bit is set, the CPU will generally correct
parity before placing data into the cache.  The R4600/R4700 only checks
parity for the first double word returned on a block instruction fetch, that
is, for the double word that contains the instruction that was missed on
in the cache.  This double word is checked just as if it had been read out
of the ICache.  This parity check is done as a byte parity check.  For single
read, and with the NChck bit set, the CPU will check parity for all 64-bit,
even if the transfer size is less than that.

When the R4600/R4700 is checking parity it does not actually
regenerate the word parity, but rather turns the byte parity supplied by the
system into word parity.  It XORS the bits in groups of four.  As a result, if
bad byte parity is supplied by the system, bad word parity will get written
into the cache.  This is done to be consistent with what happens in the
DCache.

The processor does not check addresses received from the system
interface and does not generate correct check bits for addresses
transmitted to the system interface. 

The processor does not contain a data corrector; instead, the processor
takes a cache error exception when it detects an error based on data check
bits.  Software is responsible for error handling.

 

System Interface Command Bus

 

In the R4600/R4700 processor, the system interface command bus has
no parity.  

 

SysCmdP

 

 always drives zero out for CPU valid cycles and is not
checked when the system interface is in slave state.
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Summary of Error Checking Operations

 

Error Checking operations are summarized in Table 14.1 and
Table 14.2.

 

Bus
Uncached
Load

Uncached
Store

Primary  Cache 
Load from System 
Interface

Primary  Cache 
Write to System 
Interface

Cache
Instruction

 

Processor Data From System 
Interface

Not 
Checked

From System Inter-
face unchanged

Checked; Trap 
on Error

Check on 
cache write-
back; Trap on 
Error

System Interface 
Address/Com-
mand and Check 
Bits: Transmit

Not 
Generated

Not 
Generated

Not Generated Not Generated Not Generated

System Interface 
Address/Com-
mand and Check 
Bits: Receive

Not Checked NA Not Checked NA NA

System Interface 
Data

Checked;
Trap on Error

From Pro-
cessor

Checked; Trap on 
Error

From Primary 
Cache

From Primary 
Cache

System Interface 
Data Check Bits

Checked; 
Trap on Error

Generated Checked; Trap on 
Error

From Primary 
Cache

From Primary 
Cache

 

Table 14.1 Error Checking and Correcting Summary for Internal Transactions

 

Bus
Read

Request Write Request

 

Processor Data NA NA

System Interface Address, Command, and Check Bits: Trans-
mit

Generated NA

System Interface Address, Command, and Check Bits: Receive Not Checked Not Checked

System Interface Data From Processor Checked; Trap on Error

System Interface Data Check Bits Generated Checked; Trap on Error

 

Table 14.2 Error Checking and Correcting Summary for External Transactions
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 Appendix A

 

Introduction

 

This appendix provides a detailed description of the operation of each
R4600/R4700 instruction. The instructions are listed in alphabetical
order.

Exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction.  Descriptions of the
immediate cause and manner of handling exceptions are omitted from the
instruction descriptions in this appendix.

Figures at the end of this appendix list the bit encoding for the constant
fields of each instruction, and the bit encoding for each individual
instruction is included with that instruction.

 

Instruction Classes 

 

CPU instructions are divided into the following classes:

 

• Load 

 

and

 

 Store 

 

instructions move data between memory and general
registers.  They are all I-type instructions, since the only addressing
mode supported is 

 

base register + 16-bit immediate offse

 

t. 

 

• Computational 

 

instructions perform arithmetic, logical and shift op-
erations on values in registers.  They occur in both      R-type (both
operands are registers) and I-type (one operand is a 16-bit immediate)
formats. 

 

• Jump 

 

and 

 

Branch 

 

instructions change the control flow of a program.
Jumps are always made to absolute 26-bit word addresses (J-type
format), or register addresses (R-type), for returns and dispatches.
Branches have 16-bit offsets relative to the program counter (I-type).

 

Jump and Link

 

 instructions save their return address in register 

 

31

 

. 

 

• Coprocessor 

 

instructions perform operations in the coprocessors.
Coprocessor loads and stores are I-type.  Coprocessor computational
instructions have coprocessor-dependent formats (see the FPU in-
structions in Appendix B).  Coprocessor zero (CP0) instructions ma-
nipulate the memory management and exception handling facilities of
the processor. 

 

• Special 

 

instructions perform a variety of tasks, including movement
of data between special and general registers, trap, and breakpoint.
They are always R-type. 
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Instruction Formats

 

Every CPU instruction consists of a single word (32 bits) aligned on a
word boundary and the major instruction formats are shown in Figure A.1.

 

Figure A.1  CPU Instruction Formats

 

Instruction Notation Conventions

 

In this appendix, all variable subfields in an instruction format (such
as 

 

rs, rt, immediate

 

, etc.) are shown in lowercase names.
For the sake of clarity, we sometimes use an alias for a variable subfield

in the formats of specific instructions.  For example, we use 

 

rs = base 

 

in
the format for load and store instructions.  Such an alias is always lower
case, since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located
at the end of this Appendix, and the bit encoding also accompanies each
instruction. 

In the instruction descriptions that follow, the 

 

Operation 

 

section
describes the operation performed by each instruction using a high-level
language notation.

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
1110 6 5

rd shamt

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target (source/destination) or branch condition

immediate 16-bit immediate, branch displacement or address 
displacement

target 26-bit jump target address

rd 5-bit destination register specifier

shamt 5-bit shift amount

funct 6-bit function field
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Special symbols used in the notation are described in Table A.1

 

   

Table A.1 CPU Instruction Operation Notations

COC[z] Coprocessor unit z condition signal.
BigEndianMem Big-endian mode as configured at reset (0 → Little, 1 → Big). Specifies the endi-

anness of the memory interface (see LoadMemory and StoreMemory), and the en-
dianness of Kernel and Supervisor mode execution.

ReverseEndian Signal to reverse the endianness of load and store instructions in User mode;
effected by setting the RE bit of the Status register. Thus, ReverseEndian may be
computed as (SR25 and User mode). 

BigEndianCPU The endianness for load and store instructions (0 → Little, 1 → Big). In User
mode, this endianness may be reversed by setting SR25. Thus, BigEndianCPU
may be computed as BigEndianMem XOR ReverseEndian.

LLbit Bit of state to specify synchronization instructions. Set by LL, cleared by ERET and
Invalidate and read by SC. 

T+i: Indicates the time steps between operations. Each of the statements within a time
step are defined to be executed in sequential order (as modified by conditional and
loop constructs). Operations which are marked T+i: are executed at instruction cy-
cle i relative to the start of execution of the instruction. Thus, an instruction which
starts at time j executes operations marked T+i: at time 
i + j. The interpretation of the order of execution between two instructions or two
operations which execute at the same time should be pessimistic; the order is not
defined. 

←
||

Symbol

Assignment.

Bit string concatenation.

+ 2’s complement or floating-point addition.

- 2’s complement or floating-point subtraction.

*
2’s complement or floating-point multiplication.

div 2’s complement integer division.

2’s complement modulo.

2’s complement less than comparison.

mod

<

and Bit-wise logical AND.

or Bit-wise logical OR.

xor Bit-wise logical XOR.

nor Bit-wise logical NOR.

xy

xy:z

Replication of bit value x into a y-bit string. Note: x is always a single-bit 

Selection of bits y through z of bit string x. Little-endian bit notation is always 
used. If y is less than z, this expression is an empty (zero length) bit string.

GPR[x]

CPR[z,x]

CCR[z,x]

Coprocessor unit z, general register x.

Coprocessor unit z, control register x.

Floating-point division./

 Meaning

General-Register x.  The content of GPR[0] is always zero.  Attempts to alter the 
content of GPR[0] have no effect.



 

CPU Instruction Set Details Appendix A

A – 4

 

Instruction Notation Examples

 

The following examples illustrate the application of some of the
instruction notation conventions:

 

  

 

 

 

Load and Store Instructions 

 

In the R4600/R4700, as in the case of processors, the instruction
immediately following a load may use the loaded contents of the register.
In such cases, the hardware 

 

interlocks

 

, requiring additional real cycles, so
scheduling load delay slots is still desirable, although not required for
functional code.

Two special instructions are provided in the R4600/R4700
implementation of the MIPS ISA, Load Linked and Store Conditional.
These instructions are used in carefully coded sequences to provide one of
several synchronization primitives, including test-and-set, bit-level locks,
semaphores, and sequencers/event counts.

In the load and store descriptions, the functions listed in Table A.2 are
used to summarize the handling of virtual addresses and physical
memory.

   

 

Function Meaning

 

AddressTranslation Uses the TLB to find the physical address given the virtual 
address. The function fails and an exception is taken if the 
required translation is not present in the TLB.

LoadMemory Uses the cache and main memory to find the contents of 
the word containing the specified physical address.  The 
low-order two bits of the address and the 

 

Access Type

 

 field 
indicates which of each of the four bytes within the data 
word need to be returned.  If the cache is enabled for this 
access, the entire word is returned and loaded into the 
cache.

StoreMemory Uses the cache, write buffer, and main memory to store 
the word or part of word specified as data in the word con-
taining the specified physical address.  The low-order two 
bits of the address and the 

 

Access Type

 

 field indicates 
which of each of the four bytes within the data word 
should be stored.

 

Table A.2 Load and Store Common Functions

Example #1: 
GPR[rt] ←

Sixteen zero bits are concatenated with an immediate value
(typically 16 bits), and the 32-bit string (with the lower 16 buts
set to zero) is assigned to General-Purpose Register rt.

Example #2:

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

immediate || 016

(immediate15)16 || immediate15..0
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As shown in Table A.2, the 

 

Access Type

 

 field indicates the size of the
data item to be loaded or stored.  Regardless of access type or byte-
numbering order (endianness), the address specifies the byte which has
the smallest byte address in the addressed field.  For a big-endian
machine, this is the leftmost byte and contains the sign for a 2’s
complement number; for a little-endian machine, this is the rightmost
byte.

  

The bytes within the addressed doubleword which are used can be
determined directly from the access type and the three low-order bits of the
address.

 

Jump and Branch Instructions 

 

All jump and branch instructions have an architectural delay of exactly
one instruction.  That is, the instruction immediately following a jump or
branch (that is, occupying the delay slot) is always executed while the
target instruction is being fetched from storage.  A delay slot may not itself
be occupied by a jump or branch instruction; however, this error is not
detected and the results of such an operation are undefined. 

If an exception or interrupt prevents the completion of a legal
instruction during a delay slot, the hardware sets the 

 

EPC

 

 register to point
at the jump or branch instruction that precedes it.  When the code is
restarted, both the jump or branch instructions and the instruction in the
delay slot are reexecuted. 

Because jump and branch instructions may be restarted after
exceptions or interrupts, they must be restartable.  Therefore, when a
jump or branch instruction stores a return link value, register 

 

31

 

 (the
register in which the link is stored) may not be used as a source register. 

Since instructions must be word-aligned, a 

 

Jump Register

 

 

 

or 

 

Jump
and Link Register

 

 

 

instruction must use a register whose two low-order
bits are zero. If these low-order bits are not zero, an address exception will
occur when the jump target instruction is subsequently fetched.

 

Access Type Mnemonic Value Meaning

 

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

 

Table A.3  Access Type Specifications for Loads/Stores
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Coprocessor Instructions 

 

Coprocessors are alternate execution units, which have register files
separate from the CPU.  The R4600/R4700 architecture (MIPS III) provides
three coprocessor units, or classes, and these coprocessors have two
register spaces, each space containing thirty-two registers. These registers
may be either 32-bits or 64-bits wide.

 

•

 

The first space, 

 

coprocessor general 

 

registers

 

, 

 

may be directly loaded
from memory and stored into memory, and their contents may be
transferred between the coprocessor and processor.

 

•

 

The second space, 

 

coprocessor control 

 

registers

 

, 

 

may only have their
contents transferred directly between the coprocessor and the proces-
sor.  Coprocessor instructions may alter registers in either space. 

 

System Control Coprocessor (CP0) Instructions 

 

There are some special limitations imposed on operations involving
CP0 that is incorporated within the CPU. The move to/from coprocessor
instructions are the only valid mechanism for writing to and reading from
the CP0 registers.   

Several CP0 instructions are defined to directly read, write, and probe
TLB entries and to modify the operating modes in preparation for returning
to User mode or interrupt-enabled states.
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Format: 

 

ADD  rd, rs, rt

 

Description: 

 

The contents of general register 

 

rs 

 

and the contents of general register

 

rt 

 

are added to form the result.  The result is placed into general register

 

rd

 

.  The operands must be valid sign-extended, 32-bit values. 
An overflow exception occurs if the carries out of bits 30 and 31 differ

(2’s complement overflow). The destination register 

 

rd

 

 is not modified when
an integer overflow exception occurs.

 

Operation: 

Exceptions: 

 

Integer overflow exception 

ADDAdd

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ADD

T: temp ← GPR[rs] + GPR[rt]

GPR[rd] ← (temp31)32 || temp31..0
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Format: 
ADDI  rt, rs, immediate   

Description: 
The 16-bit immediate is sign-extended and added to the contents of

general register rs to form the result. The result is placed into general
register rt. The rs operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2’s
complement overflow). The destination register rt is not modified when an
integer overflow exception occurs.

Operation:

 Exceptions: 
Integer overflow exception   

ADDI Add Immediate

31 2526 2021 1516 0

ADDI rs rt immediate

6 5 5 16
0 0 1 0 0 0  

ADDI

T: temp ← GPR[rs] + (immediate15)48 || immediate15..0

GPR[rt] ← (temp31)32 || temp31..0
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Format:
ADDIU  rt, rs, immediate

Description: 
The 16-bit immediate is sign-extended and added to the contents of

general register rs to form the result. The result is placed into general
register rt. No integer overflow exception occurs under any circumstances.
The rs operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction
is that ADDIU never causes an overflow exception.

Operation: 

Exceptions: 
None   

ADDIU   Add Immediate Unsigned

31 2526 2021 1516 0

ADDIU rs rt immediate

6 5 5 16
0 0 1 0 0 1

ADDIU

T: temp ← GPR[rs] + (immediate15)48 || immediate15..0

GPR[rt] ← (temp31)32 || temp31..0
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Format:
ADDU  rd, rs, rt 

Description: 
The contents of general register rs and the contents of general register

rt are added to form the result. The result is placed into general register rd.
No overflow exception occurs under any circumstances. The source
operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction
is that ADDU never causes an overflow exception.

Operation: 

Exceptions: 
None   

ADDU Add Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

ADDU

T: temp ← GPR[rs] + GPR[rt]

GPR[rd] ← (temp31)32 || temp31..0
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Format: 
AND  rd, rs, rt

Description: 
The contents of general register rs are combined with the contents of

general register rt in a bit-wise logical AND operation. The result is placed
into general register rd. 

Operation:      

Exceptions: 
None 

ANDAnd

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 AND

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

AND

T: GPR[rd] ← GPR[rs] and GPR[rt]
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Format: 
ANDI  rt, rs, immediate 

Description: 
The 16-bit immediate is zero-extended and combined with the contents

of general register rs in a bit-wise logical AND operation. The result is
placed into general register rt. 

Operation: 

 Exceptions: 
None   

ANDI And Immediate

31 2526 2021 1516 0

ANDI rs rt immediate

6 5 5 16
0 0 1 1 0 0

ANDI

T: GPR[rt] ← 048 || (immediate and GPR[rs]15..0)
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Format: 
BCzF  offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  If coprocessor z’s condition signal (CpCond), as
sampled during the previous instruction, is false, then the program
branches to the target address with a delay of one instruction. 

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation: 

Note: *See the table “Opcode Bit Encoding” on next page, or “CPU
Instruction Opcode Bit Encoding” at the end of Appendix A.

Exceptions: 
Coprocessor unusable exception

Opcode Bit Encoding:   

BCzFBranch On Coprocessor z False

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCF

21  20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 0 0

BCzF

T–1: condition ← not COC[z]
T: target ← (offset15)46 || offset || 02 
T+1: if condition then

PC ← PC + target
endif

BCzF
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0F 0 0 0 01

24 23 22 21

Coprocessor Unit Number
Branch conditionBC sub-opcode

20 19 18 17 16

0 0 0 0 0

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1F 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 0

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2F 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 0

Opcode
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Format: 
BCzFL  offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of coprocessor z’s condition signal, as
sampled during the previous instruction, is false, the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

NOTE:  *See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

Operation:

Exceptions: 
Coprocessor unusable exception

Opcode Bit Encoding:

BCzFL

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCFL

21  20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 1 0

BCzFL Branch On Coprocessor z
False Likely

T–1: condition ← not  COC[z]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

BCzFL
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0FL 0 0 0 01

24 23 22 21

Branch conditionBC sub-opcode

20 19 18 17 16

0 0 0 1 0

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1FL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 0

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2FL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 0

Coprocessor Unit Number

Opcode
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Format: 
BCzT  offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  If the coprocessor z’s condition signal (CpCond) is
true, then the program branches to the target address, with a delay of one
instruction. 

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation: 

NOTE:  *See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

Exceptions: 
Coprocessor unusable exception 

Opcode Bit Encoding:

BCzTBranch On Coprocessor z True

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCT

21  20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 0 1

BCzT

T–1: condition ← COC[z]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
PC ← PC + target

endif

BCzT
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0T 0 0 0 01

24 23 22 21

Branch conditionBC sub-opcode

20 19 18 17 16

0 0 0 0 1

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1T 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 1

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2T 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 1

Coprocessor Unit Number
Opcode



CPU Instruction Set Details Appendix A

A – 16

 

Format: 
BCzTL   offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of coprocessor z’s condition signal, as
sampled during the previous instruction, is true, the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation:

NOTE:  *See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

Exceptions: 
Coprocessor unusable exception

Opcode Bit Encoding:

BCzTLBranch On Coprocessor z

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCTL

21  20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 1 1

BCzTL True Likely

T–1: condition ← COC[z]
T: target ← (offset15)46|| offset || 02

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

BCzTL
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0TL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 1

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1TL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 1

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2TL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 1

Branch conditionBC sub-opcode
Coprocessor Unit Number

Opcode
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Format:
BEQ  rs, rt, offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, then the
program branches to the target address, with a delay of one instruction. 

Operation: 

Exceptions: 
None 

BEQBranch On EqualBEQ
31 2526 2021 1516 0

BEQ rs rt offset

6 5 5 16
0 0 0 1 0 0

T: target ← (offset15)46 || offset || 02 

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then

PC ← PC + target
endif
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Format:
BEQL  rs, rt, offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, the target
address is branched to, with a delay of one instruction. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation: 

Exceptions: 
None 

BEQL Branch On Equal Likely

31 2526 2021 1516 0

BEQL rs rt offset

6 5 5 16
0 1 0 1 0 0

BEQL

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs] = GPR[rt])

T+1: if condition then
PC ← PC + target

else
 NullifyCurrentInstruction

endif
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Format:
BGEZ  rs, offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction. 

Operation:  

Exceptions: 
None 

BGEZOr Equal To Zero
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZ offset

6 5 5 16
0 0 0 0 0 1 0 0 0 0 1

BGEZ

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs]63 = 0)

T+1: if condition then
PC ← PC + target

endif
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Format: 
BGEZAL rs, offset

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31.  If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction. 

General register rs may not be general register 31, because such an
instruction is not restartable.  An attempt to execute this instruction is not
trapped, however. 

Operation: 

Exceptions: 
None   

BGEZAL Or Equal To Zero And Link
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZAL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 0 1

BGEZAL

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs]63 = 0)
GPR[31] ← PC + 8

T+1: if condition then
 PC ← PC + target

endif
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Format:
BGEZALL rs, offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31.  If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction.  General register rs may not
be general register 31, because such an instruction is not restartable. An
attempt to execute this instruction is not trapped, however.  If the
conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Operation: 

Exceptions: 
None

BGEZALLOr Equal To Zero
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZALL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 1 1

BGEZALL
And Link Likely

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs]63 = 0)
GPR[31] ← PC + 8

T+1: if condition then
 PC ← PC + target

else
 NullifyCurrentInstruction

endif
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Format: 
BGEZL rs, offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction.  If the conditional branch is not taken, the instruction in
the branch delay slot is nullified.

Operation: 

Exceptions: 
None

BGEZL Than Or Equal To Zero Likely
Branch On Greater

31 2526 2021 1516 0

REGIMM rs BGEZL offset

6 5 5 16
0 0 0 0 0 1 0 0 0 1 1

BGEZL

T: target ← (offset15)46 || offset || 02 
 condition ← (GPR[rs]63 = 0)

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif
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Format: 
BGTZ rs, offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  The contents of general register rs are compared to
zero.  If the contents of general register rs have the sign bit cleared and are
not equal to zero, then the program branches to the target address, with a
delay of one instruction.

Operation:  

Exceptions: 
None 

BGTZBranch On Greater Than Zero

31 2526 2021 1516 0

BGTZ rs 0 offset

6 5 5 16
0 0 0 1 1 1 0 0 0 0 0

BGTZ

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs]63 = 0) and  (GPR[rs] ≠ 064)

T+1:  if condition then
PC ← PC + target
endif
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Format: 
BGTZL rs, offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  The contents of general register rs are compared to
zero.  If the contents of general register rs have the sign bit cleared and are
not equal to zero, then the program branches to the target address, with a
delay of one instruction.  If the conditional branch is not taken, the
instruction in the branch delay slot is nullified.

Operation: 

Exceptions: 
None

BGTZL Than Zero Likely
Branch On Greater 

31 2526 2021 1516 0

BGTZL rs 0 offset

6 5 5 16
0 1 0 1 1 1 0 0 0 0 0

BGTZL

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs]63 = 0) and  (GPR[rs] ≠ 064)

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif
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Format: 
BLEZ rs, offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  The contents of general register rs are compared to
zero.  If the contents of general register rs have the sign bit set, or are equal
to zero, then the program branches to the target address, with a delay of
one instruction.

Operation: 

Exceptions: 
None 

BLEZBranch on Less Than

31 2526 2021 1516 0

BLEZ rs 0 offset

6 5 5 16

Or Equal To Zero

0 0 0 1 1 0 0 0 0 0 0 

BLEZ

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs]63 = 1) and  (GPR[rs] = 064)

T+1: if condition then
PC ← PC + target

 endif
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Format: 
BLEZL rs, offset 

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  The contents of general register rs is compared to zero.
If the contents of general register rs have the sign bit set, or are equal to
zero, then the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Operation:

Exceptions: 
None

BLEZL Branch on Less Than

31 2526 2021 1516 0

BLEZL rs 0 offset

6 5 5 16

Or Equal To Zero Likely

0 1 0 1 1 0 0 0 0 0 0 

BLEZL

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs]63 = 1) and  (GPR[rs] = 064)

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif
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Format: 
BLTZ rs, offset

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  If the contents of general register rs have the sign bit
set, then the program branches to the target address, with a delay of one
instruction.

 Operation:  

Exceptions: 
None 

BLTZBranch On Less Than Zero

31 2526 2021 1516 0

REGIMM rs BLTZ offset

6 5 5 16
0 0 0 0 0 1 0 0 0 0 0 

BLTZ

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs]63 = 1)

T+1: if condition then
PC ← PC + target

endif
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Format: 
BLTZAL rs, offset

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31.  If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction. 

General register rs may not be general register 31, because such an
instruction is not restartable.  An attempt to execute this instruction with
register 31 specified as rs is not trapped, however. 

Operation: 

Exceptions:
None 

BLTZAL Than Zero And Link
Branch On Less

31 2526 2021 1516 0

REGIMM rs BLTZAL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 0 0

BLTZAL

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs]63 = 1)
GPR[31] ← PC + 8

T+1: if condition then
 PC ← PC + target

endif
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Format: 
BLTZALL rs, offset

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31.  If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction. 

General register rs may not be general register 31, because such an
instruction is not restartable.  An attempt to execute this instruction with
register 31 specified as rs is not trapped, however.  If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation: 

Exceptions: 
None

BLTZALLThan Zero And Link Likely
Branch On Less

31 2526 2021 1516 0

REGIMM rs BLTZALL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 1 0

BLTZALL

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs]63 = 1)
GPR[31] ← PC + 8

T+1: if condition then
 PC ← PC + target

else
NullifyCurrentInstruction

endif
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Format: 
BLTZ rs, offset

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  If the contents of general register rs have the sign bit
set, then the program branches to the target address, with a delay of one
instruction.   If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

 Operation: 

Exceptions: 
None 

BLTZL Branch On Less Than Zero Likely

31 2526 2021 1516 0

REGIMM rs BLTZL offset

6 5 5 16
0 0 0 0 0 1 0 0 0 1 0

BLTZL

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs]63 = 1)

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif
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Format: 
BNE rs, rt, offset

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  The contents of general register rs and the contents of
general register rt are compared.  If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction. 

Operation: 

Exceptions: 
None 

BNEBranch On Not Equal

31 2526 2021 1516 0

BNE rs rt offset

6 5 5 16
0 0 0 1 0 1

BNE

T:  target ←  (offset15)46 || offset || 02 
condition ←  (GPR[rs] ≠ GPR[rt])

T+1:  if condition then
PC ← PC + target

endif
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Format: 
BNEL rs, rt, offset

Description: 
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.  The contents of general register rs and the contents of
general register rt are compared.  If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction. 

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Operation: 

Exceptions: 
None 

BNEL Branch On Not Equal Likely

31 2526 2021 1516 0

BNEL rs rt offset

6 5 5 16
0 1 0 1 0 1

BNEL

T: target ← (offset15)46 || offset || 02 
condition ← (GPR[rs] ≠ GPR[rt])

T+1: if condition then
 PC ← PC + target

else
 NullifyCurrentInstruction

endif
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Format: 
BREAK

Description: 
A breakpoint trap occurs, immediately and unconditionally

transferring control to the exception handler. 
The code field is available for use as software parameters, but is

retrieved by the exception handler only by loading the contents of the
memory word containing the instruction. 

Operation: 

Exceptions:   
Breakpoint exception 

BREAKBreakpoint

31 2526

SPECIAL

6

0

BREAKcode

6 5

620
0 0 0 0 0 0 0 0 1 1 0 1

BREAK

T:      BreakpointException
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Format: 
CACHE op, offset(base)

Description: 
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address.  The virtual address is translated
to a physical address using the TLB, and the 5-bit sub-opcode specifies a
cache operation for that address.

If CP0 is not usable (User or Supervisor mode) the CP0 enable bit in the
Status register is clear, and a coprocessor unusable exception is taken.
The operation of this instruction on any operation/cache combination not
listed below is undefined. The operation of this instruction on uncached
addresses is also undefined.

The R4600/R4700 uses only the tag comparisons, not the valid bits, to
choose which data it supplies to the instruction unit.  This makes it
important that the tags of the A and B sets are never the same.

The Index operation uses part of the virtual address to specify a cache
block, with vAddr13 selecting the set to access.

For a primary cache of 16KB with 32 bytes per tag, vAddr12..5 specifies
the block.

Index Load Tag also uses vAddr4..3 to select the doubleword for reading
parity.  When the CE bit of the Status register is set, Hit WriteBack, Hit
WriteBack Invalidate, Index WriteBack Invalidate, and Fill also use
vAddr4..3 to select the doubleword that has its parity modified. This
operation is performed unconditionally.

The Hit operation accesses the specified cache as normal data
references, and performs the specified operation if the cache block
contains valid data with the specified physical address (a hit).  If both sets
are invalid or contain different addresses (a miss), no operation is
performed.

Write back from a primary cache goes to memory.  The address to be
written is specified by the cache tag and not the translated physical
address.

TLB Refill and TLB Invalid exceptions can occur on any operation.  For
Index operations (where the physical address is used to index the cache
but need not match the cache tag) unmapped addresses may be used to
avoid TLB exceptions.  This operation never causes TLB Modified or Virtual
Coherency exceptions. 

Bits 17..16 of the instruction specify the cache as follows:

Code Name Cache

  0   I primary instruction

  1  D primary data

2 - 3 NA Undefined

CACHE Cache

31 2526 2021 1516 0

CACHE base op offset

6 5 5 16
1 0 1 1 1 1

CACHE
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Bits 20..18 (this value is listed under the Code column) of the
instruction specify the operation as follows: 

Operation:

Exceptions:
Coprocessor unusable exception

Code Caches Name Operation

0 I Index Invalidate Set the cache state of the cache block to Invalid.  
Index_Invalidate_I writes the physical address of the 
cache op into the tag when it clears the valid bit, which 
is different from the R4000.

0 D Index Write-
Back Invalidate

Examine the cache state and W bit of the primary data 
cache block at the index specified by the virtual 
address. If the state is not Invalid and the W bit is set, 
then write back the block to memory. The address to 
write is taken from the primary cache tag. Set cache 
state of primary cache block to Invalid.

1 I, D Index Load Tag Read the tag for the cache block at the specified index 
and place it into the TagLo CP0 registers, ignoring par-
ity errors. Also load the data parity bits into the ECC 
register.

2 I, D Index Store Tag Write the tag for the cache block at the specified index 
from the TagLo and TagHi CP0 registers.

3 D Create Dirty 
Exclusive

This operation is used to avoid loading data needlessly 
from memory when writing new contents into an entire 
cache block. If the cache block does not contain the 
specified address, and the block is dirty, write it back 
to the memory. In all cases, set the cache block tag to 
the specified physical address, set the cache state to 
Dirty Exclusive.

4 I, D Hit Invalidate If the cache block contains the specified address, mark 
the cache block invalid.

5 D Hit WriteBack 
Invalidate

If the cache block contains the specified address, write 
back the data if it is dirty, and mark the cache block 
invalid.

5 I Fill Fill the primary instruction cache block from memory. 
If the CE bit of the Status register is set, the contents of 
the ECC register is used instead of the computed parity 
bits for addressed doubleword when written to the 
instruction cache. Uses bit 13 to pick the set.

6 D Hit WriteBack If the cache block contains the specified address, and 
the W bit is set, write back the data to memory and 
clear the W bit.

6 I Hit WriteBack If the cache block contains the specified address, write 
back the data unconditionally.

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)
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Format: 
CFCz rt, rd

Description: 
The contents of coprocessor control register rd of coprocessor unit z are

loaded into general register rt.
This instruction is not valid for CP0.

Operation: 

 Exceptions: 
Coprocessor unusable exception

*Opcode Bit Encoding:

CoprocessorCFCz

11

Move Control From

31 2526 2021 1516

COPz CF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 0 1 0 0 0 0 0 0

CFCz

T: data ← (CCR[z,rd]31)32 || CCR[z,rd]
T+1: GPR[rt]  ← data

CFCz
0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

CFC1 0 0 1 00

24 23 22 21

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

CFC2 0 0 1 00

24 23 22 21

Coprocessor Unit Number
Coprocessor SuboperationOpcode
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Format:
COPz cofun

Description: 
A coprocessor operation is performed.  The operation may specify and

reference internal coprocessor registers, and may change the state of the
coprocessor condition line, but does not modify state within the processor
or the cache/memory system.  Details of coprocessor operations are
contained in Appendix B.

Operation: 

Exceptions: 
Coprocessor unusable exception
Coprocessor interrupt or Floating-Point Exception

*Opcode Bit Encoding:  

COPzCoprocessor Operation

31 25   2426

COPz

6

0

cofun

251

CO
0 1 0 0 x x* 1

COPz

T: CoprocessorOperation (z, cofun)

COPz
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

C0P0 1

CO sub-opcode (see end of Appendix A)

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

C0P1 1

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

C0P2 1

Coprocessor Unit NumberOpcode
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Format:
CTCz rt, rd

Description: 
The contents of general register rt are loaded into control register rd of

coprocessor unit z.
This instruction is not valid for CP0.

Operation: 

Exceptions: 
Coprocessor unusable

NOTE:  *See “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.

CTCz

11

Move Control to Coprocessor

31 2526 2021 1516

COPz CT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x * 0 0 1 1 0 0 0 0  0 0 0 0  0 0 0 0

CTCz

T:         data ← GPR[rt]
T + 1:  CCR[z,rd]  ← data
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Format: 
DADD rd, rs, rt

Description: 
The contents of general register rs and the contents of general register

rt are added to form the result.  The result is placed into general register rd. 
An overflow exception occurs if the carries out of bits 62 and 63 differ

(2’s complement overflow).  The destination register rd is not modified
when an integer overflow exception occurs.

Operation: 

Exceptions: 
Integer overflow exception

DADDDoubleword Add

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0

DADD

T: GPR[rd] ←GPR[rs] + GPR[rt]
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Format: 
DADDI rt, rs, immediate   

Description: 
The 16-bit immediate is sign-extended and added to the contents of

general register rs to form the result.  The result is placed into general
register rt. 

An overflow exception occurs if carries out of bits 62 and 63 differ (2’s
complement overflow).  The destination register rt is not modified when an
integer overflow exception occurs.

Operation:

 Exceptions:  
Integer overflow exception 

DADDI Doubleword Add Immediate

31 2526 2021 1516 0

DADDI rs rt immediate

6 5 5 16
0 1 1 0 0 0  

DADDI

T:      GPR [rt] ← GPR[rs] + (immediate15)48 || immediate15..0
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Format:
DADDIU rt, rs, immediate

Description: 
The 16-bit immediate is sign-extended and added to the contents of

general register rs to form the result. The result is placed into general
register rt. No integer overflow exception occurs under any circumstances. 

The only difference between this instruction and the DADDI
instruction is that DADDIU never causes an overflow exception.

Operation: 

Exceptions: 
None

DADDIUDoubleword Add 

31 2526 2021 1516 0

DADDIU rs rt immediate

6 5 5 16
0 1 1 0 0 1

DADDIU Immediate Unsigned

T:      GPR [rt] ← GPR[rs] + (immediate15)48 || immediate15..0



CPU Instruction Set Details Appendix A

A – 42

Format:
DADDU rd, rs, rt 

Description: 
The contents of general register rs and the contents of general register

rt are added to form the result. The result is placed into general register rd. 
No overflow exception occurs under any circumstances. 
The only difference between this instruction and the DADD instruction

is that DADDU never causes an overflow exception.

Operation: 

Exceptions: 
None

DADDU Doubleword Add Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1

DADDU

T: GPR[rd] ←GPR[rs] + GPR[rt]
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Format: 
DDIV rs, rt 

Description: 
The contents of general register rs are divided by the contents of

general register rt, treating both operands as 2’s complement values.  No
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to
check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result
is loaded into special register LO, and the remainder word of the double
result is loaded into special register HI. 

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined.  Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

Operation: 

 Exceptions: 
None

DDIVDoubleword Divide

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIV
0 0 0 0 0 0 0 0   0 0 0 0  0 0 0 0 0 1 1 1 1 0

DDIV

T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: LO ← GPR[rs] div GPR[rt]
HI ← GPR[rs] mod GPR[rt]
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Format: 
DDIVU rs, rt    

Description: 
The contents of general register rs are divided by the contents of

general register rt, treating both operands as unsigned values.  No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero. 

This instruction is typically followed by additional instructions to
check for a zero divisor.

When the operation completes, the quotient word of the double result
is loaded into special register LO, and the remainder word of the double
result is loaded into special register HI. 

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined.  Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

Operation: 

Exceptions: 
None

DDIVU Doubleword Divide Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIVU
0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 1 1 1 1

DDIVU

T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: LO ← (0 || GPR[rs]) div (0 || GPR[rt])
HI ← (0 || GPR[rs]) mod  (0 || GPR[rt])
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Format: 
DIV rs, rt 

Description: 
The contents of general register rs are divided by the contents of

general register rt, treating both operands as 2’s complement values.   No
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

The operands must be valid sign-extended, 32-bit values.
This instruction is typically followed by additional instructions to

check for a zero divisor and for overflow.
When the operation completes, the quotient word of the double result

is loaded into special register LO, and the remainder word of the double
result is loaded into special register HI. 

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined.  Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

Operation: 

 Exceptions: 
None

DIVDivide

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIV
0 0 0 0 0 0 0 0   0 0 0 0  0 0 0 0 0 1 1 0 1 0

DIV

T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: q ← GPR[rs]31..0 div GPR[rt]31..0
r    ← GPR[rs]31..0 mod GPR[rt]31..0
LO    ← (q31)32 || q31..0
HI    ← (r31)32  || r31..0
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Format: 
DIVU rs, rt    

Description: 
The contents of general register rs are divided by the contents of

general register rt, treating both operands as unsigned values.  No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero. 

The operands must be valid sign-extended, 32-bit values.
This instruction is typically followed by additional instructions to

check for a zero divisor.
When the operation completes, the quotient word of the double result

is loaded into special register LO, and the remainder word of the double
result is loaded into special register HI. 

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined.  Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

Operation: 

Exceptions: 
None

DIVU Divide Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIVU
0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 1 0 1 1

DIVU

T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: q ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)
r    ← (0 || GPR[rs]31..0)  mod (0 || GPR[rt]31..0)
LO ← (q31)32 || q31..0
HI ← (r31)32  || r31..0
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Format: 
DMFC0 rt, rd

Description: 
The contents of coprocessor register rd of the CP0 are loaded into

general register rt. 
This operation is defined in kernel mode regardless of the setting of the

Status.KX bit. Execution of this instruction with in supervisor mode with
Status.SX = 0 or in user mode with UX = 0, causes a reserved instruction
exception. All 64-bits of the general register destination are written from
the coprocessor register source. The operation of DMFC0 on a 32-bit
coprocessor 0 register is undefined.

Operation: 

 Exceptions: 
Coprocessor unusable exception 
Reserved instruction exception for supervisor mode with Status.SX = 0

or user mode with Status.UX = 0.

DMFC0 Doubleword Move From

rd

11 10

5

31 2526 2021 1516 0

COP0 DMF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 1 0 0 0  0 0 0 0  0 0 00

DMFC0

 T: data ←CPR[0,rd] 

T+1: GPR[rt] ← data
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Format: 
DMTC0 rt, rd

Description: 
The contents of general register rt are loaded into coprocessor register

rd of the CP0.
This operation is defined in kernel mode regardless of the setting of the

Status.KX bit. Execution of this instruction with in supervisor mode with
Status.SX = 0 or in user mode with UX = 0, causes a reserved instruction
exception.

All 64-bits of the coprocessor 0 register are written from the general
register source.  The operation of DMTC0 on a 32-bit coprocessor 0 register
is undefined.

Because the state of the virtual address translation system may be
altered by this instruction, the operation of load instructions, store
instructions, and TLB operations immediately prior to and after this
instruction are undefined.

Operation: 

Exceptions: 
Reserved instruction exception for supervisor mode with Status.SX = 0

or user mode with Status.UX = 0.

DMTC0 Doubleword Move To

rd

11 10

5

31 2526 2021 1516 0

COP0 DMT rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 1 0 1 0 0 0   0 0 0 0  0 0 00

DMTC0

 T: data ← GPR[rt] 

T+1: CPR[0,rd] ← data
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Format: 
DMULT rs, rt 

Description: 
The contents of general registers rs and rt are multiplied, treating both

operands as 2’s complement values.  No integer overflow exception occurs
under any circumstances.

When the operation completes, the low-order word of the double result
is loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined.  Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.

Operation: 

Exceptions: 
None

DMULT Doubleword Multiply

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULT
0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0 0 1 1 1 0 0

DMULT

T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← GPR[rs] * GPR[rt]
LO ← t63..0
H I ← t127..64
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Format: 
DMULTU rs, rt   

Description: 
The contents of general register rs and the contents of general register

rt are multiplied, treating both operands as unsigned values.  No overflow
exception occurs under any circumstances.

When the operation completes, the low-order word of the double result
is loaded into special register LO, and the high-order word of the double
result is loaded into special register HI. 

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two instructions.

Operation: 

Exceptions: 
None

DMULTUDoubleword Multiply 

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULTU
0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0 0 1 1 1 0 1

DMULTU Unsigned

T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← (0 || GPR[rs]) * (0 || GPR[rt])
LO ← t63..0
HI ←t127..64
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Format: 
DSLL rd, rt, sa 

Description: 
The contents of general register rt are shifted left by sa bits, inserting

zeros into the low-order bits. The result is placed in register rd. 

Operation: 

Exceptions: 
None

DSLLDoubleword Shift Left Logical

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 0 0

DSLL

0 0 0 0 0

T: s ← 0 || sa

GPR[rd] ← GPR[rt](63–s)..0 || 0s
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Format:
DSLLV rd, rt, rs 

Description: 
The contents of general register rt are shifted left by the number of bits

specified by the low-order six bits contained in general register rs, inserting
zeros into the low-order bits.  The result is placed in register rd. 

Operation: 

Exceptions: 
None

DSLLV Doubleword Shift Left 

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 1 0 1 0 00 0 0 0 0 

DSLLVLogical Variable

T: s ← GPR[rs]5..0

GPR[rd]← GPR[rt](63–s)..0 || 0s
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Format:
DSLL32 rd, rt, sa 

Description: 
The contents of general register rt are shifted left by 32+sa bits,

inserting zeros into the low-order bits.  The result is placed in register rd. 

Operation: 

Exceptions: 
None

DSLL32 Doubleword Shift Left 

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSLL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 0 0

DSLL32Logical + 32

0
0 0 0 0 0

T: s ← 1 || sa

GPR[rd]← GPR[rt](63–s)..0 || 0s
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Format: 
DSRA rd, rt, sa 

Description: 
The contents of general register rt are shifted right by sa bits, sign-

extending the high-order bits.  The result is placed in register rd. 

Operation: 

 Exceptions: 
None

DSRADoubleword

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1

DSRA Shift Right Arithmetic

T: s ← 0 || sa

GPR[rd] ← (GPR[rt]63)s || GPR[rt] 63..s



CPU Instruction Set Details Appendix A

A – 55

 

Format: 
DSRAV rd, rt, rs   

Description: 
The contents of general register rt are shifted right by the number of

bits specified by the low-order six bits of general register rs, sign-extending
the high-order bits.  The result is placed in register rd. 

Operation: 

Exceptions: 
None

DSRAV Doubleword Shift Right 

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

DSRAVArithmetic Variable

T: s ← GPR[rs]5..0

GPR[rd] ← (GPR[rt]63)s || GPR[rt]63..s
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Format: 
DSRA32 rd, rt, sa 

Description: 
The contents of general register rt are shifted right by 32+sa bits, sign-

extending the high-order bits.  The result is placed in register rd. 

Operation: 

 Exceptions: 
None

DSRA32Doubleword Shift Right 

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

DSRA32 Arithmetic + 32

T: s ←1 || sa

GPR[rd] ← (GPR[rt]63)s || GPR[rt] 63..s
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Format: 
DSRL rd, rt, sa   

Description: 
The contents of general register rt are shifted right by sa bits, inserting

zeros into the high-order bits.  The result is placed in register rd. 

Operation: 

Exceptions: 
None

DSRLDoubleword

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 1 0

DSRL

0
0 0 0 0 0

Shift Right Logical

T: s ← 0 || sa

GPR[rd] ← 0s || GPR[rt]63..s



CPU Instruction Set Details Appendix A

A – 58

 

Format: 
DSRLV rd, rt, rs   

Description: 
The contents of general register rt are shifted right by the number of

bits specified by the low-order six bits of general register rs, inserting zeros
into the high-order bits.  The result is placed in register rd. 

Operation: 

Exceptions: 
None

DSRLV Doubleword Shift Right 

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 DSRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

DSRLVLogical Variable

rs

T: s ← GPR[rs]5..0

GPR[rd] ←  0s  || GPR[rt]63..s
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Format: 
DSRL32 rd, rt, sa   

Description: 
The contents of general register rt are shifted right by 32+sa bits,

inserting zeros into the high-order bits.  The result is placed in register rd. 

Operation: 

Exceptions: 
None

DSRL32Doubleword Shift Right 

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 1 0

DSRL32 Logical + 32

0
0 0 0 0 0

T: s ← 1 || sa

GPR[rd] ← 0s || GPR[rt]63..s
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Format: 
DSUB rd, rs, rt     

Description: 
The contents of general register rt are subtracted from the contents of

general register rs to form a result.  The result is placed into general
register rd. 

The only difference between this instruction and the DSUBU
instruction is that DSUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 62
and 63 differ (2’s complement overflow).  The destination register rd is not
modified when an integer overflow exception occurs.

Operation: 

Exceptions: 
Integer overflow exception

DSUB DSUBDoubleword Subtract

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

T: GPR[rd] ← GPR[rs] – GPR[rt]
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Format: 
DSUBU rd, rs, rt    

Description: 
The contents of general register rt are subtracted from the contents of

general register rs to form a result.  The result is placed into general
register rd. 

The only difference between this instruction and the DSUB instruction
is that DSUBU never traps on overflow.  No integer overflow exception
occurs under any circumstances. 

Operation: 

Exceptions: 
None

DSUBU Doubleword Subtract Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

DSUBU

T: GPR[rd] ← GPR[rs] – GPR[rt]
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Format: 
ERET

Description: 
ERET is the R4600 instruction for returning from an interrupt,

exception, or error trap.  Unlike a branch or jump instruction, ERET does
not execute the next instruction.

ERET must not itself be placed in a branch delay slot.
If the processor is servicing an error trap (SR2 = 1), then load the PC

from the ErrorEPC and clear the ERL bit of the Status register (SR2).
Otherwise (SR2 = 0), load the PC from the EPC, and clear the EXL bit of the
Status register (SR1).

An ERET executed between a LL and SC also causes the SC to fail.

Operation:

Exceptions: 
Coprocessor unusable exception

ERETException Return

0

6

6  531 25 2426

COP0

6

0

ERET

191

CO
0 1 0 0 0 0 0 1 1 0 0 01 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0

ERET

T: if SR2 = 1 then
 PC ←  ErrorEPC

SR ← SR31..3 || 0 || SR1..0
else

PC ←  EPC
SR ← SR31..2 || 0 || SR0

endif
LLbit ←  0
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Format: 
J target   

Description: 
The 26-bit target address is shifted left two bits and combined with the

high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction. 

Operation: 

Exceptions: 
None 

J Jump

31 2526

J

6

0

target

26
0 0 0 0 1 0

J

T: temp ← target 
T+1: PC ← PC63..28 || temp || 02
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Format: 
JAL target 

Description: 
The 26-bit target address is shifted left two bits and combined with the

high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction. The address of the instruction after the delay slot is placed in
the link register, r31. 

Operation: 

Exceptions: 
None

JAL Jump And Link

31 2526

JAL

6

0

target

26
0 0 0 0 1 1

JAL

T: temp ← target
GPR[31] ← PC + 8

T+1: PC ← PC 63..28 || temp || 02
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Format: 
JALR rs 
JALR rd, rs

Description: 
The program unconditionally jumps to the address contained in

general register rs, with a delay of one instruction.  The address of the
instruction after the delay slot is placed in general register rd.   The default
value of rd, if omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an
instruction does not have the same effect when re-executed.  However, an
attempt to execute this instruction is not trapped, and the result of
executing such an instruction is undefined. 

Since instructions must be word-aligned, a Jump and Link Register
instruction must specify a target register (rs) whose two low-order bits are
zero. If these low-order bits are not zero, an address exception will occur
when the jump target instruction is subsequently fetched.

Operation: 

Exceptions: 
None 

JALR Jump And Link Register

31 2526 2021 1516

SPECIAL rs 0

6 5 5

rd 0 JALR

5 5 6

11 10 6 5 0

0 0 1 0 0 10 0 0 0 00 0 0 0 00 0 0 0 0 0

JALR

T: temp ← GPR [rs]
GPR[rd] ← PC + 8

T+1: PC ← temp
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Format: 
JR  rs 

Description:    
The program unconditionally jumps to the address contained in

general register rs, with a delay of one instruction.
Since instructions must be word-aligned, a Jump Register instruction

must specify a target register (rs) whose two low-order bits are zero. If these
low-order bits are not zero, an address exception will occur when the jump
target instruction is subsequently fetched.

Operation: 

Exceptions: 
None

JRJump Register

21 2031 2526

SPECIAL

6

0

JRrs 0

6 5

5 15 6
0 0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 0 0 1 0 0 0

JR

T: temp ← GPR[rs]
T+1: PC ← temp



CPU Instruction Set Details Appendix A

A – 67

 

Format: 
LB rt, offset(base) 

Description:    
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are sign-extended and
loaded into general register rt. 

Operation: 

 Exceptions: 
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LB Load Byte

31 2526 2021 1516 0

LB base rt offset

6 5 5 16
1 0 0 0 0 0

LB

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor BigEndianCPU3

GPR[rt] ← (mem7+8*byte)56  ||  mem7+8*byte..8*byte

pAddr ←  pAddrPSIZE – 1 .. 3 || (pAddr2..0 xor ReverseEndian3)
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Format:
LBU rt, offset(base) 

Description:   
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are zero-extended and
loaded into general register rt. 

Operation: 

Exceptions: 
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception   

LBULoad Byte Unsigned

31 2526 2021 1516 0

LBU base rt offset

6 5 5 16
1 0 0 1 0 0

LBU

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1..3 || (pAddr2..0 xor ReverseEndian3)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor BigEndianCPU3

GPR[rt] ← 056 || mem7+8* byte..8* byte
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Format:
LD rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the 64-bit
doubleword at the memory location specified by the effective address are
loaded into general register rt. 

If any of the three least-significant bits of the effective address are non-
zero, an address error exception occurs. 

Operation:

 Exceptions: 
TLB refill exception
TLB invalid exception
Bus error exception 
Address error exception  

LDLoad Doubleword

31 2526 2021 1516 0

LD base rt offset

6 5 5 16
1 1 0 1 1 1

LD

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

 GPR[rt] ← mem
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Format:
LDCz rt, offset(base)  

Description: 
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address.  The processor reads a doubleword
from the addressed memory location and makes the data available to
coprocessor unit z.  The manner in which each coprocessor uses the data
is defined by the individual coprocessor specifications.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This instruction is not valid for use with CP0.
This instruction is undefined when the least-significant bit of the 

rt field is non-zero.
Execution of the instruction referencing coprocessor 3 causes a

reserved instruction exception, not a coprocessor unusable exception.
NOTE:  *See the table “Opcode Bit Encoding” on next page, or “CPU Instruction

Opcode Bit Encoding” at the end of Appendix A.

Operation:  

Exceptions: 
TLB refill exception
TLB invalid exception 
Bus error exception 
Address error exception 
Coprocessor unusable exception 
Reserved instruction exception (coprocessor 3) 

Opcode Bit Encoding:

LDCz Load Doubleword To Coprocessor

31 2526 2021 1516 0

LDCz base rt offset

6 5 5 16
1 1 0 1 x x*

LDCz

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COPzLD (rt, mem)

LDCz
1 0 1 0 11

31 30 29 28 27 26Bit # 0

LDC1

1 0 1 1 01

31 30 29 28 27 26Bit # 0

LDC2

Coprocessor Unit NumberOpcode
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Format: 
 LDL rt, offset(base)  

Description: 
This instruction can be used in combination with the LDR instruction

to load a register with eight consecutive bytes from memory, when the
bytes cross a doubleword boundary.  LDL loads the left portion of the
register with the appropriate part of the high-order doubleword; LDR loads
the right portion of the register with the appropriate part of the low-order
doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents
of general register base to form a virtual address which can specify an
arbitrary byte.  It reads bytes only from the doubleword in memory which
contains the specified starting byte.  From one to eight bytes will be loaded,
depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that
byte into the high-order (left-most) byte of the register; then it loads bytes
from memory into the register until it reaches the low-order byte of the
doubleword in memory. The least-significant (right-most) byte(s) of the
register will not be changed.

 

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDL (or LDR)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

LDL Load Doubleword Left

31 2526 2021 1516 0

LDL base rt offset

6 5 5 16
0 1 1 0 1 0

LDL

address 0
address 8

memory
register

LDL $24,3($0)

$24

(big-endian)

before

after

10 2 3 4 5 6 7
98 10 11 12 13 14 15

A B C D E F G H

$243 4 5 6 7 F G H
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Operation: 

 
Given a doubleword in a register and a doubleword in memory, the

operation of LDL is as follows:

LEMLittle-endian memory (BigEndianMem = 0)
BEMBigEndianMem = 1
TypeAccessType (see Table 2.1 on page 3) sent to memory
OffsetpAddr2..0 sent to memory 

Exceptions: 
TLB refill exception
TLB invalid exception
Bus error exception 
Address error exception

endif

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
 pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor ReverseEndian3)

  pAddr ←  pAddrPSIZE–1..3 || 0
3

 GPR[rt] ← mem7+8*byte..0 || GPR[rt]55–8*byte..0

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

if BigEndianMem = 0 then

byte ←  vAddr2..0 xor BigEndianCPU3

LDL

A C DBRegister

I K LJMemory

E G HF

M O PN

0 P B C D E F G H 0 0 7 I J K L M N O P 7 0 0
1 O P C D E F G H 1 0 6 J K L M N O P H 6 0 1
2 N O P D E F G H 2 0 5 K L M N O P G H 5 0 2
3 M N O P E F G P 3 0 4 L M N O P F G H 4 0 3
4 L M N O P F G H 4 0 3 M N O P E F G H 3 0 4
5 K L M N O P G H 5 0 2 N O P D E F G H 2 0 5
6 J K L M N O P H 6 0 1 O P C D E F G H 1 0 6
7 I J K L M N O P 7 0 0 P B C D E F G H 0 0 7

BigEndianCPU = 0

vAddr2..0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM  BEM LEM  BEM



CPU Instruction Set Details Appendix A

A – 73

 

 Format:
LDR rt, offset(base) 

Description: 
This instruction can be used in combination with the LDL instruction

to load a register with eight consecutive bytes from memory, when the
bytes cross a doubleword boundary.  LDR loads the right portion of the
register with the appropriate part of the low-order doubleword; LDL loads
the left portion of the register with the appropriate part of the high-order
doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which can
specify an arbitrary byte.  It reads bytes only from the doubleword in
memory which contains the specified starting byte.  From one to eight
bytes will be loaded, depending on the starting byte specified. 

Conceptually, it starts at the specified byte in memory and loads that
byte into the low-order (right-most) byte of the register; then it loads bytes
from memory into the register until it reaches the high-order byte of the
doubleword in memory. The most significant (left-most) byte(s) of the
register will not be changed.

 

 
The contents of general register rt are internally bypassed within the

processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDR (or LDL)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

LDRLoad Doubleword Right

31 2526 2021 1516 0

LDR base rt offset

6 5 5 16
0 1 1 0 1 1

LDR

A

LDR $24,4($0)

after

address 0
address 8

register

$24

(big-endian)

before10 2 3 4 5 6 7
98 10 11 12 13 14 15

B C D E F G H

A

register

$24B C 0 1 2 3 4

memory
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Operation: 

 
Given a doubleword in a register and a doubleword in memory, the

operation of LDR is as follows:
  

LEMLittle-endian memory (BigEndianMem = 0)
BEMBigEndianMem = 1
TypeAccessType (see Table 2.1 on page 3) sent to memory
OffsetpAddr2..0 sent to memory 

Exceptions: 
TLB refill exception
TLB invalid exception
Bus error exception 
Address error exception

endif

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
 pAddr ← pAddrPSIZE–1..3 || (pAddr2..0   xor  ReverseEndian3)

  pAddr ←  pAddr31..3 || 0
3

 GPR[rt] ← GPR[rt]63..64-8*byte || mem63..8*byte

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

if BigEndianMem = 1 then

byte ← vAddr2..0 xor BigEndianCPU3

LDR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O P 7 0 0 A B C D E F G I 0 7 0
1 A I J K L M N O 6 1 0 A B C D E F I J 1 6 0
2 A B I J K L M N 5 2 0 A B C D E I J K 2 5 0
3 A B C I J K L M 4 3 0 A B C D I J K L 3 4 0
4 A B C D I J K L 3 4 0 A B C I J K L M 4 3 0
5 A B C D E I J K 2 5 0 A B I J K L M N 5 2 0
6 A B C D E F I J 1 6 0 A I J K L M N O 6 1 0
7 A B C D E F G I 0 7 0 I J K L M N O P 7 0 0

BigEndianCPU = 0

vAddr2..0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM  BEM LEM  BEM
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Format: 
LH rt, offset(base)  

Description: 
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address.  The contents of the halfword at the
memory location specified by the effective address are sign-extended and
loaded into general register rt. 

If the least-significant bit of the effective address is non-zero, an
address error exception occurs.  

Operation: 

 Exceptions: 
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception   

LH Load Halfword

31 2526 2021 1516 0

LH base rt offset

6 5 5 16
1 0 0 0 0 1

LH

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 byte ← vAddr2..0 xor (BigEndianCPU2 || 0)
 GPR[rt]  ← (mem15+8*byte)16 || mem15+8*byte..8* byte

 pAddr ←  pAddrPSIZE – 1..3 || (pAddr2..0 xor (ReverseEndian || 0))
 mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
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Format: 
LHU rt, offset(base)  

Description:   
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address.  The contents of the halfword at the
memory location specified by the effective address are zero-extended and
loaded into general register rt. 

If the least-significant bit of the effective address is non-zero, an
address error exception occurs.  

Operation: 

Exceptions: 
TLB refill exception
TLB invalid exception
Bus Error exception
Address error exception

LHULoad Halfword Unsigned

31 2526 2021 1516 0

LHU base rt offset

6 5 5 16
1 0 0 1 0 1

LHU

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
 byte ← vAddr2..0 xor (BigEndianCPU2 || 0)

GPR[rt]  ← 048  ||  mem15+8*byte..8*byte

 pAddr ←  pAddrPSIZE – 1..3 || (pAddr2..0 xor (ReverseEndian2 || 0))
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Format:
LL rt, offset(base) 

 Description: 
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. The loaded word is sign-extended.

This instruction implicitly performs a SYNC operation; all loads and
stores to shared memory fetched prior to the LL must access memory
before the LL, and loads and stores to shared memory fetched subsequent
to the LL must access memory after the LL.  The processor begins checking
the accessed word for modification by other processors and devices.

Load Linked and Store Conditional can be used to atomically update
memory locations as shown:

This atomically increments the word addressed by T0. Changing the
ADD to an OR changes this to an atomic bit set.

This instruction is available in User mode, and it is not necessary for
CP0 to be enabled.

The operation of LL is undefined if the addressed location is uncached
and, for synchronization between multiple processors, the operation of LL
is undefined if the addressed location is noncoherent.  A cache miss that
occurs between LL and SC may cause SC to fail, so no load or store
operation should occur between LL and SC, otherwise the SC may never
be successful.  Exceptions also cause SC to fail, so persistent exceptions
must be avoided.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception takes place.

LL Load Linked

31 2526 2021 1516 0

LL base rt offset

6 5 5 16
1 1 0 0 0 0

LL

L1:
LL T1, (T0)
ADD T2, T1, 1
SC T2, (T0)
BEQ T2, 0, L1
NOP
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Operation:

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
 mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2..0 xor (BigEndianCPU || 02)
 GPR[rt]  ← (mem31+8*byte)32 || mem31+8*byte..8*byte
 LLbit  ← 1

SyncOperation()
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Format:
LLD rt, offset(base)  

Description: 
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address.  The contents of the doubleword at
the memory location specified by the effective address are loaded into
general register rt.

This instruction implicitly performs a SYNC operation; all loads and
stores to shared memory fetched prior to the LLD must access memory
before the LLD, and loads and stores to shared memory fetched
subsequent to the LLD must access memory after the LLD.  The processor
begins checking the accessed doubleword for modification by other
processors and devices.

Load Linked Doubleword and Store Conditional Doubleword can be
used to atomically update memory locations:

This atomically increments the word addressed by T0.  Changing the
ADD to an OR changes this to an atomic bit set. 

The operation of LLD is undefined if the addressed location is
uncached and, for synchronization between multiple processors, the
operation of LLD is undefined if the addressed location is noncoherent.  A
cache miss that occurs between LLD and SCD may cause SCD to fail, so
no load or store operation should occur between LLD and SCD, otherwise
the SCD may never be successful.  Exceptions also cause SCD to fail, so
persistent exceptions must be avoided.

This instruction is available in User mode, and it is not necessary for
CP0 to be enabled.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

LLD Load Linked Doubleword

31 2526 2021 1516 0

LLD base rt offset

6 5 5 16
1 1 0 1 0 0

LLD

L1:
LLD T1, (T0)
ADD T2, T1, 1
SCD T2, (T0)
BEQ T2, 0, L1
NOP
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Operation:

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception 

     

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
 GPR[rt] ← mem
 LLbit  ← 1

SyncOperation()



CPU Instruction Set Details Appendix A

A – 81

  

Format: 
LUI rt, immediate  

Description: 
The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits

of zeros. The result is placed into general register rt. The loaded word is
sign-extended.

Operation:  

Exceptions: 
None 

LUI Load Upper Immediate

31 2526 2021 1516 0

LUI rt immediate

6 5 5 16
0 0 1 1 1 1 

LUI

0
0 0 0 0 0

T: GPR[rt] ← (immediate15)32 || immediate || 016
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Format:
LW rt, offset(base)  

Description: 
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address.  The contents of the word at the
memory location specified by the effective address are loaded into general
register rt.  The loaded word is sign-extended. 

If either of the two least-significant bits of the effective address is non-
zero, an address error exception occurs.  

Operation: 

 Exceptions: 
TLB refill exception
TLB invalid exception
Bus error exception 
Address error exception 

LWLoad Word

31 2526 2021 1516 0

LW base rt offset

6 5 5 16
1 0 0 0 1 1

LW

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

 GPR[rt] ← (mem31+8*byte)32 || mem31+8*byte..8*byte

 pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))

 byte ← vAddr2..0 xor (BigEndianCPU || 02)
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Format: 
LWCz rt, offset(base)  

Description: 
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address.  The processor reads a word from
the addressed memory location, and makes the data available to
coprocessor unit z.

The manner in which each coprocessor uses the data is defined by the
individual coprocessor specifications. 

If either of the two least-significant bits of the effective address is non-
zero, an address error exception occurs. 

This instruction is not valid for use with CP0.
NOTE:  *See the table “Opcode Bit Encoding” on next page, or “CPU Instruction

Opcode Bit Encoding” at the end of Appendix A.

Operation:  

Exceptions: 
TLB refill exception
TLB invalid exception
Bus error exception 
Address error exception
Coprocessor unusable exception 

Opcode Bit Encoding:

LWCz Load Word To Coprocessor

31 2526 2021 1516 0

LWCz base rt offset

6 5 5 16
1 1 0 0 x x*

LWCz

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base}
(pAddr, uncached)← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 02)
COPzLW (byte, rt, mem)

LWCz
1 0 0 0 11

31 30 29 28 27 26Bit # 0

LWC1

1 0 0 1 01

31 30 29 28 27 26Bit # 0

LWC2

Coprocessor Unit NumberOpcode
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Format:   
LWL rt, offset(base)  

Description: 
This instruction can be used in combination with the LWR instruction

to load a register with four consecutive bytes from memory, when the bytes
cross a word boundary.  LWL loads the left portion of the register with the
appropriate part of the high-order word; LWR loads the right portion of the
register with the appropriate part of the low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which can
specify an arbitrary byte.  It reads bytes only from the word in memory
which contains the specified starting byte.  From one to four bytes will be
loaded, depending on the starting byte specified.  The loaded word is sign-
extended.

Conceptually, it starts at the specified byte in memory and loads that
byte into the high-order (left-most) byte of the register; then it loads bytes
from memory into the register until it reaches the low-order byte of the
word in memory. The least-significant (right-most) byte(s) of the register
will not be changed.

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWL (or LWR)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

LWL Load Word Left

31 2526 2021 1516 0

LWL base rt offset

6 5 5 16
1 0 0 0 1 0

LWL

address 0
address 4

0 1 2 3
4 5 6 7

memory

A B C D

register

$24

(big-endian)

before

after 1 2 3 D $24

LWL $24,1($0)
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Operation: 

Given a doubleword in a register and a doubleword in memory, the
operation of LWL is as follows:

   

  

Key to table:
LEMLittle-endian memory (BigEndianMem = 0)
BEMBigEndianMem = 1
TypeAccessType (see Table 2.1 on page 3) sent to memory
OffsetpAddr2..0 sent to memory
Ssign-extend of destination31 

Exceptions: 
TLB refill exception
TLB invalid exception
Bus error exception 
Address error exception

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor ReverseEndian3)
if BigEndianMem = 0 then

 pAddr ←  pAddrPSIZE–1..3 || 0
3

endif
byte ← vAddr1..0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU
mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp ← mem31+32*word-8*byte..32*word || GPR[rt]23-8*byte..0

 GPR[rt] ← (temp31)32 || temp

LWL

A C DBRegister

I K LJMemory

E G HF

M O PN

0 S S S S P F G H 0 0 7 S S S S I J K L 3 4 0
1 S S S S O P G H 1 0 6 S S S S J K L H 2 4 1
2 S S S S N O P H 2 0 5 S S S S K L G H 1 4 2
3 S S S S M N O P 3 0 4 S S S S L F G H 0 4 3
4 S S S S L F G H 0 4 3 S S S S M N O P 3 0 4
5 S S S S K L G H 1 4 2 S S S S N O P H 2 0 5
6 S S S S J K L H 2 4 1 S S S S O P G H 1 0 6
7 S S S S I J K L 3 4 0 S S S S P F G H 0 0 7

BigEndianCPU = 0

vAddr2..0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM  BEM LEM  BEM
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Format:
LWR rt, offset(base)  

Description: 
This instruction can be used in combination with the LWL instruction

to load a register with four consecutive bytes from memory, when the bytes
cross a word boundary.  LWR loads the right portion of the register with
the appropriate part of the low-order word; LWL loads the left portion of
the register with the appropriate part of the high-order word.

The LWR instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which can
specify an arbitrary byte.  It reads bytes only from the word in memory
which contains the specified starting byte.  From one to four bytes will be
loaded, depending on the starting byte specified. The loaded word is sign-
extended. 

Conceptually, it starts at the specified byte in memory and loads that
byte into the low-order (right-most) byte of the register; then it loads bytes
from memory into the register until it reaches the high-order byte of the
word in memory. The most significant (left-most) byte(s) of the register will
not be changed.

 

 
The contents of general register rt are internally bypassed within the

processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWR (or LWL)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

LWRLoad Word Right

31 2526 2021 1516 0

LWR base rt offset

6 5 5 16
1 0 0 1 1 0

LWR

address 0
address 4

0 1 2 3
4 5 6 7

A B C D

register

LWR $24,4($0)

$24

memory
(big-endian)

before

after A B C 4
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Operation: 

Given a word in a register and a word in memory, the operation of LWR
is as follows:

 

Key to table: 
LEMLittle-endian memory (BigEndianMem = 0)
BEMBigEndianMem = 1
TypeAccessType (see Table 2.1 on page 3) sent to memory
OffsetpAddr2..0 sent to memory
Ssign-extend of destination31 

Exceptions: 
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor ReverseEndian3)
if BigEndianMem = 1 then

 pAddr ←  pAddrPSIZE–31..3 || 0
3

endif
byte ← vAddr1..0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU
mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp ← GPR[rt]31..32-8*byte..0 || mem31+32*word-32*word+8*byte
GPR[rt] ← (temp31)32 || temp

LWR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 S S S S M N O P 0 0 4 S S S S E F G I 0 7 0
1 S S S S E M N O 1 1 4 S S S S E F I J 1 6 0
2 S S S S E F M N 2 2 4 S S S S E I J K 2 5 0
3 S S S S E F G M 3 3 4 S S S S I J K L 3 4 0
4 S S S S I J K L 0 4 0 S S S S E F G M 0 3 4
5 S S S S E I J K 1 5 0 S S S S E F M N 1 2 4
6 S S S S E F I J 2 6 0 S S S S E M N O 2 1 4
7 S S S S E F G I 3 7 0 S S S S M N O P 3 0 4

BigEndianCPU = 0

vAddr2..0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM  BEM LEM  BEM
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Format:
LWU rt, offset(base)  

Description: 
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address.  The contents of the word at the
memory location specified by the effective address are loaded into general
register rt.  The loaded word is zero-extended. 

If either of the two least-significant bits of the effective address is non-
zero, an address error exception occurs.  

Operation: 

 Exceptions: 
TLB refill exception
TLB invalid exception
Bus error exception 
Address error exception 

LWULoad Word Unsigned

31 2526 2021 1516 0

LWU base rt offset

6 5 5 16
1 0 1 1 1 1

LWU

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

 GPR[rt] ← 032 || mem31+8*byte..8*byte

 pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))

 byte ← vAddr2..0 xor (BigEndianCPU || 02)
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Format: 
MFC0 rt, rd 

Description: 
The contents of coprocessor register rd of the CP0 are loaded into

general register rt.   May be used on both 32-bit and 64-bit CP0 registers. 

Operation:  

 Exceptions: 
Coprocessor unusable exception 

MFC0 Move From

rd

11 10

5

31 2526 2021 1516 0

COP0 MF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0

MFC0

T: data ← CPR[0,rd]

T+1: GPR[rt] ← (data31)32 || data31..0
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Note: *See the table “Opcode Bit Encoding” on next page, or “CPU
Instruction Opcode Bit Encoding” at the end of Appendix A.

Format: 
MFCz rt, rd  

Description: 
The contents of coprocessor register rd of coprocessor z are loaded into

general register rt.
Execution of the instruction referencing coprocessor 3 causes a

reserved instruction exception, not a coprocessor unusable exception.

Operation:  

 Exceptions: 
Coprocessor unusable exception
Reserved instruction exception (coprocessor 3)

Opcode Bit Encoding:  

MFCz

11

Move From Coprocessor

31 2526 2021 1516

COPz MF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 0 0 0 0 0 0   0 0 0 0  0 0 0 0

MFCz

T: if rd0 = 0 then
data ← CPR[z,rd4..1 || 0]31..0

else
data ← CPR[z,rd4..1 || 0]63..32

endif
T+1: GPR[rt] ← (data31)32 || data

MFCz

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

MFC1 0 0 0 00

24 23 22 21

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

MFC2 0 0 0 00

24 23 22 21

Coprocessor Suboperation

0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

MFC0 0 0 0 00

24 23 22 21

Coprocessor Unit Number

Opcode
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Format: 

 

MFHI  rd

 

Description: 

 

The contents of special register 

 

HI

 

 are loaded into general register 

 

rd

 

. 
To ensure proper operation in the event of interruptions, the two 

instructions which follow a MFHI instruction may not be any of the 
instructions which modify the 

 

HI

 

 register: MULT, MULTU, DIV, DIVU, 
MTHI, DMULT, DMULTU, DDIV, DDIVU. 

 

Operation: 

Exceptions:  

 

None  

 

CPU Instruction Set Details
 Appendix A

MFHI

0

Move From HI

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFHI0

5

11 10

0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

MFHI

T: GPR[rd] ← HI
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Format: 

 

MFLO  rd 

 

Description: 

 

The contents of special register 

 

LO

 

 are loaded into general register 

 

rd

 

. 
To ensure proper operation in the event of interruptions, the two 

instructions which follow a MFLO instruction may not be any of the 
instructions which modify the 

 

LO

 

 register: MULT, MULTU, DIV, DIVU, 
MTLO, DMULT, DMULTU, DDIV, DDIVU. 

 

Operation: 

Exceptions: 

 

None

MFLOMove From Lo

0

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFLO0

5

11 10

0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

MFLO

T: GPR[rd] ← LO
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Format: 

 

MTC0  rt, rd

 

Description: 

 

The contents of general register 

 

rt 

 

are loaded into coprocessor register 

 

rd 

 

of CP0.
Because the state of the virtual address translation system may be 

altered by this instruction, the operation of load instructions, store 
instructions, and TLB operations immediately prior to and after this 
instruction are undefined.

 

Operation: 

Exceptions: 

 

Coprocessor unusable exception 

 

 

MTC0 Move To

rd

11 10

5

31 2526 2021 1516 0

COP0 MT rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 1 0 0 0 0 0   0 0 0 0  0 0 00

MTC0

T: data ← GPR[rt] 
T+1: CPR[0,rd] ← data
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Format:

 

MTCz  rt, rd

 

Description: 

 

The contents of general register 

 

rt 

 

are loaded into coprocessor register 

 

rd 

 

of coprocessor 

 

z

 

.  Execution of the instruction referencing coprocessor 
3 causes a reserved instruction exception, not a coprocessor unusable 
exception.

 

Operation: 

Exceptions:   

 

Coprocessor unusable exception 
Reserved instruction exception (coprocessor 3)

 

*Opcode Bit Encoding:

MTCz

11

Move To Coprocessor
31 2526 2021 1516

COPz MT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 1 0 0 0 0 0   0 0 0 0  0 0 0 0

MTCz

T: data ← GPR[rt]31..0
T+1: if rd0 = 0

CPR[z,rd4..1 || 0] ← CPR[z, rd4..1 || 0]63..32 || data
else

CPR[z,rd4..1 || 0] ← data || CPR[z,rd4..1 || 0]31..0
endif

MTCz

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

C0P1 0 1 0 00

24 23 22 21

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

C0P2 0 1 0 00

24 23 22 21

Coprocessor Suboperation

0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

C0P0 0 1 0 00

24 23 22 21

Coprocessor Unit NumberOpcode
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Format: 

 

MTHI   rs 

 

Description: 

 

The contents of general register 

 

rs 

 

are loaded into special register 

 

HI

 

. 
If a MTHI operation is executed following a MULT, MULTU, DIV, or 

DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI 
instructions, the contents of special register 

 

LO

 

 are undefined. 

 

Operation: 

Exceptions: 

 

None 

rs

MTHI Move To HI

21 2031 2526

SPECIAL

6

0

MTHI0

6 5

5 15 6
0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

MTHI

T–2: HI ← undefined

T–1: HI ← undefined

T: HI ← GPR[rs]
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Format: 

 

MTLO  rs 

 

Description: 

 

The contents of general register 

 

rs

 

 are loaded into special register 

 

LO.

 

If a MTLO operation is executed following a MULT, MULTU, DIV, or 
DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI 
instructions, the contents of special register 

 

HI

 

 are undefined. 

 

Operation: 

Exceptions:    

 

None

rs

MTLOMove To LO

21 2031 2526

SPECIAL

6

0

MTLO0

6 5

5 15 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

MTLO

T–2: LO ← undefined

T–1: LO ← undefined

T: LO ← GPR[rs]
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Format: 

 

MULT rs, rt 

 

Description: 

 

The contents of general registers 

 

rs 

 

and 

 

rt 

 

are multiplied, treating both 
operands as 32-bit 2’s complement values.  No integer overflow exception 
occurs under any circumstances.  The operands must be valid 32-bit, sign-
extended values.

When the operation completes, the low-order word of the double result 
is loaded into special register 

 

LO

 

, and the high-order word of the double 
result is loaded into special register 

 

HI

 

.
If either of the two preceding instructions is MFHI or MFLO, the results 

of these instructions are undefined.  Correct operation requires separating 
reads of 

 

HI

 

 or LO from writes by a minimum of two other instructions.

Operation: 

Exceptions: 
None   

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULT
0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0 0 1 1 0 0 0

MULT Multiply MULT

T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← GPR[rs]31..0 * GPR[rt]31..0
LO ← (t31)32 || t31..0
HI ← (t63)32 || t63..32
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Format: 
MULTU rs, rt   

Description: 
The contents of general register rs and the contents of general register 

rt are multiplied, treating both operands as unsigned values.  No overflow 
exception occurs under any circumstances.  The operands must be valid 
32-bit, sign-extended values.

When the operation completes, the low-order word of the double result 
is loaded into special register LO, and the high-order word of the double 
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results 
of these instructions are undefined.  Correct operation requires separating 
reads of HI or LO from writes by a minimum of two instructions.

Operation: 

Exceptions: 
None 

MULTUMultiply Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULTU
0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0 0 1 1 0 0 1

MULTU

T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← (0 || GPR[rs]31..0) * (0 || GPR[rt]31..0)
LO ← (t31)32 || t31..0
HI ← (t63)32 || t63..32
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Format: 
NOR rd, rs, rt   

Description: 
The contents of general register rs are combined with the contents of 

general register rt in a bit-wise logical NOR operation.  The result is placed 
into general register rd. 

Operation: 

Exceptions: 
None 

NOR Nor

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 NOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

NOR

T: GPR[rd] ← GPR[rs] nor GPR[rt]
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Format: 
OR rd, rs, rt 

Description: 
The contents of general register rs are combined with the contents of 

general register rt in a bit-wise logical OR operation.  The result is placed 
into general register rd. 

Operation: 

Exceptions: 
None 

OROr

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 OR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

OR

T: GPR[rd] ← GPR[rs] or GPR[rt]
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Format: 
ORI rt, rs, immediate

Description: 
The 16-bit immediate is zero-extended and combined with the contents 

of general register rs in a bit-wise logical OR operation.  The result is placed 
into general register rt. 

Operation: 

Exceptions: 
None 

31 2526 2021 1516 0

ORI rs rt immediate

6 5 5 16
0 0 1 1 0 1

ORIOr ImmediateORI

T: GPR[rt] ← GPR[rs]63..16 || (immediate or GPR[rs]15..0)
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Format: 
SB rt, offset(base)

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address.  The least-significant byte of 
register rt is stored at the effective address. 

Operation: 

Exceptions: 
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception 
Address error exception   

SBStore Byte

31 2526 2021 1516 0

SB base rt offset

6 5 5 16
1 0 1 0 0 0

SB

T: vAddr ← ((offset15)48  || offset15..0)  + GPR[base]

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 byte ← vAddr2..0   xor  BigEndianCPU3

 data ← GPR[rt]63–8*byte..0 || 08*byte

 StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

 pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian3)
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Format:
SC rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address.  The contents of general register rt 
are conditionally stored at the memory location specified by the effective 
address.

This instruction implicitly performs a SYNC operation; loads and 
stores to shared memory fetched prior to the SC must access memory 
before the SC; loads and stores to shared memory fetched subsequent to 
the SC must access memory after the SC.

If any other processor or device has modified the physical address 
since the time of the previous Load Linked instruction, or if an ERET 
instruction occurs between the Load Linked instruction and this store 
instruction, the store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is 
indicated by the contents of general register rt after execution of the 
instruction.  A successful store sets the contents of general register rt to 1; 
an unsuccessful store sets it to 0.

The operation of Store Conditional is undefined when the address is 
different from the address used in the last Load Linked.

This instruction is available in User mode; it is not necessary for CP0 
to be enabled.

If either of the two least-significant bits of the effective address is non-
zero, an address error exception takes place.

If this instruction should both fail and take an exception, the exception 
takes precedence.

Operation:

Exceptions:   
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SC Store Conditional

31 2526 2021 1516 0

SC base rt offset

6 5 5 16
1 1 1 0 0 0

SC

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
data  ← GPR[rt]63-8*byte..0 || 08*byte

if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

endif
GPR[rt] ←  063 || LLbit
SyncOperation()
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Format:
SCD rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address.  The contents of general register rt 
are conditionally stored at the memory location specified by the effective 
address.

This instruction implicitly performs a SYNC operation; loads and 
stores to shared memory fetched prior to the SCD must access memory 
before the SCD; loads and stores to shared memory fetched subsequent to 
the SCD must access memory after the SCD.

If any other processor or device has modified the physical address 
since the time of the previous Load Linked Doubleword instruction, or if 
an ERET instruction occurs between the Load Linked Doubleword 
instruction and this store instruction, the store fails and is inhibited from 
taking place.

The success or failure of the store operation (as defined above) is 
indicated by the contents of general register rt after execution of the 
instruction.  A successful store sets the contents of general register rt to 1; 
an unsuccessful store sets it to 0.

The operation of Store Conditional Doubleword is undefined when the 
address is different from the address used in the last Load Linked 
Doubleword.

This instruction is available in User mode; it is not necessary for CP0 
to be enabled.

If either of the three least-significant bits of the effective address is 
non-zero, an address error exception takes place.

If this instruction should both fail and take an exception, the exception 
takes precedence.

Operation:

Exceptions:   
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SCD Store Conditional Doubleword

31 2526 2021 1516 0

SCD base rt offset

6 5 5 16
1 1 1 1 0 0

SCD

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data  ← GPR[rt]
if LLbit then
      StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ←  063 || LLbit
SyncOperation()
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Format:
SD rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address.  The contents of general register rt 
are stored at the memory location specified by the effective address.

If either of the three least-significant bits of the effective address are 
non-zero, an address error exception occurs.

Operation:

Exceptions:   
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SDStore Doubleword

31 2526 2021 1516 0

SD base rt offset

6 5 5 16
1 1 1 1 1 1

SD

T: vAddr ←  ((offset15)48 || offset15..0) + GPR[base]

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 data ← GPR[rt]
 StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
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Format: 
SDCz rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address.  Coprocessor unit z sources a 
doubleword, which the processor writes to the addressed memory location.  
The data to be stored is defined by individual coprocessor specifications.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This instruction is not valid for use with CP0.
This instruction is undefined when the least-significant bit of the rt 

field is non-zero.

Operation: 

Note: *See the table in this section under “Opcode Bit Encoding."
Also see “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.

Exceptions: 
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

SDCz Store Doubleword

31 2526 2021 1516 0

SDCz base rt offset

6 5 5 16
1 1 1 1 x x*

SDCzFrom Coprocessor

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ←  COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, 
vAddr, DATA)

SDCz
1 1 1 0 11

31 30 29 28 27 26Bit # 0

SDC1

1 1 1 1 01

31 30 29 28 27 26Bit # 0

SDC2

Coprocessor Unit NumberSD opcode
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Format: 
SDL rt, offset(base) 

Description: 
This instruction can be used with the SDR instruction to store the 

contents of a register into eight consecutive bytes of memory, when the 
bytes cross a doubleword boundary.  SDL stores the left portion of the 
register into the appropriate part of the high-order doubleword of memory; 
SDR stores the right portion of the register into the appropriate part of the 
low-order doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the 
contents of general register base to form a virtual address which may 
specify an arbitrary byte.  It alters only the word in memory which contains 
that byte.  From one to four bytes will be stored, depending on the starting 
byte specified.

Conceptually, it starts at the most-significant byte of the register and 
copies it to the specified byte in memory; then it copies bytes from register 
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

Operation: 

SDL Store Doubleword Left

31 2526 2021 1516 0

SDL base rt offset

6 5 5 16
1 0 1 1 0 0

SDL

14

SDL $24,1($0)

after

address 0

address 8

memory

register

$24

(big-endian)

before
10 2 3 4 5 6 7

98 10 11 12 13 14 15
A B C D E F G H

address 0

address 8

0

98 10 11 12 13 15

C D E F G HB

endif

If BigEndianMem = 0 then 

                  

T: vAddr ← ((offset15)48 || offset 15..0) + GPR[base]

data ← 056–8*byte || GPR[rt]63..56–8*byte

pAddr  ← pAddr31..3 || 03

Storememory (uncached, byte, data, pAddr, vAddr, DATA)

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ←  pAddrPSIZE –1..3 || (pAddr2..0  xor  ReverseEndian3)

 byte ← vAddr2..0   xor  BigEndianCPU3
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Given a doubleword in a register and a doubleword in memory, the 
operation of SDL is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2.1 on page 2-3) sent to memory
Offset pAddr2..0 sent to memory

Exceptions: 
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception 
Address error exception

SDL

A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O A 0 0 7 A B C D E F G H 7 0 0
1 I J K L M N A B 1 0 6 I A B C D E F G 6 0 1
2 I J K L M A B C 2 0 5 I J A B C D E F 5 0 2
3 I J K L A B C D 3 0 4 I J K A B C D E 4 0 3
4 I J K A B C D E 4 0 3 I J K L A B C D 3 0 4
5 I J A B C D E F 5 0 2 I J K L M A B C 2 0 5
6 I A B C D E F G 6 0 1 I J K L M N A B 1 0 6
7 A B C D E F G H 7 0 0 I J K L M N O A 0 0 7

offset

BigEndianCPU = 1BigEndianCPU = 0
offset

LEM  BEM LEM  BEMvAddr2..0 typedestination destination type
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Format:
SDR rt, offset(base)

Description: 
This instruction can be used with the SDL instruction to store the 

contents of a register into eight consecutive bytes of memory, when the 
bytes cross a boundary between two doublewords.  SDR stores the right 
portion of the register into the appropriate part of the low-order 
doubleword; SDL stores the left portion of the register into the appropriate 
part of the low-order doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the 
contents of general register base to form a virtual address which may 
specify an arbitrary byte.  It alters only the word in memory which contains 
that byte.  From one to eight bytes will be stored, depending on the starting 
byte specified.   

Conceptually, it starts at the least-significant (rightmost) byte of the 
register and copies it to the specified byte in memory; then it copies bytes 
from register to memory until it reaches the high-order byte of the word in 
memory.  No address exceptions due to alignment are possible.

Operation: 

Given a doubleword in a register and a doubleword in memory, the 
operation of SDR is as follows:

31 2526 2021 1516 0

SDR base rt offset

6 5 5 16
1 0 1 1 0 1

SDR Store Doubleword Right SDR

SDR $24,4($0)

after

Aaddress 0
address 8

register

$24

(big-endian)

before B C D E F G H

memory

address 0
address 8

(big-endian)
memory

10 2 3 4 5 6 7
98 10 11 12 13 14 15

4 5 6 7
98 10 11 12 13 14 15

E F G H

T: vAddr ← ((offset15)48 || offset 15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ←  pAddrPSIZE – 1..3 || (pAddr2..0  xor  

ReverseEndian3)
If BigEndianMem = 0 then

pAddr  ← pAddrPSIZE – 31..3 || 03

endif
byte ← vAddr1..0 xor BigEndianCPU3

data ← GPR[rt]63–8*byte || 08*byte
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LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2.1 on page 2-3) sent to memory
Offset pAddr2..0 sent to memory

Exceptions: 
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception 
Address error exception

SDR

A C DBRegister

I K LJMemory

E G HF

M O PN

0 A B C D E F G H 7 0 0 H J K L M N O P 0 7 0
1 B C D E F G H P 6 1 0 G H K L M N O P 1 6 0
2 C D E F G H O P 5 2 0 F G H L M N O P 2 5 0
3 D E F G H N O P 4 3 0 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 D E F G H N O P 4 3 0
5 F G H L M N O P 2 5 0 C D E F G H O P 5 2 0
6 G H K L M N O P 1 6 0 B C D E F G H P 6 1 0
7 H J K L M N O P 0 7 0 A B C D E F G H 7 0 0

offset

BigEndianCPU = 1BigEndianCPU = 0
offset

LEM  BEM LEM  BEM
vAddr2..0 typedestination destination type
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Format: 
SH rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form an unsigned effective address.  The least-significant 
halfword of register rt is stored at the effective address.  If the least-
significant bit of the effective address is non-zero, an address error 
exception occurs. 

Operation: 

Exceptions: 
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SH Store Halfword

31 2526 2021 1516 0

SH base rt offset

6 5 5 16
1 0 1 0 0 1

SH

T: vAddr ← ((offset15)48  || offset15..0) + GPR[base]

 byte ← vAddr2..0   xor (BigEndianCPU2 || 0)
 data ← GPR[rt]63–8*byte..0 || 08*byte

 StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
 pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian2 || 0))
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Format: 
SLL rd, rt, sa 

Description: 
The contents of general register rt are shifted left by sa bits, inserting 

zeros into the low-order bits.
The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value. 

Operation: 

Exceptions: 
None 

SLLShift Left Logical

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0

SLL

0 0 0 0 0

T: s ← 0 || sa

temp ← GPR[rt]31-s..0 || 0s

GPR[rd] ← (temp31)32 || temp
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Format:
SLLV rd, rt, rs 

Description: 
The contents of general register rt are shifted left the number of bits 

specified by the low-order five bits contained in general register rs, 
inserting zeros into the low-order bits.

The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation: 

Exceptions: 
None 

SLLV Shift Left Logical Variable

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 SLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 

SLLV

rs

T: s ← 0 || GP[rs]4..0

temp ← GPR[rt](31-s)..0 || 0s

GPR[rd] ← (temp31)32 || temp
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Format: 
SLT rd, rs, rt 

Description: 
The contents of general register rt are subtracted from the contents of 

general register rs.  Considering both quantities as signed integers, if the 
contents of general register rs are less than the contents of general register 
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd. 
No integer overflow exception occurs under any circumstances.  The 

comparison is valid even if the subtraction used during the comparison 
overflows. 

Operation: 

Exceptions: 
None 

SLTSet On Less Than

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLT

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 1 0 1 00 0 0 0 0 

SLT

T: if GPR[rs] < GPR[rt] then
GPR[rd] ← 063 || 1

else
GPR[rd] ← 064

endif
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Format: 
SLTI rt, rs, immediate 

Description: 
The 16-bit immediate is sign-extended and subtracted from the 

contents of general register rs.  Considering both quantities as signed 
integers, if rs is less than the sign-extended immediate, the result is set to 
one; otherwise the result is set to zero.

The result is placed into general register rt. 
No integer overflow exception occurs under any circumstances.  The 

comparison is valid even if the subtraction used during the comparison 
overflows. 

Operation: 

Exceptions: 
None   

SLTI Set On Less Than Immediate

31 2526 2021 1516 0

SLTI rs rt immediate

6 5 5 16
0 0 1 0 1 0

SLTI

T: if GPR[rs] < (immediate15)48 || immediate15..0 then
GPR[rd] ← 063 || 1

else
GPR[rd] ← 064

endif
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Format: 
SLTIU rt, rs, immediate 

Description: 
The 16-bit immediate is sign-extended and subtracted from the 

contents of general register rs.  Considering both quantities as unsigned 
integers, if rs is less than the sign-extended immediate, the result is set to 
one; otherwise the result is set to zero.

The result is placed into general register rt. 
No integer overflow exception occurs under any circumstances.  The 

comparison is valid even if the subtraction used during the comparison 
overflows. 

Operation:

Exceptions: 
None   

SLTIUImmediate Unsigned
Set On Less Than

31 2526 2021 1516 0

SLTIU rs rt immediate

6 5 5 16
0 0 1 0 1 1

SLTIU

T: if (0 || GPR[rs]) < 0 || (immediate15)48 || immediate15..0 then
GPR[rd] ← 063 || 1

else
GPR[rd] ← 064 

endif
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Format: 
SLTU rd, rs, rt   

Description: 
The contents of general register rt are subtracted from the contents of 

general register rs.  Considering both quantities as unsigned integers, if 
the contents of general register rs are less than the contents of general 
register rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd. 
No integer overflow exception occurs under any circumstances.  The 

comparison is valid even if the subtraction used during the comparison 
overflows. 

Operation: 

Exceptions:
None   

SLTU Set On Less Than Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLTU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

SLTU

T: if (0 || GPR[rs]) < 0 || GPR[rt] then
GPR[rd] ← 063 || 1

else
GPR[rd] ← 064

endif
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Format: 
SRA rd, rt, sa 

Description: 
The contents of general register rt are shifted right by sa bits, sign-

extending the high-order bits.
The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation: 

 Exceptions: 
None 

SRAShift Right Arithmetic

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

SRA

T: s ← 0 || sa

temp ← (GPR[rt]31)s || GPR[rt] 31..s

GPR[rd] ← (temp31)32 || temp
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Format: 
SRAV  rd, rt, rs   

Description: 
The contents of general register rt are shifted right by the number of 

bits specified by the low-order five bits of general register rs, sign-
extending the high-order bits.

The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation: 

Exceptions: 
None   

SRAV Shift Right

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

SRAVArithmetic Variable

T: s ← GPR[rs]4..0

temp ← (GPR[rt]31)s || GPR[rt]31..s

GPR[rd] ← (temp31)32 || temp
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Format: 
SRL rd, rt, sa   

Description: 
The contents of general register rt are shifted right by sa bits, inserting 

zeros into the high-order bits.
The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation: 

Exceptions: 
None 

SRLShift Right Logical

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa SRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 1 0

SRL

0
0 0 0 0 0

T: s ← 0 || sa

temp ← 0s || GPR[rt]31..s

GPR[rd] ← (temp31)32 || temp
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Format: 
SRLV rd, rt, rs   

Description: 
The contents of general register rt are shifted right by the number of 

bits specified by the low-order five bits of general register rs, inserting zeros 
into the high-order bits.

The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation: 

Exceptions: 
None 

SRLV Shift Right Logical Variable

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

SRLV

T: s ← GPR[rs]4..0

temp ← 0s || GPR[rt]31..s

GPR[rd] ← (temp31)32 || temp
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Format: 
SUB rd, rs, rt

Description: 
The contents of general register rt are subtracted from the contents of 

general register rs to form a result.  The result is placed into general 
register rd.  The operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUBU instruction 
is that SUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 30 
and 31 differ (2’s complement overflow). The destination register rd is not 
modified when an integer overflow exception occurs.

Operation: 

Exceptions: 
Integer overflow exception

SUB SUBSubtract

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

T: temp ← GPR[rs] - GPR[rt]

GPR[rd] ← (temp31)32 || temp31..0
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Format: 
SUBU rd, rs, rt    

Description: 
The contents of general register rt are subtracted from the contents of 

general register rs to form a result.
The result is placed into general register rd.
The operands must be valid sign-extended, 32-bit values.
The only difference between this instruction and the SUB instruction 

is that SUBU never traps on overflow. No integer overflow exception occurs 
under any circumstances. 

Operation: 

Exceptions: 
None   

SUBU Subtract Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

SUBU

T: temp ← GPR[rs] - GPR[rt]

GPR[rd] ← (temp31)32 || temp31..0
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Format:
SW rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address.  The contents of general register rt 
are stored at the memory location specified by the effective address.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception occurs.

Operation:

Exceptions:   
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWStore Word

31 2526 2021 1516 0

SW base rt offset

6 5 5 16
1 0 1 0 1 1

SW

T: vAddr ←  ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02)
byte ← vAddr2..0 xor (BigEndianCPU || 02)
data ← GPR[rt]63-8*byte || 08*byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
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Format: 
SWCz rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address.  Coprocessor unit z sources a word, 
which the processor writes to the addressed memory location.

The data to be stored is defined by individual coprocessor 
specifications.

This instruction is not valid for use with CP0.
If either of the two least-significant bits of the effective address is non-

zero, an address error exception occurs.
Execution of the instruction referencing coprocessor 3 causes a 

reserved instruction exception, not a coprocessor unusable exception.

Operation: 

Note: *See the table in this section under “Opcode Bit Encoding."
Also see “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.

Exceptions: 
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception
Reserved instruction exception (coprocessor 3)

Opcode Bit Encoding:

SWCz Store Word From Coprocessor

31 2526 2021 1516 0

SWCz base rt offset

6 5 5 16
1 1 1 0 x x*

SWCz

T:  vAddr ←  ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02)
byte ← vAddr2..0 xor (BigEndianCPU || 02)
data ← COPzSW (byte,rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr DATA)

SWCz
1 1 0 0 11

31 30 29 28 27 26Bit # 0

SWC1

1 1 0 1 01

31 30 29 28 27 26Bit # 0

SWC2

Coprocessor Unit NumberSW opcode
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Format: 
SWL rt, offset(base) 

Description: 
This instruction can be used with the SWR instruction to store the 

contents of a register into four consecutive bytes of memory, when the 
bytes cross a word boundary.  SWL stores the left portion of the register 
into the appropriate part of the high-order word of memory; SWR stores the 
right portion of the register into the appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the 
contents of general register base to form a virtual address which may 
specify an arbitrary byte.  It alters only the word in memory which contains 
that byte. From one to four bytes will be stored, depending on the starting 
byte specified. 

Conceptually, it starts at the most-significant byte of the register and 
copies it to the specified byte in memory; then it copies bytes from register 
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

Operation: 

SWL Store Word Left

31 2526 2021 1516 0

SWL base rt offset

6 5 5 16
1 0 1 0 1 0

SWL

address 0
address 4

0 1 2 3
4 5 6 7

A B C D

register

address 0
address 4

0
4 5 6 7

A B C

$24

memory
(big-endian)

before

after

SWL $24,1($0)

      T: vAddr ← ((offset15)48 || offset 15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ←  pAddrPSIZE – 1..3 || (pAddr2..0  xor  ReverseEndian3)
If BigEndianMem = 0 then 

pAddr  ← pAddr31..2 || 02

endif
byte ← vAddr1..0   xor  BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || 024-8*byte || GPR[rt]31..24-8*byte

else
data ← 024-8*byte || GPR[rt]31..24-8*byte || 032

endif
StoreMemory(uncached, byte, data, pAddr, vAddr, DATA)
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Given a doubleword in a register and a doubleword in memory, the 
operation of SWL is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2.1 on page 2-3) sent to memory
Offset pAddr2..0 sent to memory

Exceptions: 
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception 
Address error exception 

SWL

A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O E 0 0 7 E F G H M N O P 3 4 0
1 I J K L M N E F 1 0 6 I E F G M N O P 2 4 1
2 I J K L M E F G 2 0 5 I J E F M N O P 1 4 2
3 I J K L E F G H 3 0 4 I J K E M N O P 0 4 3
4 I J K E M N O P 0 4 3 I J K L E F G H 3 0 4
5 I J E F M N O P 1 4 2 I J K L M E F G 2 0 5
6 I E F G M N O P 2 4 1 I J K L M N E F 1 0 6
7 E F G H M N O P 3 4 0 I J K L M N O E 0 0 7

offset

BigEndianCPU = 1BigEndianCPU = 0
offset

LEM  BEM LEM  BEM
vAddr2..0 typedestination destination type
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Format:
SWR rt, offset(base)

Description: 
This instruction can be used with the SWL instruction to store the 

contents of a register into four consecutive bytes of memory, when the 
bytes cross a boundary between two words.  SWR stores the right portion 
of the register into the appropriate part of the low-order word; SWL stores 
the left portion of the register into the appropriate part of the low-order 
word of memory.

The SWR instruction adds its sign-extended 16-bit offset to the 
contents of general register base to form a virtual address which may 
specify an arbitrary byte.  It alters only the word in memory which contains 
that byte. From one to four bytes will be stored, depending on the starting 
byte specified. 

Conceptually, it starts at the least-significant (rightmost) byte of the 
register and copies it to the specified byte in memory; then copies bytes 
from register to memory until it reaches the high-order byte of the word in 
memory.

No address exceptions due to alignment are possible.

31 2526 2021 1516 0

SWR base rt offset

6 5 5 16
1 0 1 1 1 0

SWR Store Word Right SWR

address 0

address 4

0 1 2 3

4 5 6 7
A B C D

register

address 0

address 4

0

D 5 6 7

1 2 3

$24

memory
(big-endian)

before

after

SWR $24,1($0)
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Operation: 

Given a doubleword in a register and a doubleword in memory, the 
operation of SWR is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2.1 on page 2-3) sent to memory
Offset pAddr2..0 sent to memory

Exceptions: 
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception 
Address error exception   

T: vAddr ← ((offset15)48 || offset 15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ←  pAddrPSIZE – 1..3 || (pAddr2..0  xor  ReverseEndian3)
If BigEndianMem = 0 then

pAddr  ← pAddr31..2 || 02

endif
byte ← vAddr1..0   xor  BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || GPR[rt]31-8*byte..0 || 0

8*byte

else
data ← GPR[rt]31-8*byte..0 || 08*byte || 032

endif
StoreMemory(uncached, WORD-byte, data, pAddr, vAddr, DATA)

SWR

A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L E F G H 3 0 4 H J K L M N O P 0 7 0
1 I J K L F G H P 2 1 4 G H K L M N O P 1 6 0
2 I J K L G H O P 1 2 4 F G H L M N O P 2 5 0
3 I J K L H N O P 0 3 4 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 I J K L H N O P 0 3 4
5 F G H L M N O P 2 5 0 I J K L G H O P 1 2 4
6 G H K L M N O P 1 6 0 I J K L F G H P 2 1 4
7 H J K L M N O P 0 7 0 I J K L E F G H 3 0 4

offset
BigEndianCPU = 1BigEndianCPU = 0

offset

LEM  BEM LEM  BEM
vAddr2..0 typedestination destination type
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Format: 
SYNC 

Description: 
The SYNC instruction ensures that any loads and stores fetched prior 

to the present instruction are completed before any loads or stores after 
this instruction are allowed to start. Use of the SYNC instruction to 
serialize certain memory references may be required in a multiprocessor 
environment for proper synchronization. For example:

The SYNC in processor A prevents DATA being written after FLAG, 
which could cause processor B to read stale data. The SYNC in processor 
B prevents DATA from being read before FLAG, which could likewise result 
in reading stale data. For processors which only execute loads and stores 
in order, with respect to shared memory, this instruction is a NOP.

LL and SC instructions implicitly perform a SYNC.
This instruction is allowed in User mode.

Operation: 

Exceptions: 
None

SYNC Synchronize

31 2526

SPECIAL

6 20

0 SYNC

6

6 5 0

0 0 0 0 0 0 0 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0   0 0 0 0 0 0 1 1 1 1

SYNC

Processor A Processor B

SW R1, DATA 1: LW R2, FLAG
LI R2, 1 BEQ R2, R0, 1B
SYNC NOP
SW R2, FLAG SYNC

LW R1, DATA

T: SyncOperation()
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Format: 
SYSCALL 

Description: 
A system call exception occurs, immediately and unconditionally 

transferring control to the exception handler. 
The code field is available for use as software parameters, but is 

retrieved by the exception handler only by loading the contents of the 
memory word containing the instruction.

Operation: 

Exceptions:    
System Call exception

System Call

31 2526

SPECIAL

6 20

Code SYSCALL

6

6 5 0

0 0 0 0 0 0 0 0 1 1 00

SYSCALL SYSCALL

T: SystemCallException
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Format:
TEQ rs, rt    

Description: 
The contents of general register rt are compared to general register rs.  

If the contents of general register rs are equal to the contents of general 
register rt, a trap exception occurs. 

The code field is available for use as software parameters, but is 
retrieved by the exception handler only by loading the contents of the 
memory word containing the instruction.

Operation: 

Exceptions:
Trap exception

Trap If Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TEQ

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 0 0

TEQTEQ

T:  if GPR[rs] = GPR[rt] then

TrapException

endif
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Format:
TEQI rs, immediate 

Description: 
The 16-bit immediate is sign-extended and compared to the contents 

of general register rs. If the contents of general register rs are equal to the 
sign-extended immediate, a trap exception occurs.

Operation: 

Exceptions:    
Trap exception

TEQI Trap If Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTEQI

16

0

0 0 0 0 0 1 0 1 1 0 0

TEQI

T: if GPR[rs] = (immediate15)48 || immediate15..0 then

TrapException

endif
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Format: 
TGE rs, rt 

Description: 
The contents of general register rt are compared to the contents of 

general register rs.  Considering both quantities as signed integers, if the 
contents of general register rs are greater than or equal to the contents of 
general register rt, a trap exception occurs. 

The code field is available for use as software parameters, but is 
retrieved by the exception handler only by loading the contents of the 
memory word containing the instruction.

Operation: 

Exceptions:    
Trap exception

TGETrap If Greater Than Or Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 0

TGE

T: if GPR[rs]  ≥  GPR[rt] then
TrapException

endif
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Format: 
TGEI rs, immediate

Description: 
The 16-bit immediate is sign-extended and compared to the contents 

of general register rs.   Considering both quantities as signed integers, if 
the contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation: 

Exceptions:    
Trap exception

TGEI Trap If Greater Than Or Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEI

16

0

0 0 0 0 0 1 0 1 0 0 0

TGEI

T: if GPR[rs] ≥ (immediate15)48 || immediate15..0 then
TrapException

endif
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Format: 
TGEIU rs, immediate 

Description: 
The 16-bit immediate is sign-extended and compared to the contents 

of general register rs. Considering both quantities as unsigned integers, if 
the contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation: 

 Exceptions:    
Trap exception

TGEIUTrap If Greater Than Or Equal

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEIU

16

0

Immediate Unsigned

0 0 0 0 0 1 0 1 0 0 1

TGEIU

T: if (0 || GPR[rs]) ≥ (0 || (immediate15)48 || immediate15..0) then
TrapException

endif
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Format: 
TGEU rs, rt     

Description: 
The contents of general register rt are compared to the contents of 

general register rs.  Considering both quantities as unsigned integers, if 
the contents of general register rs are greater than or equal to the contents 
of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is 
retrieved by the exception handler only by loading the contents of the 
memory word containing the instruction.

Operation: 

 Exceptions:    
Trap exception

TGEU Trap If Greater Than Or Equal Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGEU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 1

TGEU

T: if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
TrapException

endif
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Format: 
TLBP

Description: 
The Index register is loaded with the address of the TLB entry whose 

contents match the contents of the EntryHi register.  If no TLB entry 
matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references 
associated with the instruction immediately after a TLBP instruction, nor 
is the operation specified if more than one TLB entry matches.

Operation: 

Exceptions: 
Coprocessor unusable exception 

TLBPProbe TLB For Matching Entry

0

6

6  531 25    2426

COP0

6

0

TLBP

191

CO
0 1 0 0 0 0 0 0 1 0 0 00 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 01

TLBP

T: Index← 1 || 0 31

for i in 0..TLBEntries–1
if (TLB[i]167..141 and not (015 || TLB[i]216..205))

 = EntryHi39..13) and not (015 || TLB[i]216..205)) and
(TLB[i]140 or (TLB[i]135..128 = EntryHi7..0)) then

Index ← 026 || i 5..0
endif

endfor
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Format: 
TLBR

Description: 
The G bit (which controls ASID matching) read from the TLB is written 

into both of the EntryLo0 and EntryLo1 registers.
The EntryHi and EntryLo registers are loaded with the contents of the 

TLB entry pointed at by the contents of the TLB Index register. The 
operation is invalid (and the results are unspecified) if the contents of the 
TLB Index register are greater than the number of TLB entries in the 
processor. 

Operation: 

Exceptions: 
Coprocessor unusable exception 

TLBR Read Indexed TLB Entry

0

6

6  531 25   2426

COP0

6

0

TLBR

191

CO
0 1 0 0 0 0 0 0 0 0 0 10 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 01

TLBR

T: PageMask ←  TLB[Index5..0]255..192
EntryHi ← TLB[Index5..0]191..128  and not TLB[Index5..0]255..192
EntryLo1 ←TLB[Index5..0]127..65 || TLB[Index5..0]140
EntryLo0 ← TLB[Index5..0]63..1 || TLB[Index5..0]140
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Format: 
TLBWI

Description: 
The G bit of the TLB is written with the logical AND of the G bits in the 

EntryLo0 and EntryLo1 registers.
The TLB entry pointed at by the contents of the TLB Index register is 

loaded with the contents of the EntryHi and EntryLo registers.
The operation is invalid (and the results are unspecified) if the contents 

of the TLB Index register are greater than the number of TLB entries in the 
processor.

Operation: 

Exceptions: 
Coprocessor unusable exception 

TLBWIWrite Indexed TLB Entry

0

6

6  531 25    2426

COP0

6

0

TLBWI

191

CO
0 1 0 0 0 0 0 0 0 0 1 00 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 01

TLBWI

T: TLB[Index5..0]    ← 

PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0
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Format: 
TLBWR

Description: 
The G bit of the TLB is written with the logical AND of the G bits in the 

EntryLo0 and EntryLo1 registers.
The TLB entry pointed at by the contents of the TLB Random register 

is loaded with the contents of the EntryHi and EntryLo registers.

Operation: 

Exceptions: 
Coprocessor unusable exception 

TLBWR Write Random TLB Entry

0

6

6   531 25   2426

COP0

6

0

TLBWR

191

CO
0 1 0 0 0 0 0 0 0 1 1 00 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 01

TLBWR

T: TLB[Random5..0]    ← 

PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0



CPU Instruction Set Details Appendix A

A – 142

Format: 
TLT rs, rt 

Description: 
The contents of general register rt are compared to general register rs. 

Considering both quantities as signed integers, if the contents of general 
register rs are less than the contents of general register rt, a trap exception 
occurs. 

The code field is available for use as software parameters, but is 
retrieved by the exception handler only by loading the contents of the 
memory word containing the instruction.

Operation: 

Exceptions:    
Trap exception

TLTTrap If Less Than

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLT

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 0

TLT

T: if GPR[rs] < GPR[rt] then
TrapException

endif



CPU Instruction Set Details Appendix A

A – 143

Format: 
TLTI rs, immediate   

Description: 
The 16-bit immediate is sign-extended and compared to the contents 

of general register rs. Considering both quantities as signed integers, if the 
contents of general register rs are less than the sign-extended immediate, 
a trap exception occurs.

Operation: 

Exceptions:    
Trap exception

TLTI Trap If Less Than Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTI

16

0

0 0 0 0 0 1 0 1 0 1 0

TLTI

T: if GPR[rs] < (immediate15)48 || immediate15..0 then
TrapException

endif
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Format: 
TLTIU rs, immediate 

Description: 
The 16-bit immediate is sign-extended and compared to the contents 

of general register rs. Considering both quantities as signed integers, if the 
contents of general register rs are less than the sign-extended immediate, 
a trap exception occurs.

Operation: 

Exceptions:    
Trap exception

TLTIUTrap If Less Than Immediate Unsigned

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTIU

16

0

0 0 0 0 0 1 0 1 0 1 1

TLTIU

T:  if (0 || GPR[rs]) < (0 || (immediate15)48 || immediate15..0) then
TrapException

endif
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Format: 
TLTU rs, rt 

Description: 
The contents of general register rt are compared to general register rs. 

Considering both quantities as unsigned integers, if the contents of general 
register rs are less than the contents of general register rt, a trap exception 
occurs.

The code field is available for use as software parameters, but is 
retrieved by the exception handler only by loading the contents of the 
memory word containing the instruction.

Operation: 

Exceptions:    
Trap exception

TLTU Trap If Less Than Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLTU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 1

TLTU

T: if (0 || GPR[rs]) < (0 || GPR[rt]) then

TrapException

endif
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Format: 
TNE rs, rt 

Description: 
The contents of general register rt are compared to general register rs.  

If the contents of general register rs are not equal to the contents of general 
register rt, a trap exception occurs. 

The code field is available for use as software parameters, but is 
retrieved by the exception handler only by loading the contents of the 
memory word containing the instruction.

Operation: 

Exceptions:
Trap exception

TNETrap If Not Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TNE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 1 0

TNE

T: if GPR[rs] ≠ GPR[rt] then

TrapException

endif
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Format: 
TNEI rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents 

of general register rs. If the contents of general register rs are not equal to 
the sign-extended immediate, a trap exception occurs.

Operation: 

Exceptions:    
Trap exception

TNEI Trap If Not Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTNEI

16

0

0 0 0 0 0 1 0 1 1 1 0

TNEI

T:  if GPR[rs] ≠ (immediate15)48 || immediate15..0 then
TrapException

endif
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Format: 
WAIT 

Description: 
The WAIT instruction is used to halt the internal pipeline and thus 

reduce the power consumption of the CPU.  See Appendix G for more 
details.

Operation: 

Exceptions: 
Coprocessor unusable exception

WAITWaitWAIT

0

6

6  531 25    2426

COP0

6

0

WAIT

191

CO
0 1 0 0 0 0 1 0 0 0 0 00 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 01

T: if SysAD bus is idle then
StopPipeline

endif
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Format: 
XOR rd, rs, rt 

Description: 
The contents of general register rs are combined with the contents of 

general register rt in a bit-wise logical exclusive OR operation.
The result is placed into general register rd. 

Operation: 

Exceptions: 
None 

XORExclusive Or

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 XOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 0 1 1 00 0 0 0 0 

XOR

T: GPR[rd] ← GPR[rs] xor GPR[rt]
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Format: 
XORI rt, rs, immediate

Description: 
The 16-bit immediate is zero-extended and combined with the contents 

of general register rs in a bit-wise logical exclusive OR operation.
The result is placed into general register rt. 

Operation: 

 Exceptions: 
None   

XORI Exclusive OR Immediate

31 2526 2021 1516 0

XORI rs rt immediate

6 5 5 16
0 0 1 1 1 0

XORI

T: GPR[rt]  ← GPR[rs] xor (048 || immediate)
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CPU Instruction Opcode Bit Encoding
The remainder of this Appendix presents the opcode bit encoding for 

the CPU instruction set (ISA and extensions), as implemented by the 
R4600/R4700. 

Table A.4 lists the R4600/R4700 Opcode Bit Encoding.
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Table A.4 

Key to Table:
* Operation codes marked with an asterisk cause reserved instruction exceptions in all current 

implementations and are reserved for future versions of the architecture.
g Operation codes marked with a gamma cause a reserved instruction exception. They are 

reserved for future versions of the architecture.
d Operation codes marked with a delta are valid only for R4600 processors with CP0 enabled, 

and cause a reserved instruction exception on other processors.
f Operation codes marked with a phi are invalid but do not cause reserved instruction 

exceptions in R4600 implementations.

   SPECIAL
ADDI
COP0
DADDI DADDIU LDL LDR * * * *

BEQL BNEL BLEZL BGTZL

LB
SB CACHE

LWU

*

LL LDC1 LDC2 LD
SC SDC1 SDC2 SD

DSLL * DSRL DSRA DSLL32 * DSRL32 DSRA32
TGE TGEU TLT TLTU TEQ TNE

2..0      

REGIMM rt18..16

SLL
 JR

MFHI
MULT
ADD

SLT

*
DSLLV * DSRLV DSRAV
DMULT DMULTU DDIV DDIVU

DADD DADDU DSUB DSUBU* *

*

COPz rs

SPECIAL function

0  1 2 3 4 5 6 7

0  1 2 3 4 5 6 7

31..29
0
1
2
3
4
5
6

  5..3
0
1
2
3
4
5
6
7

20..19
0
1
2
3

7

28..26 Opcode
0  1 2 3 4 5 6 7

SYSCALL BREAK

SH SWL SW SWR
LWC1 LWC2 *
SWC1 SWC2 *

LH LWL LW LBU LHU LWR

SRL SRA SLLV SRLV SRAV
 JALR
MTHI MFLO MTLO

MULTU DIV DIVU
ADDU SUB SUBU AND OR XOR NOR

SLTU

COP1 COP2 *
ADDIU SLTI SLTIU ANDI ORI XORI LUI

REGIMM J JAL BEQ BNE BLEZ BGTZ

* *

BLTZL
TLTI

BLTZALL

BGEZL
TLTIU

BGEZALL
TNEITEQI

MF

23..21
0  1 2 3 4 5 6 725, 24

0
1
2
3

CF
BC

MT CT

CO

DMF γ DMT γ

SDL
LLD
SCD

SDR

* * SYNC

δ

γ γ γ γ γ γ γ

* * * * * * * *
* * * *

* * * *
* *

BLTZ

BLTZAL

BGEZ

BGEZAL
TGEI TGEIU

BCF

18..16
0  1 2 3 4 5 6 720..19

0
1
2
3

BCFL
γ γ γ γ γ γ γ

γ γBCT BCTL γ γ
γ

γ γ γ γ γ γ γγ
γ γ γ γ γ γ γγ

CP0 Function2..0
0  1 2 3 4 5 6 75..3

0
1
2
3

TLBWITLBR TLBWR
TLBP

φ

4
5
6
7

ERET

φ φφ

φ φ φ φ φ φ φφ

φφ

φ φ φ φ φ φ φφ
φ φ φ φ φ φ φφ
φ φ φ φ φ φ φWAIT
φ φ φ φ φ φ φ
φ φ φ φ φ φ φ
φ φ φ φ φ φ φ

COPz rt
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Introduction

 

This appendix provides a detailed description of each floating-point 
unit (FPU) instruction (refer to Appendix A for a detailed description of the 
CPU instructions).  The instructions are listed alphabetically, and any 
exceptions that may occur due to the execution of each instruction are 
listed after the description of each instruction.  Descriptions of the 
immediate causes and the manner of handling exceptions are omitted from 
the instruction descriptions in this appendix (refer to Chapter 7

 

 

 

for 
detailed descriptions of floating-point exceptions and handling). 

Figure B.3 on page B-45 lists the entire bit encoding for the constant 
fields of the floating-point instruction set; the bit encoding for each 
instruction is included with that individual instruction.

 

Instruction Formats

 

There are three basic instruction format types:
• I-Type, or Immediate instructions, which include load and store oper-

ations
• M-Type, or Move instructions
• R-Type, or Register instructions, which include the two- and three-

register floating-point operations.
The instruction description subsections that follow show how these 

three basic instruction formats are used by:
• Load and store instructions
• Move instructions
• Floating-Point computational instructions
• Floating-Point branch instructions
Floating-point instructions are mapped onto the MIPS coprocessor 

instructions, defining coprocessor unit number one (CP1) as the floating-
point unit.

Each operation is valid only for certain formats.   Implementations may 
support some of these formats and operations through emulation, but they 
only need to support combinations that are valid (marked 

 

V

 

 in Table B.1).  
Combinations marked 

 

R

 

 in Table B.1 are not currently specified by this 
architecture, and cause an unimplemented instruction trap.  They will be 
available for future extensions to the architecture.
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The coprocessor branch on condition true/false instructions can be 
used to logically negate any predicate.  Thus, the 32 possible conditions 
require only 16 distinct comparisons, as shown in Table B.2 below.

 

Operation Source Format

Single Double Word Longword

 

ADD V V R R

SUB V V R R

MUL V V R R

DIV V V R R

SQRT V V R R

ABS V V R R

MOV V V

NEG V V R R

TRUNC.L V V

ROUND.L V V

CEIL.L V V

FLOOR.L V V

TRUNC.W V V

ROUND.W V V

CEIL.W V V

FLOOR.W V V

CVT.S V V V

CVT.D V V V

CVT.W V V  

CVT.L V V  

C V V  R R

 

Table B.1 Valid FPU Instruction Formats
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Floating-Point Loads, Stores, and Moves

 

All movement of data between the floating-point coprocessor and 
memory is accomplished by coprocessor load and store operations, which 
reference the floating-point coprocessor 

 

General Purpose

 

 registers.  These 
operations are unformatted; no format conversions are performed and, 
therefore, no floating-point exceptions can occur due to these operations.

Data may also be directly moved between the floating-point 
coprocessor and the processor by 

 

move to coprocessor

 

 and

 

 

 

move from 
coprocessor

 

 instructions.  Like the floating-point load and store operations, 
move to/from operations perform no format conversions and never cause 
floating-point exceptions.

An additional pair of coprocessor registers are available, called 

 

Floating-Point Control 

 

registers for which the only data movement 
operations supported are moves to and from processor 

 

General Purpose

 

 
registers.

 

Condition Relations Invalid
Operation
Exception If
Unordered

Mnemonic Code Greater
Than

Less
Than

Equal Unordered

True False

 

F T   0 F F F F No

UN OR   1 F F F T No

EQ NEQ   2 F F T F No

UEQ OGL   3 F F T T No

OLT UGE   4 F T F F No

ULT OGE   5 F T F T No

OLE UGT   6 F T T F No

ULE OGT   7 F T T T No

SF ST   8 F F F F Yes

NGLE GLE   9 F F F T Yes

SEQ SNE 10 F F T F Yes

NGL GL 11 F F T T Yes

LT NLT 12 F T F F Yes

NGE GE 13 F T F T Yes

LE NLE 14 F T T F Yes

NGT GT 15 F T T T Yes

 

Table B.2 Logical Negation of Predicates by Condition True/False
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Floating-Point Operations

 

The floating-point unit operation set includes:
• floating-point add
• floating-point subtract
• floating-point multiply
• floating-point divide
• floating-point square root
• convert between fixed-point and floating-point formats
• convert between floating-point formats
• floating-point compare
These operations satisfy the requirements of IEEE Standard 754 

requirements for accuracy. Specifically, these operations obtain a result 
which is identical to an infinite-precision result rounded to the specified 
format, using the current rounding mode.

Instructions must specify the format of their operands.  Except for 
conversion functions, mixed-format operations are not provided.

 

Instruction Notation Conventions

 

In this appendix, all variable subfields in an instruction format (such 
as 

 

fs, ft, immediate

 

, and so on) are shown in lower-case.  The instruction 
name (such as ADD, SUB, and so on) is shown in upper-case.

For the sake of clarity, we sometimes use an alias for a variable subfield 
in the formats of specific instructions.  For example, we use 

 

rs = base 

 

in 
the format for load and store instructions.  Such an alias is always lower 
case, since it refers to a variable subfield.

In some instructions, the instruction subfields 

 

op 

 

and 

 

function 

 

can 
have constant 6-bit values.  When reference is made to these instructions, 
upper-case mnemonics are used.  For instance, in the floating-point ADD 
instruction we use 

 

op 

 

= COP1 and 

 

function 

 

= FADD.   In other cases, a 
single field has both fixed and variable subfields, so the name contains 
both upper and lower case characters.  Bit encoding for mnemonics are 
shown in Figure B.3 at the end of this appendix, and are also included with 
each individual instruction.

In the instruction description examples that follow, the 

 

Operation 

 

section describes the operation performed by each instruction using a 
high-level language notation.

 

Instruction Notation Examples

 

The following examples illustrate the application of some of the 
instruction notation conventions:

Example #1: 

GPR[rt] ←

Sixteen zero bits are concatenated with an immediate 
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General Purpose Register rt.

Example #2:

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

immediate || 016

(immediate15)16 || immediate15..0
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Load and Store Instructions 

 

In the R4600 implementation, the instruction immediately following a 
load may use the contents of the register being loaded.  In such cases, the 
hardware 

 

interlocks

 

, requiring additional real cycles, so scheduling load 
delay slots is still desirable, although not required for functional code.

The behavior of the load store instructions is dependent on the width 
of the 

 

FGR

 

s.
• When the 

 

FR

 

 bit in the 

 

Status

 

 register equals zero, the 

 

Floating-Point
General 

 

registers

 

 

 

(

 

FGR

 

s) are 32-bits wide.
• When the 

 

FR

 

 bit in the 

 

Status

 

 register equals one, the 

 

Floating-Point
General 

 

registers

 

 

 

(

 

FGR

 

s) are 64-bits wide.
In the load and store operation descriptions, the functions listed in

Table B.3 are used to summarize the handling of virtual addresses and 
physical memory.

Figure B.1 shows the I-Type instruction format used by load and store 
operations.

 

Figure B.1  Load and Store Instruction Format

 

Function Meaning

 

AddressTranslation Uses the TLB to find the physical address given the virtual 
address.  The function fails and an exception is taken if 
the required translation is not present in the TLB.

LoadMemory Uses the cache and main memory to find the contents of 
the word containing the specified physical address.  The 
low-order two bits of the address and the 

 

Access Type

 

 field 
indicates which of each of the four bytes within the data 
word need to be returned.  If the cache is enabled for this 
access, the entire word is returned and loaded into the 
cache.

StoreMemory Uses the cache, write buffer, and main memory to store 
the word or part of word specified as data in the word con-
taining the specified physical address.  The low-order two 
bits of the address and the 

 

Access Type

 

 field indicates 
which of each of the four bytes within the data word 
should be stored.

 

Table B.3 Load and Store Common Functions

op is a 6-bit operation code

base is the 5-bit base register specifier

ft is a 5-bit source (for stores) or destination (for loads) FPA register specifier

offset is the 16-bit signed immediate offset

31 25 21 20 16 0

    I-Type (Immediate)

15

offset

26

ftbaseop

6 5 5 16
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All coprocessor loads and stores reference aligned-word data items.  
Thus, for word loads and stores, the access type field is always WORD, and 
the low-order two bits of the address must always be zero. 

For doubleword loads and stores, the access type field is always 
DOUBLEWORD, and the low-order three bits of the address must always 
be zero. 

Regardless of byte-numbering order (endianness), the address 
specifies that byte which has the smallest byte-address in the addressed 
field.  For a big-endian machine, this is the leftmost byte; for a little-endian 
machine, this is the rightmost byte.

 

Computational Instructions

 

Computational instructions include all of the arithmetic floating-point 
operations performed by the FPU.

Figure B.2 shows the R-Type instruction format used for 
computational operations.

 

Figure B.2  Computational Instruction Format

 

The 

 

function

 

 field indicates the floating-point operation to be 
performed.

Each floating-point instruction can be applied to a number of operand 

 

formats

 

.  The operand format for an instruction is specified by the 5-bit 

 

format

 

 field; decoding for this field is shown in Table B.4.

 

Code Mnemonic Size Format

 

16 S single Binary floating-point

17 D double Binary floating-point

18 Reserved

19 Reserved

20 W single 32-bit binary fixed-point

21 L longword 64-bit binary fixed-point

22–31 Reserved

 

Table B.4 Format Field Decoding

COP1 is a 6-bit operation code

fmt is a 5-bit format specifier

fs is a 5-bit source1 register

ft is a 5-bit source2 register

fd is a 5-bit destination register

function is a 6-bit function field

31 0

    R-Type (Register)

6 5 5 5 5 6

COP1 fmt ft fs fd function

11 1021 20 16 1526 25 6 5
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Table B.5 lists all floating-point instructions.

In the following pages, the notation 

 

FGR

 

 refers to the 32 

 

General 
Purpose

 

 registers 

 

FGR0

 

 through 

 

FGR31

 

 of the FPU, and 

 

FPR

 

 refers to the 
floating-point registers of the FPU.

• When the 

 

FR

 

 bit in the 

 

Status

 

 register (SR(26)) equals zero, only the
even floating-point registers are valid and the 32 

 

General Purpose

 

 reg-
isters of the FPU are 32-bits wide.

• When the 

 

FR

 

 bit in the 

 

Status

 

 register (SR(26)) equals one, both odd
and even floating-point registers may be used and the 32 

 

General Pur-
pose

 

 registers of the FPU are 64-bits wide. 
The following routines are used in the description of the floating-point 

operations to retrieve the value of an FPR or to change the value of an FGR:

 

Code
(5: 0)

Mnemonic Operation

 

0 ADD Add

1 SUB Subtract

2 MUL Multiply

3 DIV Divide

4 SQRT Square root

5 ABS Absolute value

6 MOV Move

7 NEG Negate

8 ROUND.L Convert to single fixed-point, rounded to nearest/even

9 TRUNC.L Convert to single fixed-point, rounded toward zero

10 CEIL.L Convert to single fixed-point, rounded to +

 

∞

 

11 FLOOR.L Convert to single fixed-point, rounded to -

 

∞

 

12 ROUND.W Convert to single fixed-point, rounded to nearest/even

13 TRUNC.W Convert to single fixed-point, rounded toward zero

14 CEIL.W Convert to single fixed-point, rounded to + 

 

∞

 

15 FLOOR.W Convert to single fixed-point, rounded to – 

 

∞

 

16–31 – Reserved

32 CVT.S Convert to single floating-point

33 CVT.D Convert to double floating-point

34 – Reserved

35 – Reserved

36 CVT.W Convert to 32-bit binary fixed-point

37 CVT.L Convert to 64-bit binary fixed-point

38–47 – Reserved

48–63 C Floating-point compare

 

Table B.5 Floating-Point Instructions and Operations
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 FR = 0

value  ← ValueFPR(fpr, fmt)
case fmt of
S, W:
if FGR0 = 0
value ← FGR[fpr]
else
value ← FGR[fpr - 1]
endif
D:
/* undefined for fpr not even */
value ← FGR[fpr]
end

StoreFPR(fpr, fmt, value):
case fmt of
S, W:
if FGR0 = 0
FGR[fpr] ← FGR[fpr]63..32 || value
else
FGR[fpr - 1]  ← value || FGR[fpr - 1]31..0
endif
D:
/* undefined for fpr not even */
FGR[fpr] ← value
end

       
FR = 1

value ← ValueFPR(fpr, fmt)
case fmt of
S:
value ← FGR[fpr]31..0
D, L:
value ← FGR[fpr]
W:
value ← FGR[fpr]
end

StoreFPR(fpr, fmt, value):
case fmt of
S, W:
FGR[fpr] ← undefined32 || value
D, L:
FGR[fpr] ← value
end
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Format:
ABS.fmt fd, fs

Description: 
The contents of the FPU register specified by fs are interpreted in the 

specified format and the arithmetic absolute value is taken.  The result is 
placed in the floating-point register specified by fd.

The absolute value operation is arithmetic; a NaN operand signals 
invalid operation.

This instruction is valid only for single- and double-precision floating-
point formats.  The operation is not defined if bit 0 of any register 
specification is set and the FR bit in the Status register equals zero, since 
the register numbers specify an even-odd pair of adjacent coprocessor 
general registers.  When the FR bit in the Status register equals one, both 
even and odd register numbers are valid.

Operation: 

Exceptions: 
Coprocessor unusable exception
Coprocessor exception trap

Coprocessor Exceptions: 
Unimplemented operation exception
Invalid operation exception

ABS.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ABS

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1

ABS.fmtAbsolute Value

T: StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))
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Format:
ADD.fmt fd, fs, ft 

Description: 
The contents of the FPU registers specified by fs and ft are interpreted 

in the specified format and arithmetically added.  The result is rounded as 
if calculated to infinite precision and then rounded to the specified format 
(fmt), according to the current rounding mode.  The result is placed in the 
floating-point register (FPR) specified by fd.

This instruction is valid only for single- and double-precision floating-
point formats.  The operation is not defined if bit 0 of any register 
specification is set and the FR bit in the Status register equals zero, since 
the register numbers specify an even-odd pair of adjacent coprocessor 
general registers.  When the FR bit in the Status register equals one, both 
even and odd register numbers are valid.

Operation: 

Exceptions: 
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions: 
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

ADD.fmtFloating-Point Add

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd ADD

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0

ADD.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR(ft, fmt))
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Format: 
BC1F offset     

Description: 
A branch target address is computed from the sum of the address of 

the instruction in the delay slot and the 16-bit offset, shifted left two bits 
and sign-extended.  If the result of the last floating-point compare is false, 
the program branches to the target address, with a delay of one 
instruction. 

Operation: 

Exceptions: 
Coprocessor unusable exception 

BC1F Branch On FPA False

16 1531 2526

COP1

6

0

16

offset

(Coprocessor 1)

5

BC BCF

5

21  20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

BC1F

T–1: condition ← not COC[1]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
    PC ← PC + target
endif
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Format: 
BC1FL offset     

Description: 
A branch target address is computed from the sum of the address of 

the instruction in the delay slot and the 16-bit offset, shifted left two bits 
and sign-extended. 

If the result of the last floating-point compare is false, the program 
branches to the target address, with a delay of one instruction.  If the 
conditional branch is not taken, the instruction in the branch delay slot is 
nullified.

Operation:

 Exceptions: 
Coprocessor unusable exception 

BC1FLBranch On FPU False Likely

16 1531 2526

COP1

6

0

16

offset

(Coprocessor 1)

5

BC BCFL

5

21  20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0

BC1FL

T–1: condition ← not COC[1]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
    PC ← PC + target

else
  NullifyCurrentInstruction

endif
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Format: 
BC1T offset

Description: 
A branch target address is computed from the sum of the address of 

the instruction in the delay slot and the 16-bit offset, shifted left two bits 
and sign-extended.  If the result of the last floating-point compare is true, 
the program branches to the target address, with a delay of one 
instruction. 

Operation: 

Exceptions:   
Coprocessor unusable exception 

BC1T Branch On FPU True

5

16 15

BC

31 2526

COP1

6

0

16

offset

(Coprocessor 1)

BCT

5

21  20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1

BC1T

T–1: condition ← COC[1]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
    PC ← PC + target

 endif
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Format: 
BC1TL offset 

Description: 
A branch target address is computed from the sum of the address of 

the instruction in the delay slot and the 16-bit offset, shifted left two bits 
and sign-extended. 

If the result of the last floating-point compare is true, the program 
branches to the target address, with a delay of one instruction.  If the 
conditional branch is not taken, the instruction in the branch delay slot is 
nullified.

Operation: 

 Exceptions:   
Coprocessor unusable exception 

BC1TLBranch On FPU True Likely

5

16 15

BC

31 2526

COP1

6

0

16

offset

(Coprocessor 1)

BCTL

5

21  20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1

BC1TL

T–1: condition ← COC[1]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

 endif
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Format:
C.cond.fmt fs, ft

Description: 
The contents of the floating-point registers specified by fs and ft are 

interpreted in the specified format and arithmetically compared.
A result is determined based on the comparison and the conditions 

specified in the instruction.  If one of the values is a Not a Number (NaN), 
and the high-order bit of the condition field is set, an invalid operation 
exception is taken.  After a one-instruction delay, the condition is available 
for testing with branch on floating-point coprocessor condition 
instructions.

Comparisons are exact and can neither overflow nor underflow.  Four 
mutually-exclusive relations are possible as results: less than, equal, 
greater than, and unordered.  The last case arises when one or both of the 
operands are NaN; every NaN compares unordered with everything, 
including itself.

Comparisons ignore the sign of zero, so +0 = –0.
This instruction is valid only for single- and double-precision floating-

point formats.  The operation is not defined if bit 0 of any register 
specification is set and the FR bit in the Status register equals zero, since 
the register numbers specify an even-odd pair of adjacent coprocessor 
general registers.  When the FR bit in the Status register equals one, both 
even and odd register numbers are valid.

Note:  *See “FPU Instruction Opcode Bit Encoding” at the end of 
Appendix B.

C.cond.fmt Floating-Point 

31 0

6 5 5 5 5 4

COP1 fmt ft fs 0 cond*

11 1021 20 16 1526 25

2

FC*

6 5 4 3

0 1 0 0 0 1 0 0 0 0 0

Compare C.cond.fmt
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Operation: 

 Exceptions: 
Coprocessor unusable
Floating-Point exception

Coprocessor Exceptions: 
Unimplemented operation exception
Invalid operation exception

T: if NaN(ValueFPR(fs, fmt)) or NaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if cond3 then

signal InvalidOperationException
endif

else
less ← ValueFPR(fs, fmt) < ValueFPR(ft, fmt)
equal ← ValueFPR(fs, fmt) = ValueFPR(ft, fmt)
unordered ← false

endif
condition ← (cond2 and less) or (cond1 and equal) or 

   (cond0 and unordered)
FCR[31]23  ← condition
COC[1] ←  condition
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Format:
CEIL.L.fmt fd, fs

Description: 
The contents of the floating-point register specified by fs are 

interpreted in the specified source format, fmt, and arithmetically 
converted to the single fixed-point format.  The result is placed in the 
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion 
is rounded as if the current rounding mode is round to +∞ (2).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.  When the FR bit in the Status register 
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity, NaN, or the correctly rounded 
integer result is outside of –263 to 263– 1, the Invalid operation exception 
is raised.  If the Invalid operation is not enabled then no exception is taken 
and 263–1 is returned.

Operation: 

 Exceptions: 
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions: 
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

CEIL.L.fmt Floating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0

Ceiling to Long CEIL.L.fmt

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))
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Format:
CEIL.W.fmt fd, fs

Description: 
The contents of the floating-point register specified by fs are 

interpreted in the specified source format, fmt, and arithmetically 
converted to the single fixed-point format.  The result is placed in the 
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion 
is rounded as if the current rounding mode is round to +∞ (2).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats.  The operation is not defined if bit 0 of any 
register specification is set and the FR bit in the Status register equals zero, 
since the register numbers specify an even-odd pair of adjacent 
coprocessor general registers.  When the FR bit in the Status register 
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly 
rounded integer result is outside of –231 to 231– 1, the Invalid operation 
exception is raised. If the Invalid operation is not enabled then no 
exception is taken and 231–1 is returned.

Operation: 

 Exceptions: 
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions: 
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

CEIL.W.fmt Floating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0

Ceiling to Single CEIL.W.fmt

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))
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Format: 
CFC1 rt, fs 

Description: 
The contents of the FPU control register fs are loaded into general 

register rt. 
This operation is only defined when fs equals 0 or 31.
The contents of general register rt are undefined for time T of the 

instruction immediately following this load instruction.

Operation: 

 Exceptions: 
Coprocessor unusable exception 

(Coprocessor 1)CFC1

11

Move Control Word From FPU

31 2526 2021 1516

COP1 CF rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0  0 0 0 0  0 0 0 0

CFC1

T:       temp  ←   FCR[fs] 
T+1:   GPR[rt]  ← (temp31)32 || temp



FPU Instruction Set Details Appendix B

B – 20

Format: 
CTC1 rt, fs 

Description: 
The contents of general register rt are loaded into FPU control register 

fs.  This operation is only defined when fs equals 31.
Writing to Control Register 31, the floating-point Control/Status 

register, causes an interrupt or exception if any cause bit and its 
corresponding enable bit are both set.  The register will be written before 
the exception occurs.  The contents of floating-point control register fs are 
undefined for time T of the instruction immediately following this load 
instruction.

Operation: 

Exceptions: 
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions: 
Unimplemented operation exception
Invalid operation exception
Division by zero exception
Inexact exception
Overflow exception
Underflow exception

CTC1

11

Move Control Word To FPU

31 2526 2021 1516

COP1 CT rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 1 1 0 0 0 0  0 0 0 0  0 0 0 0

CTC1

T: temp ←  GPR[rt]31..0
T+1: FCR[fs]  ←  temp

COC[1] ← FCR[31]23



FPU Instruction Set Details Appendix B

B – 21

Format:
CVT.D.fmt fd, fs 

Description: 
The contents of the floating-point register specified by fs is interpreted 

in the specified source format, fmt, and arithmetically converted to the 
double binary floating-point format.  The result is placed in the floating-
point register specified by fd.

This instruction is valid only for conversions from single floating-point 
format, 32-bit or 64-bit fixed-point format.

If the single floating-point or single fixed-point format is specified, the 
operation is exact. The operation is not defined if bit 0 of any register 
specification is set and the FR bit in the Status register equals zero, since 
the register numbers specify an even-odd pair of adjacent coprocessor 
general registers.  When the FR bit in the Status register equals one, both 
even and odd register numbers are valid.

Operation: 

Exceptions: 
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions: 
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
Underflow exception

CVT.D.fmt Floating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.D

11 1021 20 16 1526 25

Floating-Point Format

6 5

0 1 0 0 0 1 1 0 0 0 0 10 0 0 0 0

Convert to Double CVT.D.fmt

T:       StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))
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Format:
CVT.L.fmt fd, fs 

Description: 
The contents of the floating-point register specified by fs are 

interpreted in the specified source format, fmt, and arithmetically 
converted to the long fixed-point format.  The result is placed in the 
floating-point register specified by fd.

This instruction is valid only for conversions from single- or double-
precision floating-point formats. 

When the source operand is an Infinity, NaN, or the correctly rounded 
integer result is outside of –263 to 263–1, the Invalid operation exception is 
raised.   If the Invalid operation is not enabled then no exception is taken 
and 263–1 is returned.

Operation: 

 Exceptions: 
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions: 
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

CVT.L.fmt Floating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 1 0 0 1 0 10 0 0 0 0

Convert to Long CVT.L.fmt

T:       StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))
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Format:
CVT.S.fmt fd, fs

Description: 
The contents of the floating-point register specified by fs are 

interpreted in the specified source format, fmt, and arithmetically 
converted to the single binary floating-point format.  The result is placed 
in the floating-point register specified by fd.  Rounding occurs according to 
the currently specified rounding mode.

This instruction is valid only for conversions from double floating-point 
format, or from 32-bit or 64-bit fixed-point format.  The operation is not 
defined if bit 0 of any register specification is set and the FR bit in the 
Status register equals zero, since the register numbers specify an even-odd 
pair of adjacent coprocessor general registers.  When the FR bit in the 
Status register equals one, both even and odd register numbers are valid.

Operation: 

 Exceptions: 
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
Underflow exception

CVT.S.fmtFloating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.S

11 1021 20 16 1526 25

Floating-Point Format

6 5

0 1 0 0 0 1 1 0 0 0 0 00 0 0 0 0

Convert to SingleCVT.S.fmt

T: StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))
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Format:
CVT.W.fmt fd, fs

Description: 
The contents of the floating-point register specified by fs are 

interpreted in the specified source format, fmt, and arithmetically 
converted to the single fixed-point format.  The result is placed in the 
floating-point register specified by fd.   This instruction is valid only for 
conversion from a single- or double-precision floating-point formats.  The 
operation is not defined if bit 0 of any register specification is set and the 
FR bit in the Status register equals zero, since the register numbers specify 
an even-odd pair of adjacent coprocessor general registers.  When the FR 
bit in the Status register equals one, both even and odd register numbers 
are valid.

When the source operand is an Infinity or NaN, or the correctly 
rounded integer result is outside of –231 to 231–1, an Invalid operation 
exception is raised.  If Invalid operation is not enabled, then no exception 
is taken and 231 –1 is returned.

Operation: 

 Exceptions: 
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions: 
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

CVT.W.fmt
Floating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 1 0 0 1 0 00 0 0 0 0

Convert to CVT.W.fmt

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))



FPU Instruction Set Details Appendix B

B – 25

Format:
DIV.fmt fd, fs, ft   

Description: 
The contents of the floating-point registers specified by fs and ft are 

interpreted in the specified format and arithmetically divided.  The result 
is rounded as if calculated to infinite precision and then rounded to the 
specified format, according to the current rounding mode.  The result is 
placed in the floating-point register specified by fd.

This instruction is valid for only single or double precision floating-
point formats.

The operation is not defined if bit 0 of any register specification is set 
and the FR bit in the Status register equals zero, since the register 
numbers specify an even-odd pair of adjacent coprocessor general 
registers.  When the FR bit in the Status register equals one, both even and 
odd register numbers are valid.

Operation: 

Exceptions: 
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Division-by-zero exception
Inexact exception
Overflow exception
Underflow exception

DIV.fmtFloating-Point Divide

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd DIV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 1

DIV.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt)/ValueFPR(ft, fmt))



FPU Instruction Set Details Appendix B

B – 26

Format: 
DMFC1 rt, fs

Description: 
The contents of register fs from the floating-point coprocessor is stored 

into processor register rt.
The contents of general register rt are undefined for time T of the 

instruction immediately following this load instruction.
The FR bit in the Status register specifies whether all 32 registers of the 

R4600 are addressable.  When FR equals zero, this instruction is not 
defined when the least significant bit of fs is non-zero.  When FR is set, fs 
may specify either odd or even registers.

Operation: 

Exceptions: 
Coprocessor unusable exception 

DMFC1 Doubleword Move From

fs

11 10

5

31 2526 2021 1516 0

COP1 DMF rt 0

6 5 5 11

Floating-Point Coprocessor

0 1 0 0 0 1 0 0 0 0 1 0 0 0   0 0 0 0  0 0 00

DMFC1

 T: if SR26 = 1 then
data ← CPR[1,fs]

else
data ← CPR[1,fs4..1 || 0]

endif

T+1: GPR[rt] ← data 
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Format: 
DMTC1 rt, fs

Description: 
The contents of general register rt are loaded into coprocessor register 

fs of the CP1.
The contents of floating-point register fs are undefined for time T of the 

instruction immediately following this load instruction.
The FR bit in the Status register specifies whether all 32 registers of the 

R4600 are addressable.  When FR equals zero, this instruction is not 
defined when the least significant bit of fs is non-zero.  When FR equals 
one, fs may specify either odd or even registers.

Operation: 

Exceptions: 
Coprocessor unusable exception 

DMTC1 Doubleword Move To

fs

11 10

5

31 2526 2021 1516 0

COP1 DMT rt 0

6 5 5 11

Floating-Point Coprocessor

0 1 0 0 0 1 0 0 1 0 1 0 0 0   0 0 0 0  0 0 00

DMTC1

 T: data ← GPR[rt] 

T+1: if SR26 = 1 then
CPR[1, fs] ← data

else
CPR[1, fs4..1 || 0] ← data

endif



FPU Instruction Set Details Appendix B

B – 28

Format:
FLOOR.L.fmt fd, fs

Description: 
The contents of the floating-point register specified by fs are 

interpreted in the specified source format, fmt, and arithmetically 
converted to the single fixed-point format.  The result is placed in the 
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion 
is rounded as if the current rounding mode is round to -∞ (3).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded 
integer result is outside of –263 to 263– 1, the Invalid operation exception 
is raised.  If the Invalid operation is not enabled then no exception is taken 
and 263–1 is returned.

Operation: 

 Exceptions: 
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions: 
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

FLOOR.L.fmt Floating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1

Floor to Long FLOOR.L.fmt

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))
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Format:
FLOOR.W.fmt fd, fs

Description: 
The contents of the floating-point register specified by fs are 

interpreted in the specified source format, fmt, and arithmetically 
converted to the single fixed-point format.  The result is placed in the 
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion 
is rounded as if the current rounding mode is round to –∞ (RM = 3). 

This instruction is valid only for conversion from a single- or double-
precision floating-point formats.  The operation is not defined if bit 0 of any 
register specification is set and the FR bit in the Status register equals zero, 
since the register numbers specify an even-odd pair of adjacent 
coprocessor general registers.  When the FR bit in the Status register 
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly 
rounded integer result is outside of –231 to 231–1, an Invalid operation 
exception is raised.  If Invalid operation is not enabled, then no exception 
is taken and 231–1 is returned.

Operation: 

Exceptions: 
Coprocessor unusable exception 
Floating-Point exception 

Coprocessor Exceptions: 
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

FLOOR.W.fmt Floating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 1 10 0 0 0 0

Floor to Single FLOOR.W.fmt

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))
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Format: 
LDC1 ft, offset(base)

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form an unsigned effective address.
When FR = 0, the contents of the doubleword at the memory location 

specified by the effective address is loaded into registers ft and ft+1 of the 
floating-point coprocessor.  This instruction is not valid, and is undefined, 
when the least significant bit of ft is non-zero. 

When FR = 1, the contents of the doubleword at the memory location 
specified by the effective address are loaded into the 64-bit register ft of the 
floating point coprocessor.

The FR bit of the Status register (SR26) specifies whether all 32 registers 
of the R4600 are addressable. If FR equals zero, this instruction is not 
defined when the least significant bit of ft is non-zero.  If FR equals one, ft 
may specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

Operation:

Exceptions: 
Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LDC1 Load Doubleword to FPU

31 2526 2021 1516 0

LDC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 0 1 0 1

LDC1

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← LoadMemory(uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SR26 = 1 then

CPR[1, ft] ← data
else

CPR[1, ft4..1 || 0] ← data
endif
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Format: 
LWC1 ft, offset(base)   

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form an unsigned effective address.  The contents of the 
word at the memory location specified by the effective address is loaded 
into register ft of the floating-point coprocessor.

The FR bit of the Status register specifies whether all 64-bit Floating-
Point registers are addressable.  If FR equals zero, LWC1 loads either the 
high or low half of the 16 even Floating-Point registers.  If FR equals one, 
LWC1 loads the low 32-bits of both even and odd Floating-Point registers.

If either of the two least-significant bits of the effective address is non-
zero, an address error exception occurs. 

Operation: 

Exceptions: 
Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LWC1Load Word to FPU

31 2526 2021 1516 0

LWC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 0 0 0 1

LWC1

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
mem ← LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 02)
if SR26 = 1 then
CPR[1, ft] ← undefined32 || mem31+8*byte..8*byte
else if ft0=0 then
CPR[1, ft4..1 || 0] ← CPR[1, ft4..1 || 0]64..32 || mem31+8*byte..8*byte
else
CPR[1, ft4..1 || 0] ← mem31+8*byte..8*byte || CPR[1, ft4..1 || 0]31..0
endif
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Format: 
MFC1 rt, fs 

Description: 
The contents of register fs from the floating-point coprocessor are 

loaded into processor register rt.
The contents of register rt are undefined for time T of the instruction 

immediately following this load instruction.
The FR bit of the Status register specifies whether all 32 registers of the 

R4600 are addressable.  If FR equals zero, MFC1 loads either the high or 
low half of the 16 even Floating-Point registers.  If FR equals one, MFC1 
stores the low 32-bits of both even and odd Floating-Point registers.

Operation: 

Exceptions: 
Coprocessor unusable exception

MFC1

11

Move From FPU

31 2526 2021 1516

COP1 MF rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0 

MFC1

T: if SR26 = 1 then
data ← CPR[1, fs]

else if fs0 = 0 then
data ← CPR[1, fs4..1 || 0]31..0

else
data ← CPR[1, fs4..1 || 0]63..32

endif
T+1: GPR[rt] ← (data31)32 || data
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Format:
MOV.fmt fd, fs 

Description: 
The contents of the FPU register specified by fs are interpreted in the 

specified format and are copied into the FPU register specified by fd.
The move operation is non-arithmetic; no IEEE 754 exceptions occur 

as a result of the instruction.
This instruction is valid only for single- or double-precision floating-

point formats.
The operation is not defined if bit 0 of any register specification is set 

and the FR bit in the Status register equals zero, since the register 
numbers specify an even-odd pair of adjacent coprocessor general 
registers.  When the FR bit in the Status register equals one, both even and 
odd register numbers are valid.

Operation: 

Exceptions: 
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions: 
Unimplemented operation exception

MOV.fmtFloating-Point Move

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd MOV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 00 0 0 0 0

MOV.fmt

T: StoreFPR(fd, fmt, ValueFPR(fs, fmt))
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Format:
MTC1 rt, fs 

Description: 
The contents of register rt are loaded into the FPU general register at 

location fs. 
The contents of floating-point register fs is undefined for time T of the 

instruction immediately following this load instruction.
The FR bit of the Status register specifies whether all 32 registers of the 

R4600 are addressable.  If FR equals zero, MTC1 loads either the high or 
low half of the 16 even Floating-Point registers.  If FR equals one, MTC1 
loads the low 32-bits of both even and odd Floating-Point registers.

Operation:

Exceptions:   
Coprocessor unusable exception 

MTC1

11

Move To FPU

31 2526 2021 1516

COP1 MT rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 0  0 0 0 0  0 0 0 00 0 1 0 0

MTC1

T: data  ←  GPR[rt]31..0
T+1: if SR26 = 1 then

CPR[1, fs] ←  undefined32 || data
else if fs0=0 then

CPR[1, fs4..1 || 0] ←  CPR[1, fs4..1 || 0]63..32 || data
else

CPR[1, fs4..1 || 0] ←  data || CPR[1, fs4..1 || 0]31..0
endif
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Format:
MUL.fmt fd, fs, ft 

Description: 
The contents of the floating-point registers specified by fs and ft are 

interpreted in the specified format and arithmetically multiplied.  The 
result is rounded as if calculated to infinite precision and then rounded to 
the specified format, according to the current rounding mode.  The result 
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-
point formats.

The operation is not defined if bit 0 of any register specification is set 
and the FR bit in the Status register equals zero, since the register 
numbers specify an even-odd pair of adjacent coprocessor general 
registers.  When the FR bit in the Status register equals one, both even and 
odd register numbers are valid.

Operation: 

Exceptions: 
Coprocessor unusable exception 
 Floating-Point exception 

Coprocessor Exceptions: 
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

MUL.fmtFloating-Point Multiply

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd MUL

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 0

MUL.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) * ValueFPR(ft, fmt))
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Format:
NEG.fmt fd, fs

Description: 
The contents of the FPU register specified by fs are interpreted in the 

specified format and the arithmetic negation is taken (polarity of the sign-
bit is changed).  The result is placed in the FPU register specified by fd.

The negate operation is arithmetic; an NaN operand signals invalid 
operation.

This instruction is valid only for single- or double-precision floating-
point formats.  The operation is not defined if bit 0 of any register 
specification is set and the FR bit in the Status register equals zero, since 
the register numbers specify an even-odd pair of adjacent coprocessor 
general registers.  When the FR bit in the Status register equals one, both 
even and odd register numbers are valid.

Operation: 

Exceptions: 
Coprocessor unusable exception 
Floating-Point exception 

Coprocessor Exceptions: 
Unimplemented operation exception
Invalid operation exception

NEG.fmt Floating-Point Negate

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd NEG

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 10 0 0 0 0

NEG.fmt

T: StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))
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Format:
ROUND.L.fmt fd, fs

Description: 
The contents of the floating-point register specified by fs are 

interpreted in the specified source format, fmt, and arithmetically 
converted to the long fixed-point format.  The result is placed in the 
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion 
is rounded as if the current rounding mode is round to nearest/even (0).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded 
integer result is outside of –263 to 263– 1, the Invalid operation exception 
is raised.  If the Invalid operation is not enabled then no exception is taken 
and 263 –1 is returned.

Operation: 

 Exceptions: 
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions: 
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

ROUND.L.fmt Floating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Round to Long ROUND.L.fmt

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))
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Format:
ROUND.W.fmt fd, fs

Description: 
The contents of the floating-point register specified by fs are 

interpreted in the specified source format, fmt, and arithmetically 
converted to the single fixed-point format.  The result is placed in the 
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion 
is rounded as if the current rounding mode is round to the nearest/even 
(RM = 0).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats.  The operation is not defined if bit 0 of any 
register specification is set and the FR bit in the Status register equals zero, 
since the register numbers specify an even-odd pair of adjacent 
coprocessor general registers.  When the FR bit in the Status register 
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly 
rounded integer result is outside of –231 to 231 –1, an Invalid operation 
exception is raised.  If Invalid operation is not enabled, then no exception 
is taken and 231 –1 is returned.

Operation: 

Exceptions: 
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions: 
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

ROUND.W.fmtFloating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 0 00 0 0 0 0

Round to Single
ROUND.W.fmt

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))
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Format: 
SDC1 ft, offset(base)

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form an unsigned effective address. 
When FR = 0, the contents of registers ft and ft+1 from the floating-

point coprocessor are stored at the memory location specified by the 
effective address.  This instruction is not valid, and is undefined, when the 
least significant bit of ft is non-zero. 

When FR = 1, the 64-bit register ft is stored to the contents of the 
doubleword at the memory location specified by the effective address.  The 
FR bit of the Status register (SR26) specifies whether all 32 registers of the 
R4600 are addressable.  When FR equals zero, this instruction is not 
defined if the least significant bit of ft is non-zero.  If FR equals one, ft may 
specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

Operation: 

Exceptions: 
Coprocessor unusable
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SDC1Store Doubleword from FPU

31 2526 2021 1516 0

SDC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 1 1 0 1

SDC1

T: vAddr ← (offset15)16 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
if SR26 = 1

data ← CPR[1, ft]
else

data ← CPR[1, ft4..1 || 0)
endif
StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
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Format:
SQRT.fmt fd, fs

Description: 
The contents of the floating-point register specified by fs are 

interpreted in the specified format and the positive arithmetic square root 
is taken.  The result is rounded as if calculated to infinite precision and 
then rounded to the specified format, according to the current rounding 
mode.  If the value of fs corresponds to –0, the result will be –0.  The result 
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-
point formats. 

The operation is not defined if bit 0 of any register specification is set 
and the FR bit in the Status register equals zero, since the register 
numbers specify an even-odd pair of adjacent coprocessor general 
registers.  When the FR bit in the Status register equals one, both even and 
odd register numbers are valid. 

Operation: 

Exceptions:
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception

SQRT.fmt Floating-Point 

31 0

6 5 5 5 5 6

COP1 fmt fs fd SQRT

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 0 0

Square Root SQRT.fmt

0
0 0 0 0 0

T: StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))
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Format:
SUB.fmt fd, fs, ft 

Description: 
The contents of the floating-point registers specified by fs and ft are 

interpreted in the specified format and arithmetically subtracted.  The 
result is rounded as if calculated to infinite precision and then rounded to 
the specified format, according to the current rounding mode.  The result 
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-
point formats. 

The operation is not defined if bit 0 of any register specification is set 
and the FR bit in the Status register equals zero, since the register 
numbers specify an even-odd pair of adjacent coprocessor general 
registers.  When the FR bit in the Status register equals one, both even and 
odd register numbers are valid. 

Operation: 

Exceptions: 
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions: 
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

SUB.fmtFloating-Point Subtract

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd SUB

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 1

SUB.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) – ValueFPR(ft, fmt))
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Format: 
SWC1 ft, offset(base)

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form an unsigned effective address.  The contents of 
register ft from the floating-point coprocessor are stored at the memory 
location specified by the effective address.

The FR bit of the Status register specifies whether all 64-bit floating-
point registers are addressable.

If FR = 0, SWC1 stores either the high or low half of the 16 even 
floating-point registers.

If FR = 1, SWC1 stores the low 32-bits of both even and odd floating-
point registers.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception occurs. 

Operation: 

  
Exceptions: 

Coprocessor unusable
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWC1 Store Word from FPU

31 2526 2021 1516 0

SWC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 1 0 0 1

SWC1

T: vAddr ← ((offset15)48 || offset15..0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
byte ← vAddr2..0 xor (BigEndianCPU || 02)
if SR26 = 1 then

data ← CPR[1, ft]63-8*byte..0 || 08*byte

else if ft0=0 then
data  ← CPR[1, ft4..1 || 0]63-8*byte..0 || 0

8*byte

else
data ← 032-8*byte || CPR[1, ft4..1 || 0] 63..32-8*byte 

endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
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Format:
TRUNC.L.fmt fd, fs

Description: 
The contents of the floating-point register specified by fs are 

interpreted in the specified source format, fmt, and arithmetically 
converted to the single fixed-point format.  The result is placed in the 
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion 
is rounded as if the current rounding mode is round toward zero (1).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded 
integer result is outside of –263 to 263–1, the Invalid operation exception is 
raised.  If the Invalid operation is not enabled then no exception is taken 
and 263–1 is returned.

Operation: 

 Exceptions: 
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions: 
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

TRUNC.L.fmt Floating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 01

Truncate to Long TRUNC.L.fmt

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))
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Format:
TRUNC.W.fmt fd, fs

Description: 
The contents of the FPU register specified by fs are interpreted in the 

specified source format fmt and arithmetically converted to the single 
fixed-point format.  The result is placed in the FPU register specified by fd. 

Regardless of the setting of the current rounding mode, the conversion 
is rounded as if the current rounding mode is round toward zero (RM = 1).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats.  The operation is not defined if bit 0 of any 
register specification is set and the FR bit in the Status register equals zero, 
since the register numbers specify an even-odd pair of adjacent 
coprocessor general registers.  When the FR bit in the Status register 
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly 
rounded integer result is outside of –231 to 231-1, an Invalid operation 
exception is raised.  If Invalid operation is not enabled, then no exception 
is taken and 231 -1 is returned.

Operation: 

 Exceptions: 
Coprocessor unusable exception 
Floating-Point exception

Coprocessor Exceptions: 
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

TRUNC.W.fmtFloating-Point 

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 0 10 0 0 0 0

Truncate to SingleTRUNC.W.fmt

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))
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FPU Instruction Opcode Bit Encoding

Figure B.3  Bit Encoding for FPU Instructions
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   ADD SUB

7

δ δ δ δ

CVT.S

C.F

MUL DIV ABS MOV NEGSQRT
ROUND.Lη TRUNC.Lη CEIL.Lη FLOOR.Lη ROUND.W TRUNC.W CEIL.W FLOOR.W

δ δ δ δ

CVT.D CVT.W

C.UN C.EQ C.UEQ C.OLE C.ULE
C.LT C.NGEC.SF C.NGLE C.SEQ C.NGL C.LE C.NGT

C.OLT C.ULT

δ δ δ δδ δ δ δ
δ δ CVT.Lη δ δ

δ δ δδδ δ δ δ

Key to Table:
γ Operation codes marked with a gamma cause a reserved instruction exception. They are 

reserved for future versions of the architecture.
δ Operation codes marked with a delta cause unimplemented operation exceptions in all 

current implementations and are reserved for future versions of the architecture.
η Valid when 64-bit operand opcodes are enabled.
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Cache Operations Timing

 

 Appendix C

 

Introduction

 

This appendix lists cycle operation counts and caveats for R4600/
R4700 cache operations timing.

 

Caveats About Cache Operations

 

1. All cycle counts are in processor cycles.
2. All cache ops have lower priority than cache misses, write backs and

external requests.  If the write back buffer contains unwritten data when
a cache op is executed, the write back buffer will be retired before the cache
op is begun.  

If an instruction cache miss occurs at the same time as a cache op is
executed, the instruction cache miss will be handled first.  Cache ops are
mutually exclusive with respect to data cache misses.  External requests
will be completed before beginning a cache op.

3. For all data cache ops the cache op machine waits for the store buffer
and response buffer to empty before beginning the cache op.  This can add
3 cycles to any data cache op if there is data in the response buffer or store
buffer.  The response buffer contains data from the last data cache miss
that has not yet been written to the data cache.  The store buffer contains
delayed store data waiting to be written to the data cache.

4. Cache ops of the form 

 

xxxx_Writeback_xxxx

 

 may perform a write back
which will fill the write back buffer.  Write backs can affect subsequent
cache ops, since they will stall until the write back buffer is written back
to memory.  Cache ops which fill the write back buffer are noted as
(writeback) in the following tables.

5. All cycle counts are best case assuming no interference from the
mechanisms described above.

 

Cache Operations Tables

 

Table C.1 and Table C.2 show data cache and instruction cache opera-
tions information.  A detailed explanation of the Fill_I equation follows
Table C.2. 
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Code

 

1

 

Name Number of Cycles

 

0 Index_Writeback_Invalidate_D 10 cycles if the cache line is clean.
12 cycles if the cache line is dirty 
(Writeback).

1 Index_Load_Tag_D 7 cycles.

2 Index_Store_Tag_D 8 cycles.

3 Create_Dirty_Exclusive_D 10 cycles for a cache hit.
13 cycles for a cache miss if the cache 
line is clean.
15 cycles for a cache miss if the cache 
line is dirty (Writeback).

4 Hit_Invalidate_D 7 cycles for a cache miss.
9 cycles for a cache hit.

5 Hit_Writeback_Invalidate_D 7 cycles for a cache miss.
12 cycles for a cache hit if the cache 
line is clean.
14 cycles for a cache hit if the cache 
line is dirty (Writeback).

7 Hit_Writeback_D 7 cycles for a cache miss.
10 cycles for a cache hit if the cache 
line is clean.
14 cycles for a cache hit if the cache 
line is dirty (Writeback).

 

Note: 

 

1

 

Code number corresponds to the code column of the CACHE instruction in Appendix A.

 

Table C.1  Primary Data Cache Operations
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Details on the Fill_I Equation

 

These are the definitions for the Hit_Writeback_I equation in Table C.2:

SYSDIV: Number of processor cycles per system cycle; ranges from
2 - 8.

ML: Number of system cycles of memory latency, defined as
the number of cycles the SysAD bus is driven by the
external agent before the first double word of data
appears.

D: Number of system cycles required to return the block of
data, defined as the number of cycles beginning when the
first double word of data appears on the SysAD bus and
ending when the last double word of data appears on the
SysAD bus, inclusive.

 

Code

 

1

 

Name Number of Cycles

 

0 Index_Invalidate_I 7 cycles.

1 Index_Load_Tag_I 7 cycles.

2 Index_Store_Tag_I 8 cycles.

3 n/a n/a

4 Hit_Invalidate_I 7 cycles for a cache miss.
9 cycles for a cache hit.

5 Fill_I Cycle number must be calculated based on the sys-
tem response to a memory access, because Fill_I 
causes an instruction cache refill from memory.  

This equation yields the number of processor cycles 
for a Fill_I cache op:

 

2

 

Number_of_cycles_for_a_Fill_I_CacheOp = 10 + {0 
- (SYSDIV - 1)} + (2 x SYSDIV) + 
(ML x SYSDIV) + (D x SYSDIV) 

 

3

 

6 Hit_Writeback_I 7 cycles for a cache miss.
20 cycles for a cache hit (Writeback).

 

Note: 

 

1

 

Code number corresponds to the code column of the CACHE instruction in Appendix A.

 

2

 

For definitions and discussion of the Fill_I equation variables refer to the subsection 
“Details of the Fill_I Equation,” which follows this table.

 

3

 

The term {0 - (SYSDIV - 1) has a value between 0 and  (SYSDIV - 1), depending on the 
alignment of the execution of the cache op with the system clock.

 

Table C.2  Primary Instruction Cache Operations
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Standby Mode Operation

 

 Appendix D

 

The R4600/R4700 provides a means to reduce the amount of power
consumed by the internal core when the CPU would otherwise not be
performing any useful operations. This is known as “Standby Mode” and
is discussed in this appendix.

 

Entering Standby Mode

 

To enter Standby Mode, first execute the WAIT instruction. When the
WAIT instruction finishes the W pipe-stage, if the 

 

SysAD

 

 bus is currently
idle,  the internal clocks will shut down, thus freezing the pipeline. The
PLL, internal timer, some of the input pin clocks (

 

Int[5:0]*

 

, 

 

NMI*

 

,

 

ExtRqst*

 

, 

 

Reset*

 

 and 

 

ColdReset*

 

) and the output clocks (

 

TClock[1:0]

 

,

 

RClock[1:0]

 

, 

 

SyncOut

 

, 

 

ModeClock

 

 and 

 

MasterOut

 

) will continue to run.
If the conditions are not correct when the WAIT instruction finishes the W
pipe-stage (i.e., the 

 

SysAD

 

 bus is not idle), the WAIT is treated as a NOP.
Once the CPU is in Standby Mode, any interrupt, including 

 

ExtRqst*

 

 or

 

Reset*

 

, will cause the CPU to exit Standby Mode.
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Coprocessor 0 Hazards

 

 Appendix E

 

This appendix identifies the R4600 and R4700 Coprocessor 0 hazards.
In Table E.1 the number of instructions required between instruction A
(which places a value in a CP0 register) and instruction B (which uses the
same register as a source) is computed using the following formula:

 

(destination stage of A) - (source stage of B) - 1
  

 

 
Operation

SOURCE
Name Stage

DESTINATION
Name Stage

 

MTC0 gpr rt 2(A) cpr rd 4

 

(W)

 

α

 

MFC0 cpr rd 2(A) gpr rt 4

 

(W)

 

α

 

TLBR Index, TLB 2(A) PageMask, 
EntryHi,EntryLo0, EntryLo1

4

 

(W)

 

TLBWI 
TLBWR 

Index or Random, PageMask, 
EntryHi, EntryLo0, EntryLo1

2(A) TLB 3

 

(

 

D

 

)β

 

TLBP PageMask, EntryHi 2(A) Index 4

 

(W)

 

ERET EPC or ErrorEPC, 
Status.ERL

2(A) Status.EXL, Status.ERL 4

 

(W)

 

γ

 

LLbit 4

 

(W)

 

CACHE Index Load 
Tag

TagLo, TagHi, ECC 3(D)

CACHE Index Store 
Tag

TagLo, TagHi, ECC 3(D)

Instruction fetch EntryHi.ASID, Status.KSU, Sta-
tus.RE, Config.K0C, TLB

0(I)

Status.ERL, Status.EXL 0

 

(Ι)γ

 

Instruction fetch 
exception

EPC, Status, Cause 4

 

(W)

 

BadVAddr, Context, EntryHi 1

 

(

 

I

 

)δ

 

Coprocessor usable 
test

Status.CU, Status.KSU, Sta-
tus.EXL, Status.ERL

1(R)

Interrupt Cause.IP, Status.IM, Status.IE, 
Status.EXL, Status.ERL

2(A)

Load/Store EntryHi.ASID, Status.KSU, Sta-
tus.RE, Status.ERL, Status.EXL 
Config.K0C, TLB

2(A)

Load/Store exception EPC, Status, Cause, Bad-
VAddr, Context, EntryHi

 

4(W)

 

Notes:

 

α

 

 There 

 

must

 

 be at least one instruction

 

 

 

between a MTC0 and a MFC0.

 

β

 

TLBW_ instructions will cause a one cycle slip.

 

γ

 

Instructions fetches following an ERET will see a change in EXL or ERL in Stage 2 of the ERET in anticipation
of the completion of the ERET. If the ERET does not complete, these instructions are killed before they commit
changes in state other than noted by d.  The pipestage corresponding to the stage field is given in parentheses.

 

Table E.1 Coprocessor 0 Hazards
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Certain combinations of instructions are not permitted because the
results of executing such combinations are unpredictable in the face of
the events such as pipeline delays, cache misses, interrupts, and excep-
tions.  

Most hazards result from instructions modifying and reading state in
different pipeline stages.  Such hazards are defined between pairs of
instructions, not on a single instruction in isolation.  Other hazards are
associated with restartability of instructions in the presence of exceptions.
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