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Integrated Device Technology, Inc.

 

CPU Instruction Set 
Summary

Chapter 1

 

Introduction

 

The R5000 processor executes the MIPS IV instruction set, which is a
superset of the MIPS III instruction set and is backward compatible. Each
CPU instruction consists of a single 32-bit word, aligned on a word
boundary.  There are three instruction formats—immediate (I-type), jump
(J-type), and register (R-type).  The use of a small number of instruction
formats simplifies instruction decoding, allowing the compiler to synthe-
size more complicated (and less frequently used) operations and
addressing modes from these three formats as needed.  

A summary of the MIPS IV instruction set additions is listed along with
a brief explanation of each instruction. For more information on the MIPS
IV instruction set, refer to the MIPS IV instruction set manual.

 

Types of Instruction Sets

 

There are three types of instruction types as shown in Figure 1.1.

 

Figure  1.1   CPU Instruction Formats

 

In the MIPS architecture, coprocessor instructions are implementation-
dependent. 

op 6-bit operation code

rs 5-bit source register specifier

rt
5-bit target (source/destination) register or branch 
condition

immediate 16-bit immediate value, branch displacement or 
address displacement

target 26-bit jump target address

rd 5-bit destination register specifier

sa 5-bit shift amount

funct 6-bit function field

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
1110 6 5

rd sa

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)
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Load and Store Instructions

 

Load and store are immediate (I-type) instructions that move data
between memory and the general registers.  The only addressing mode
that load and store instructions directly support is 

 

base register plus 16-
bit signed immediate offset

 

.

 

Scheduling a Load Delay Slot

 

A load instruction that does not allow its result to be used by the
instruction immediately following is called a 

 

delayed load instruction

 

.  The
instruction slot immediately following this delayed load instruction is
referred to as the 

 

load delay slot

 

.
In the R5000 processor, the instruction immediately following a load

instruction can use the contents of the loaded register, however in such
cases hardware interlocks insert additional real cycles.  Consequently,
scheduling load delay slots can be desirable, both for performance and R-
Series processor compatibility.  However, the scheduling of load delay
slots is not absolutely required.

 

Defining Access Types

 

Access type

 

 indicates the size of a R5000 processor data item to be
loaded or stored, set by the load or store instruction opcode.

Regardless of access type or byte ordering (endianness), the address
given specifies the low-order byte in the addressed field.  For a big-endian
configuration, the low-order byte is the most-significant byte; for a little-
endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address,
define the bytes accessed within the addressed doubleword (shown in
Table 1.1).  Only the combinations shown in Table 1.1 are permissible;
other combinations cause address error exceptions.
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Table 1.1    Byte Access within a Doubleword

 

Computational Instructions

 

Computational instructions can be either in register (R-type) format, in
which both operands are registers, or in immediate (I-type) format, in
which one operand is a 16-bit immediate. 

Computational instructions perform the following operations on
register values:

 

• arithmetic

• logical

• shift

• multiply

• divide

 

These operations fit in the following four categories of computational
instructions:

 

Access Type
Mnemonic

(

 

Value

 

)

Low Order
Address 

Bits

Bytes Accessed

Big endian
(63-----------31------------0)

Byte

Little endian
(63-----------31------------0)

Byte2 1 0

 

Doubleword (

 

7

 

) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Septibyte (

 

6

 

)
0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

Sextibyte (

 

5

 

)
0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

Quintibyte (

 

4

 

)
0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word (

 

3

 

)
0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte (

 

2

 

)

0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword (

 

1

 

)

0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte (

 

0

 

)

0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7
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• ALU Immediate

 

 

 

instructions

• three-Operand Register-Type

 

 

 

instructions

• shift

 

 

 

instructions

• multiply and divide instructions

 

64-bit Operations

 

When operating in 64-bit mode, 32-bit operands must be sign
extended. Thirty-two bit operand opcodes include all non-doubleword
operations, such as: ADD, ADDU, SUB, SUBU, ADDI, SLL, SRA, SLLV,
etc.  The result of operations that use incorrect sign-extended 32-bit
values is unpredictable.

 

Cycle Timing for Multiply and Divide Instructions

 

MFHI and MFLO instructions are interlocked so that any attempt to
read them before prior instructions complete delays the execution of these
instructions until the prior instructions finish. 

Table 1.2 gives the number of processor cycles (PCycles) required to
resolve an interlock or stall between various multiply or divide instruc-
tions, and a subsequent MFHI or MFLO instruction.

 

Table 1.2    Multiply/Divide Instruction Latency and Repeat Rates

 

Jump and Branch Instructions

 

Jump and branch instructions change the control flow of a program.
All jump and branch instructions occur with a delay of one instruction:
that is, the instruction immediately following the jump or branch (this is
known as the instruction in the 

 

delay slot

 

) always executes while the
target instruction is being fetched from storage.

 

Overview of Jump Instructions

 

Subroutine calls in high-level languages are usually implemented with
Jump or Jump and Link instructions, both of which are J-type instruc-
tions.  In J-type format, the 26-bit target address shifts left 2 bits and
combines with the high-order 4 bits of the current program counter to
form an absolute address.

Returns, dispatches, and large cross-page jumps are usually imple-
mented with the Jump Register or Jump and Link Register instructions.
Both are R-type instructions that take the 32-bit or 64-bit byte address
contained in one of the general purpose registers.

 

Overview of Branch Instructions

 

All branch instruction target addresses are computed by adding the
address of the instruction in the delay slot to the 16-bit 

 

offset

 

 (shifts left 
2 bits and is sign-extended to 32 bits).  All branches occur with a delay of
one instruction.

 

Instruction Latency Repeat Rate

 

MULT 5 4

MULTU 5 4

DIV 36 36

DIVU 36 36

DMULT 9 8

DMULTU 9 8

DDIV 68 68

DDIVU 68 68
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If a conditional branch is not taken, the instruction in the delay slot is
nullified.

 

Special Instructions

 

Special instructions allow the software to initiate traps; they are always
R-type.  Exception instructions are extensions to the MIPS ISA.  

 

Coprocessor Instructions

 

Coprocessor instructions perform operations in their respective copro-
cessors.  Coprocessor loads and stores are I-type, and coprocessor
computational instructions have coprocessor-dependent formats.

Individual coprocessor instructions are described in Appendices A (for
CP0) and B (for the FPU, CP1).

CP0 instructions perform operations specifically on the System Control
Coprocessor registers to manipulate the memory management and excep-
tion handling facilities of the processor.   

 

MIPS IV Instruction Set Additions

 

The R5000 Microprocessor runs the MIPS IV instruction set, which is a
superset of the MIPS III instruction set and is backward compatible. The
additions of these new instructions enables the MIPS architecture to
compete in the high-end numeric processing market which has tradition-
ally been dominated by vector architectures. 

A set of compound multiply-add instructions has been added, taking
advantage of the fact that the majority of floating point computations use
the chained multiply-add paradigm. The immediate multiply result is
rounded before the addition is performed.

A register + register addressing mode for floating point loads and stores
has been added which eliminates the extra integer add required in many
array accesses. However, issuing of a Register + Register load causes a
one cycle stall in the pipeline. Register + register addressing for integer
memory operations is not supported. 

A set of four conditional move operators allows floating point arithmetic
‘IF’ statements to be represented without branches. ‘THEN’ and ‘ELSE’
clauses are computed unconditionally and the results placed in a tempo-
rary register. Conditional move operators then transfer the temporary
results to their true register. Conditional moves must be able to test both
integer and floating point conditions in order to supply the full range of IF
statements. Integer tests are performed by comparing a general register
against a zero value. Floating point tests are performed by examining the
floating point condition codes. Since floating point conditional moves test
the floating point condition code, the R5000 microprocessor provides an
8-bit condition code field to give the compiler increased flexibility in
scheduling the comparison and the conditional moves. Table 1.3 lists in
alphabetical order the new instructions which comprise the MIPS IV
instruction set.

 

Instruction Definition

 

BC1F

 

Branch on FP Condition Code False

 

BC1T

 

Branch on FP Condition Code True

 

BC1FL

 

Branch on FP Condition Code False Likely

 

Table 1.3    MIPS IV Instruction Set Additions and Extensions 
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Table 1.4 lists the COP0 instructions for the R5000 processor. COP0
instructions are those which are not architecturally visible and are used
by the kernel.

 

a. Prefetch is not implemented in the R5000 microprocessor and these instructions 
are no-ops.

 

BC1TL

 

Branch on FP Condition Code True Likely

 

C.cond.fmt (cc)

 

Floating Point Compare

 

LDXC1

 

Load Double Word indexed to COP1

 

LWXC1

 

Load Word indexed to COP1

 

MADD.sd

 

Floating PointMultiply-Add

 

MOVF

 

Move conditional on FP Condition Code False

 

MOVN

 

Move on Register Not Equal to Zero

 

MOVT

 

Move conditional on FP Condition Code True

 

MOVZ

 

Move on Register Equal to Zero

 

MOVF.fmt

 

FP Move conditional on Condition Code False

 

MOVN.fmt

 

FP Move on Register Not Equal to Zero

 

MOVT.fmt

 

FP Move conditional on Condition Code True

 

MOVZ.fmt

 

FP Move conditional on Register Equal to Zero

 

MSUB.sd

 

Floating Point Multiply-Subtract

 

NMADD.sd

 

Floating Point Negative Multiply-Add

 

NMSUB.sd

 

Floating Point Negative Multiply-Subtract

 

PREFX

 

a

 

Prefetch Indexed --- Register + Register

 

PREF

 

a

 

Prefetch --- Register + Offset

 

RECIP.fmt

 

Reciprocal Approximation

 

RSQRT.fmt

 

Reciprocal Square Root Approximation

 

SDXC1

 

Store Double Word indexed to COP1

 

SWXC1

 

Store Word indexed to COP1

 

COP0 Instruction Definition

 

ERET

 

Return from Exception

 

TLBP

 

Probe for TLB Entry

 

TLBR

 

Read TLB Entry

 

TLBW

 

Write TLB Entry

DCTR Data Cache Tag Read

DCTW Data Cache Tag Write

 

Table 1.4    R5000 COP0 Instructions

 

Instruction Definition

 

Table 1.3    MIPS IV Instruction Set Additions and Extensions (Continued)
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Summary of Instruction Set Additions

 

The following is a brief description of the additions to the MIPS III
instruction set. These additions comprise the MIPS IV instruction set. 

 

Indexed Floating Point Load

 

LWXC1 - Load word indexed to Coprocessor 1.
LDXC1 - Load doubleword indexed to Coprocessor 1.

The two Index Floating Point Load instructions are exclusive to the
MIPS IV instruction set and transfer floating-point data types from
memory to the floating point registers using register + register addressing
mode. There are no indexed loads to general registers. The contents of the
general register specified by the base is added to the contents of the
general register specified by the index to form a virtual address. The
contents of the word or doubleword specified by the effective address are
loaded into the floating point register specified in the instruction.

The region bits (63:62) of the effective address must be supplied by the
base. If the addition alters these bits an address exception occurs. Also, if
the address is not aligned, an address exception occurs.

 

Indexed Floating Point Store

 

SWXC1 - Store word indexed to Coprocessor 1.
SDXC1 - Store doubleword indexed to Coprocessor 1.

The two Index Floating Point Store instructions are exclusive to the
MIPS IV instruction set and transfer floating-point data types from the
floating point registers to memory using register + register addressing
mode. There are no indexed loads to general registers. The contents of the
general register specified by the base is added to the contents of the
general register specified by the index to form a virtual address. The
contents of the floating point register specified in the instruction is stored
to the memory location specified by the effective address.

The region bits (63:62) of the effective address must be supplied by the
base. If the addition alters these bits an address exception occurs. Also, if
the address is not aligned, an address exception occurs.

 

Prefetch

 

PREF - Register + offset format
PREFX - Register + register format

The two prefetch instructions are exclusive to the MIPS IV instruction
set and allow the compiler to issue instructions early so the corre-
sponding data can be fetched and placed as close as possible to the CPU.
Each instruction contains a 5-bit ‘hint’ field which gives the coherency
status of the line being prefetched. The line can be either shared, exclu-
sive clean, or exclusive dirty. The contents of the general register specified
by the base is added either to the 16 bit sign-extended offset or to the
contents of the general register specified by the index to form a virtual
address. This address together with the ‘hint’ field is sent to the cache
controller and a memory access is initiated.
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The region bits (63:62) of the effective address must be supplied by the
base. If the addition alters these bits an address exception occurs. The
prefetch instruction never generates TLB-related exceptions. The PREF
instruction is considered a standard processor instruction while the
PFETCH instruction is considered a standard Coprocessor 1 instruction.
The R5000 microprocessor does not implement prefetch and these
instruction are executed as no-ops.

 

Branch on Floating Point Coprocessor

 

BC1T - Branch on FP condition True
BC1F - Branch on FP condition False
BC1TL - Branch on FP condition True Likely
BC1FL - Branch on FP condition False Likely

The four branch instructions are upward compatible extensions of the
Branch on Floating point Coprocessor instructions of the MIPS instruc-
tion set. The BC1T and BC1F instructions are extensions of MIPS I.
BC1TL and BC1FL are extensions of MIPS III. These instructions test one
of eight floating point condition codes. If no condition code is specified
then condition code bit zero is selected. This encoding is downward
compatible with previous MIPS architectures.

The branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended to 64 bits. If the contents of the floating point condi-
tion code specified in the instruction are equal to the test value, the target
address is branched to with a delay of one instruction. If the conditional
branch is not taken and the nullify delay bit in the instruction is set, the
instruction in the branch delay slot is nullified.

 

Integer Conditional Moves

 

MOVT - Move conditional on condition code true
MOVF - Move conditional on condition code false
MOVN - Move conditional on register not equal to zero
MOVZ - Move conditional on register equal to zero

The four integer move instructions are exclusive to the MIPS IV instruc-
tion set and are used to test a condition code or a general register and
then conditionally perform an integer move. The value of the floating
point condition code specified in the instruction by the 3-bit condition
code specifier, or the value of the register indicated by the 5-bit general
register specifier, is compared to zero. If the result indicates that the move
should be performed, the contents of the specified source register is
copied into the specified destination register.

 

Floating Point Multiply-Add

 

MADD - Floating Point Multiply-Add
MSUB - Floating Point Multiply-Subtract
NMADD - Floating Point Negative Multiply-Add
NMSUB - Floating Point Negative Multiply-Subtract

These four instructions are exclusive to the MIPS IV instruction set and
accomplish two floating point operations with one instruction. Each of
these four instructions performs intermediate rounding.

 

Floating Point Compare

 

C.cond - Compare
C.cond - Implies cc=0



 

CPU Instruction Set Summary Chapter 1

1 – 9

 

The two compare instructions are upward compatible extensions of the
floating point compare instructions of the MIPS I instruction set and
produce a boolean result which is stored in one of the condition codes. 

The contents of the two FP source registers specified in the instruction
are interpreted and arithmetically compared. A result is determined
based on the comparison and the conditions specified in the instruction.
If one of the values is not a number and the high order bit of the condition
field is set, an invalid operations trap occurs. Comparisons are exact and
neither overflow or underflow.

The implications for compiler code scheduling is that a compare
instruction may be immediately followed by a dependent floating point
conditional move instruction, but may not be immediately followed by a
dependent branch on floating point coprocessor condition instruction or a
dependent integer conditional move instruction. Note that this restriction
applies only to the condition code specified in the 3-bit condition code
specifier of the instruction. All other condition codes are unaffected.

 

Floating Point Conditional Moves

 

MOVT.fmt - Floating Point Conditional Move on condition code true
MOVF.fmt - Floating Point Conditional Move on condition code false
MOVN.fmt - Floating Point Conditional Move on register not equal to

zero
MOVZ.fmt - Floating Point Conditional Move on register equal to zero

The four floating point conditional move instructions are exclusive to
the MIPS IV instruction set and are used to test a condition code or a
general register and then conditionally perform a floating point move. The
value of the floating point condition code specified by the 3-bit condition
code specifier, or the value of the register indicated by the 5-bit general
register specifier, is compared to zero. If the result indicates that the move
should be performed, the contents of the specified source register is
copied into the specified destination register. All of these conditional
floating point move operations are non-arithmetic. Consequently, no
IEEE 754 exceptions occur as a result of these instructions.

 

Reciprocal’s

 

RECIP.fmt - Reciprocal Approximation
RSQRT.fmt - Reciprocal Square Root Approximation

The reciprocal instruction performs a reciprocal approximation on a
floating point value. The reciprocal of the value in the floating point
source register is approximated and placed in a destination register. The
numerical accuracy of this operation is implementation dependent based
on the rounding mode used. 

The reciprocal square root instruction performs a reciprocal square
root approximation on a floating point value. The reciprocal of the positive
square root of a value in the floating point source register is approximated
and placed in a destination register. The numerical accuracy of this oper-
ation is implementation dependent based on the rounding mode used. 
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The approximation is due to the fact that neither of these instruction
meets IEEE accuracy requirements. In both cases a small amount of
precision has been sacrificed, thereby significantly reducing execution
time. For example, in the case of a RECIP instruction, X/Y is computed by
taking the reciprocal of Y and multiplying that result by X. The reduced
execution time of the reciprocal operation allows a RECIP followed by a
MUL (multiply) instruction to be executed faster than a single DIV (divide)
instruction. The performance difference between a RSQRT instruction
and a SQRT followed by a DIV instruction is implementation dependent. 

On the R5000 microprocessor, the RECIP instruction has the same
latency as a DIV instruction, but a RSQRT is faster than a SQRT followed
by a RECIP.

Table 1.5 shows the integer instruction latencies in the R5000 Micro-
processor.

Table 1.6 shows the floating point instruction latencies in the R5000
CPU.

 

Instruction Group Latency Repeat

Arithmetic and Logical 1 1

Shift 1 1

Load 2 1

Store N/A 1

Multiply (32-bit) 5 4

Multiply (64-bit) 9 8

Divide (32-bit) 36 36

Divide (64-bit) 68 68

 

Table 1.5    R5000 Integer Instruction Latencies

 

Instruction Group Latency Repeat

Load 2 1

Load Indexed 3 2

Store N/A 1

Store Indexed N/A 2

Prefetch N/A 1

Prefetch Indexed N/A 2

Compare 1 1

Absolute 1 1

Negative 1 1

Move 1 1

Conditional Moves 1 1

Add 4 1

Subtract 4 1

MUL.s 4 1

MUL.d 5 2

 

Table 1.6    R5000 Floating Point Instruction Latencies
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a. Trap on greater than 53 bits of significance.
b.  Trap on greater than 52 bits of significance.

MADD.s 4 1

MADD.d 5 2

DIV.s 21 19

DIV.d 36 34

SQRT.s 21 19

SQRT.d 36 34

RECIP.s 21 19

RECIP.d 36 34

RSQRT.s 38 36

RSQRT.d 68 66

mtc1, dmtc1 2 1

mfc1, dmfc1 2 1

CTC1 6 3

CFC1 2 1

ROUND.w 4 1

ROUND.l

 

a

 

4 1

TRUNC.w 4 1

TRUNC.l 4 1

CEIL.w 4 1

CEIL.l 4 1

FLOOR.w 4 1

FLOOR.l 4 1

CVT.s.d 4 1

CVT.s.w 6 3

CVT.s.l

 

b

 

6 3

CVT.d.s 4 1

CVT.d.w 4 1

CVT.d.l

 

b

 

4 1

CVT.w.s 4 1

CVT.w.d 4 1

CVT.l.s 4 1

CVT.l.d 4 1

Instruction Group Latency Repeat

 

Table 1.6    R5000 Floating Point Instruction Latencies
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Chapter 2

 

Introduction

 

The R5000 processor has a five-stage instruction pipeline. Each stage
takes one PCycle (one cycle of PClock, which runs at a multiple of the
frequency of SysClock).  Thus, the execution of each instruction takes at
least five PCycles.  An instruction can take longer—for example, if the
required data is not in the cache, the data must be retrieved from main
memory.

Once the pipeline has been filled, five instructions can be executed
simultaneously.  Figure 2.1 shows the five stages of the instruction pipe-
line.

 

Figure  2.1   Instruction Pipeline Stages

 

Instruction Pipeline Stages

 

• 1I - Instruction Fetch, Phase One

• 2I - Instruction Fetch, Phase Two

• 1R - Register Fetch, Phase One

• 2R - Register Fetch, Phase Two

• 1A - Execution, Phase One

• 2A - Execution, Phase Two

• 1D - Data Fetch, Phase One

• 2D - Data Fetch, Phase Two

• 1W - Write Back, Phase One

• 2W - Write Back, Phase Two

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

One
Cycle
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II - Instruction Fetch, Phase One

 

During the 1I phase, the following occurs:

 

• Branch logic selects an instruction address and the instruction 
cache fetch begins.

• The instruction translation lookaside buffer (ITLB) begins the 
virtual-to-physical address translation.

 

2I - Instruction Fetch, Phase Two

 

The instruction cache fetch and the virtual-to-physical address transla-
tion continues.

 

1R - Register Fetch, Phase One

 

During the 1R phase, the following occurs:

 

• The instruction cache fetch is completed.

• The instruction cache tag is checked against the page frame number 
obtained from the ITLB

 

2R - Register Fetch, Phase Two

 

During the 2R phase, one of the following occurs:

 

• The instruction decoder decodes the instruction.

• Any required operands are fetched from the register file.

• Determine whether instruction is issued or delayed depending on 
interlock conditions.

• Calculate branch address (if applicable).

 

1A - Execution - Phase One

 

During the 1A phase, one of the following occurs:

 

• Any result from th A or D stages are bypassed

• The ALU starts an integer operation.

• The ALU calculates the data virtual address for load and store 
instructions.

• The ALU determines whether the branch condition is true.

 

2A - Execution - Phase Two

 

During the 2A phase, one of the following occurs:

 

• The integer operation begun in the 1A phase completes.

• Data cache access begins.

• Store data is shifted to the specified byte positions.

• The JTLB virtual to physical address translation begins.

•  The DTLB begins the data virtual to physical address translation.

 

1D - Data Fetch - Phase One

 

During the 1D phase, one of the following occurs:

 

 The DTLB data address translation completes.
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2D - Data Fetch - Phase Two

 

• The data cache access completes. Data is shifted down and 
extended.

• The JTLB address translation completes. The data cache tag is 
checked against the PFN from the DTLB or JTLB for any data cache 
access.

 

1W - Write Back, Phase One

 

• This phase is used internally by the processor to resolve all 
exceptions in preparation for the register write.

 

2W - Write Back, Phase Two

 

• For register-to-register and load instructions, the result is written 
back to the register file. 

 

WB - Write Back

 

For register-to-register instructions, the instruction result is written
back to the register file during the WB stage.  Branch instructions
perform no operation during this stage.

Figure 2.2 shows the activities occurring during each ALU pipeline
stage, for load, store, and branch instructions.

 

Figure  2.2   CPU Pipeline Activities

ICD Instruction cache address decode ICD Instruction cache array access

ITLBM Instruction address translation match ITLBR Instruction address translation read

ITC Instruction tag check RF Register operand fetch

IDEC Instruction address translation stage 2 EX1 Execute operation - phase 1

EX2 Execute operation - phase two WB Write back to register file

DVA Data virtual address calculation DCAD Data cache address decode

DCAA Data cache array access DCLA Data cache load align

JTLB1 JTLB address translation - phase 1 JTLB2 JTLB address translation - phase 2

DTLBM Data address translation match DTLBR Data address translation read

DTC Data tag check SA Store align

DCW Data cache write BAC Branch address calculation

Clock

Phase

IFetch

ALU
Load/Store

Branch

  and
Decode

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

ICD
ITLBM ITLBR

ICA
ITC

RF
IDEC

EX1 EX2
DVA DCAD DCAA DCLA

JTLB1 JTLB2
DTLBM DTLBR DTC WB

DCWSA
BAC

WB



 

R5000 Processor Pipeline Chapter 2

2 – 4

 

Branch Delay

 

The CPU pipeline has a branch delay of one cycle and a load delay of
one cycles.   The one-cycle branch delay is a result of the branch compar-
ison logic operating during the 1A pipeline stage of the branch. This
allows the branch target address calculated in the previous stage to be
used for the instruction access in the following 1I phase. 

Figure 2.3 illustrates the branch delay. 

 

Figure  2.3   CPU Pipeline Branch Delay

 

Load Delay

 

The completion of a load at the end of the DS pipeline stage produces
an operand that is available for the 1A pipeline phase of the subsequent
instruction following the load delay slot.

Figure 2.4 shows the load delay of two pipeline stages. 

 

Figure  2.4   CPU Pipeline Load Delay

 

Interlock and Exception Handling

 

Smooth pipeline flow is interrupted when cache misses or exceptions
occur, or when data dependencies are detected.  Interruptions handled
using hardware, such as cache misses, are referred to as 

 

interlocks

 

, while
those that are handled using software are called exceptions.
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There are two types of interlocks:

 

• Stalls, which are resolved by halting the pipeline.

• Slips, which require one part of the pipeline to advance while 
another part of the pipeline is held static.

 

At each cycle, exception and interlock conditions are checked for all
active instructions. 

Because each exception or interlock condition corresponds to a partic-
ular pipeline stage, a condition can be traced back to the particular
instruction in the exception/interlock stage.  For instance, a Reserved
Instruction (RI) exception is raised in the execution (A) stage.

 

Table 2.1    Relationship of Pipeline Stage to Interlock Condition

Table 2.2    Pipeline Exceptions

 

State
Pipeline Stage

I R A D W

Stall ITM ICM DCM

CPE

Slip LDI

MDSt

FCBusy

Exceptions ITLB IBE RI DBE

IPErr CUn NMI

BP Reset

SC DPErr

DTLB OVF

DTMod Trap

Intr

 

Table 1: 

 

Exception Description

 

ITLB Instruction Translation or Address 
Exception

Intr External Interrupt

IBE IBus Error

RI Reserved Instruction

BP Breakpoint

SC System Call

CUn Coprocessor Unusable

IPErr Instruction Parity Error

OVF Integer Overflow
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Table 2.3    Pipeline Interlocks

 

Exception Conditions

 

When an exception condition occurs, the relevant instruction and all
those that follow it in the pipeline are cancelled.  Accordingly, any stall
conditions and any later exception conditions that may have referenced
this instruction are inhibited; there is no benefit in servicing stalls for a
cancelled instruction.

When an exception condition is detected, the R5000 processor aborts
the instruction which caused the exception, as well as all subsequent
instructions. When this instruction reaches the W stage, three events
occur;

 

• The exception flag causes the instruction to write various CP0 
registers with the exception state, 

• The current PC is changed to the appropriate exception vector 
address, 

• The exception bits of earlier pipeline stages are cleared.

 

This implementation allows all instructions which occurred before the
exception to complete, and all instructions which occurred after the
instruction to be aborted. Hence the value of the EPC is such that execu-
tion can be restarted. In addition, all exceptions are guaranteed to be
taken in order. Figure 2.5 illustrates the exception detection mechanism
for a Reserved Instruction (RI) exception.

 

FPE FP Interrupt

ExTrap EX Stage Traps

DTLB Data Translation or Address 
Exception

TLBMod TLB Modified

DBE Data Bus Error

DPErr Data Parity Error

NMI Non-maskable Interrupt

Reset Reset

 

Interlock Description

 

ITM Instruction TLB Miss

ICM Instruction Cache Miss 

CPBE Coprocessor Possible Exception 

DCM Data Cache Miss 

LDI Load Interlock 

MDSt Multiply/Divide Start

FCBsy FP Busy 

 

Exception Description
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Figure  2.5   Exception Detection Mechanism

 

Stall Conditions

 

A  stall condition is used to suspend the pipeline for conditions
detected after the R pipeline stage. When a stall occurs, the processor
resolves the condition and then restarts the pipeline. Once the interlock is
removed, the restart sequence begins two cycles before the pipeline
resumes execution.  The restart sequence reverses the pipeline overrun
by inserting the correct information into the pipeline. Figure 2.6 shows a
data cache miss stall.

 

Figure  2.6   Servicing a Data Cache Miss
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The data cache miss is detected in the D stage of the pipeline. If the
cache line to be replaced is dirty, the W bit is set and data is moved to the
internal write buffer in the next cycle. The squiggly line in Figure 7 indi-
cates the memory access. Once the memory is accessed and the first
doubleword of data is returned, the pipeline is restarted. The remainder of
the cache line is returned in subsequent cycles. The dirty data in the
write buffer is written out to memory after the cache line fill operations is
completed.

 

Slip Conditions

 

During the 2R and 1A pipeline stages, internal logic determines
whether it is possible to  start the current instruction in this cycle. If all
required source operands are available, as well as all hardware resources
needed to complete the operation, then the instruction is issued. Other-
wise, the instruction “slips”. Slipped cycles are retried on subsequent
cycles until they are issued. Pipeline stages D and W advance normally
during slips in an attempt to resolve the conflict. NOP’s are inserted into
the bubbles which are created in the pipeline. Instructions caused by
“branch likely” instructions, ERET, or exceptions do not cause clips.

Figure 8 shows how instruction can slip during an instruction cache
miss.

 

Figure  2.7   Slips During and Instruction Cache Miss
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Instruction cache misses are detected in the R-stage of the pipeline.
Slips are detected in the A stage. Instruction cache misses never require a
writeback operation as writes are not allowed to the instruction cache.
Unlike the data cache, early restart, where the pipeline is restarted after
only a portion of the cache line fill has occurred, is not implemented for
the instruction cache. The requested cache line is loaded into the instruc-
tion cache in its entirety before the pipeline is restarted.

 

Write Buffer

 

The R5000 processor contains a write buffer which improves the
performance of write operations to external memory. All write cycles use
the write buffer. The write buffer holds up to four 64-bit address and data
pairs. 

On a cache miss requiring a write-back, the entire buffer is used for the
write-back data and allows the processor to proceed in parallel with the
memory update. For uncached and write-through stores, the write buffer
decouples the CPU from the write to memory. If the write buffer is full,
additional stores are stalled until there is room for them in the write
buffer. 
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Integrated Device Technology, Inc.

 

Superscalar Issue 
Mechanism

Chapter 3

 

Introduction

 

The R5000 processor incorporates a simple dual-issue mechanism
which allows two instructions to be dispatched per cycle under certain
conditions. A FPU ALU operation can be dispatched along with any other
type of instruction, as long as the other instruction is not another FP ALU
operation. 

Figure 3.1 shows a simplified diagram of the dual issue mechanism.

 

Figure  3.1   Dual Issue Mechanism

 

I - Stage

 

Two instructions are fetched from the instruction cache and 
placed in a 2-deep instruction buffer. Issue logic determines the 
type of instruction and which pipeline the instruction is routed to. 
Also, the instruction cache tag is checked against the page frame 
number (PFN) obtained from the ITLB.

 

R - Stage

 

Any required operands are fetched from the appropriate register 
file, and the decision is made to either proceed or slip the 
instruction based on any interlock conditions. For branch 
instruction, the branch address is calculated.

 

A - Stage

 

The appropriate ALU begins the arithmetic, logical, or shift 
operation. The data virtual address is calculated for any load or 
store instructions. The appropriate ALU determines whether the 
branch condition is true. The data cache access is started.

Instr
Cache
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buffer
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instr
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Register File

Read FP
Register File

R Stage

Integer ALU
Execution

FP ALU
Execution

A Stage

Integer
Load/Store

FP
Load/Store
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Integer Reg
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FP Register
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D - Stage

 

The data cache access is completed. Data is shifted down and 
extended. Data address translation in the DTLB completes. The 
virtual to physical address translation in the JTLB is performed. 
The data cache tag is checked against the PFN from the DTLB or 
JTLB for any data cache access. 

 

W - Stage

 

The processor resolves all exceptions. For register-to-register and 
load instructions, the result is written back to the appropriate 
register file. 
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Integrated Device Technology, Inc.

 

Memory Management 
Unit

Chapter 4

 

Introduction

 

The IDT R5000 processor provides a full-featured memory management
unit (MMU) which uses an on-chip translation lookaside buffer (TLB) to
translate virtual addresses into physical addresses.

This chapter describes the processor virtual and physical address
spaces, the virtual-to-physical address translation, the operation of the
TLB in making these translations, and those System Control Coprocessor
(CP0) registers that provide the software interface to the TLB.

 

Translation Lookaside Buffer (TLB)

 

Mapped virtual addresses are translated into physical addresses using
an on-chip TLB.

 

1

 

  The TLB is a fully associative memory that holds 48
entries, which provide mapping to 48 odd/even page pairs (96 pages).
When address mapping is indicated, each TLB entry is checked simulta-
neously for a match with the virtual address that is extended with an
ASID stored in the 

 

EntryHi

 

 register.
The address mapped to a page ranges in size from 4 Kbytes to 16

Mbytes, in multiples of 4—that is, 4K, 16K, 64K, 256K, 1M, 4M, 16M.

 

Hits and Misses

 

If there is a virtual address match, or hit, in the TLB, the physical page
number is extracted from the TLB and concatenated with the offset to
form the physical address.

If no match occurs (TLB miss), an exception is taken and software
refills the TLB from the page table resident in memory.  Software can
write over a selected TLB entry or use a hardware mechanism to write
into a random entry.

 

Multiple Matches

 

The R5000 processor does not provide any detection of shutdown
mechanism for multiple matches in the TLB. The result of this condition
is undefined, and software is expected to never allow this to occur.

 

Address Spaces

 

This section describes the virtual and physical address spaces and the
manner in which virtual addresses are converted or “translated” into
physical addresses in the TLB.

 

Virtual Address Space

 

The processor

 

 

 

virtual address can be either 32 or 64 bits wide,
depending on whether the processor is operating in 32-bit or 64-bit mode. 

 

• In 32-bit mode (extended address bit = 0), addresses 
are 32 bits wide.  The maximum user process size is 2 
gigabytes (2

 

31

 

). 

• In

 

 

 

64-bit mode (extended address bit = 1), addresses 
are 64 bits wide.  The maximum user process size is 1 
terabyte (2

 

40

 

).

 

1. 

 

There are virtual-to-physical address translations that occur outside of the TLB.
For example, addresses in 

 

the kseg0

 

 and 

 

kseg1

 

 spaces are unmapped translations.
In these spaces the physical address is 0x000 0000 0 11 VA[28:0]. 
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Figure 4.1 shows the translation of a virtual address into a physical
address.

 

Figure  4.1   Overview of a Virtual-to-Physical Address Translation

 

As shown in Figures 11 and 12, the virtual address is extended with an
8-bit address space identifier (ASID), which reduces the frequency of TLB
flushing when switching contexts.  This 8-bit ASID is in the CP0 

 

EntryHi

 

register.  The 

 

Global

 

 bit (

 

G

 

) is in the 

 

EntryLo0

 

 and 

 

EntryLo1

 

 registers.

 

Physical Address Space

 

Using a 36-bit address, the processor physical address space encom-
passes 64 gigabytes.  The section following describes the translation of a
virtual address to a physical address.

 

Virtual-to-Physical Address Translation

 

Converting a virtual address to a physical address begins by comparing
the virtual address from the processor with the virtual addresses in the
TLB; there is a match when the virtual page number (VPN) of the address
is the same as the VPN field of the entry, and either:

 

• the Global (

 

G

 

) bit of the TLB entry is set, or

• the ASID field of the virtual address is the same as the 
ASID field of the TLB entry.

 

This match is referred to as a 

 

TLB hit

 

.   If there is no match, a TLB Miss
exception is taken by the processor and software is allowed to refill the
TLB from a page table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is
output from the TLB and concatenated with the 

 

Offset

 

, which represents
an address within the page frame space.  The 

 

Offset

 

 does not pass
through the TLB.

Virtual-to-physical translation is described in greater detail throughout
the remainder of this chapter.

The next two sections describe the 32-bit and 64-bit address transla-
tions.

1. Virtual address (VA) represented by the
virtual page number (VPN) is compared
with tag in TLB.

Virtual address

2. If there is a match, the page frame
number (PFN) representing the upper
bits of the physical address (PA) is
output from the TLB.

VPN   ASIDG

VPN   ASIDG

PFN

TLB

Physical address

PFN

Offset

Offset

TLB

3. The Offset, which does not pass through
the TLB, is then concatenated to the PFN.

Entry
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32-bit Mode Virtual Address Translation

 

Figure 4.2 shows the virtual-to-physical-address translation of a 32-bit
mode address. 

 

• The top portion of Figure 4.2 shows a virtual address 
with a 12-bit, or 4-Kbyte, page size, labelled 

 

Offset

 

.  The 
remaining 20 bits of the address represent the VPN, 
and index the 1M-entry page table.

• The bottom portion of Figure 4.2 shows a virtual 
address with a 24-bit, or 16-Mbyte, page size, labelled 

 

Offset

 

.  The remaining 8 bits of the address represent 
the VPN, and index the 256-entry page table.

 

Figure  4.2   32-bit Mode Virtual Address Translation

 

64-bit Mode Virtual Address Translation

 

Figure 4.3 shows the virtual-to-physical-address translation of a 64-bit
mode address.  This figure illustrates the two extremes in the range of
possible page sizes: a 4-Kbyte page (12 bits) and a 16-Mbyte page (24
bits).

 

• The top portion of Figure 4.3 shows a virtual address 
with a 
12-bit, or 4-Kbyte, page size, labelled 

 

Offset

 

.  The 
remaining 28 bits of the address represent the VPN, 
and index the 256M-entry page table.
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• The bottom portion of Figure 4.3 shows a virtual 
address with a 24-bit, or 16-Mbyte, page size, labelled 

 

Offset

 

.  The remaining 16 bits of the address represent 
the VPN, and index the 64K-entry page table.

 

Figure  4.3   64-bit Mode Virtual Address Translation

 

Operating Modes

 

The processor has three operating modes that function in both 32- and
64-bit operations:

 

• User mode

• Supervisor mode

• Kernel mode

 

These modes are described in the next three sections.

 

 User Mode Operations

 

In User mode, a single, uniform virtual address space—labelled User
segment—is available; its size is:

 

• 2 Gbytes (2

 

31

 

 bytes) in 32-bit mode. UX = 0 (

 

useg

 

)

• 1 Tbyte (2

 

40 

 

bytes) in 64-bit mode. UX = 1 (

 

xuseg

 

)

 

Figure 4.4 shows User mode virtual address space.
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Figure  4.4    User Mode Virtual Address Space

 

The User segment starts at address 0 and the current active user
process resides in either useg (in 32-bit mode) or xuseg (in 64-bit mode).
The TLB identically maps all references to useg/xuseg from all modes,
and controls cache accessibility.

The processor operates in User mode when the

 

 Status

 

 register contains
the following bit-values:

 

•

 

KSU

 

 bits = 10

 

2

 

•

 

EXL

 

 = 0

•

 

ERL

 

 = 0

 

In conjunction with these bits, the 

 

UX

 

 bit in the 

 

Status

 

 register selects
between 32- or 64-bit User mode addressing as follows:

 

• when 

 

UX

 

 = 0, 32-bit 

 

useg

 

 space is selected.

• when 

 

UX

 

 = 1, 64-bit 

 

xuseg

 

 space is selected.

 

Table 4.1 lists the characteristics of the two user mode segments, 

 

useg

 

and 

 

xuseg

 

.

 

Table 4.1    32-bit and 64-bit User Mode Segments

 

32-bit User Mode (useg)

 

In User mode, when 

 

UX

 

 = 0 in the 

 

Status

 

 register, User mode
addressing is compatible with the 32-bit addressing model shown in
Figure 4.4, and a 2-Gbyte user address space is available, labelled 

 

useg

 

. 
All valid User mode virtual addresses have their most-significant bit

cleared to 0; any attempt to reference an address with the most-signifi-
cant bit set while in User mode causes an Address Error exception. 

The system maps all references to 

 

useg

 

 through the TLB, and bit
settings within the TLB entry for the page determine the cacheability of a
reference. 

Address Bit 
Values

Status Register
Segment

Name
Address Range Segment SizeBit Values

KSU EXL ERL UX

32-bit
A(31) = 0 102 0 0 0 useg

0x0000 0000
through

0x7FFF FFFF

2 Gbyte
(231 bytes)

64-bit
A(63:40) = 0 102 0 0 1 xuseg

0x0000 0000 0000 0000
through

0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

useg xuseg

Address
Error

1 TB
Mapped

32-bit* 64-bit

0x FFFF FFFF FFFF FFFF

0x 0000 0000 0000 0000

0x FFFF FFFF 

0x 8000 0000 

0x 0000 0000 

0x 0000 0100 0000 0000

Address
Error

Mapped
2 GB
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64-bit User Mode (xuseg)
In User mode, when UX =1 in the Status register, User mode addressing

is extended to 64-bits.  In 64-bit User mode, the processor provides a
single, uniform address space of 240 bytes, labelled xuseg. 

All valid User mode virtual addresses have bits 63:40 equal to 0; an
attempt to reference an address with bits 63:40 not equal to 0 causes an
Address Error exception. 

 Supervisor Mode Operations
Supervisor mode is designed for layered operating systems in which a

true kernel runs in Kernel mode, and the rest of the operating system
runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register
contains the following bit-values:

• KSU = 012

• EXL = 0

• ERL = 0

In conjunction with these bits, the SX bit in the Status register selects
between 32- or 64-bit Supervisor mode addressing:

• when SX = 0, 32-bit supervisor space is selected and 
TLB misses are handled by the 32-bit TLB refill 
exception handler

• when SX = 1, 64-bit supervisor space is selected and 
TLB misses are handled by the 64-bit XTLB refill 
exception handler. Figure 4.5 shows Supervisor mode 
address mapping.  Table 4.2 lists the characteristics of 
the supervisor mode segments; descriptions of the 
address spaces follow.

Figure  4.5   Supervisor Mode Address Space
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Table 4.2    32-bit and 64-bit Supervisor Mode Segments

32-bit Supervisor Mode, User Space (suseg)
In Supervisor mode, when SX = 0 in the Status register and the most-

significant bit of the 32-bit virtual address is set to 0, the suseg virtual
address space is selected; it covers the full 231 bytes (2 Gbytes) of the
current user address space.  The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address. 

This mapped space starts at virtual address 0x0000 0000 and runs
through 0x7FFF FFFF.

32-bit Supervisor Mode, Supervisor Space (sseg)
In Supervisor mode, when SX = 0 in the Status register and the three

most-significant bits of the 32-bit virtual address are 1102, the sseg
virtual address space is selected; it covers 229-bytes (512 Mbytes) of the
current supervisor address space.  The virtual address is extended with
the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs
through 0xDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)
In Supervisor mode, when SX = 1 in the Status register and bits 63:62

of the virtual address are set to 002, the xsuseg virtual address space is
selected; it covers the full 240 bytes (1 Tbyte) of the current user address
space.  The virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000
and runs through 0x0000 00FF FFFF FFFF.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)
In Supervisor mode, when SX = 1 in the Status register and bits 63:62

of the virtual address are set to 012, the xsseg current supervisor virtual
address space is selected.  The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000
and runs through 0x4000 00FF FFFF FFFF.

Address Bit 
Values

Status Register
Segment

Name
Address Range

Segment
Size

Bit Values

KSU EXL ERL SX

32-bit
A(31) = 0 012 0 0 0 suseg

0x0000 0000
through

0x7FFF FFFF

2 Gbytes 
(231 bytes)

32-bit
A(31:29) = 1102

012 0 0 0 ssseg
0xC000 0000

through
0xDFFF FFFF

512 Mbytes 
(229 bytes)

64-bit
A(63:62) = 002

012 0 0 1 xsuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

64-bit
A(63:62) = 012

012 0 0 1 xsseg
0x4000 0000 0000 0000

through
0x4000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

64-bit
A(63:62) = 112

012 0 0 1 csseg
0xFFFF FFFF C000 0000

through
0xFFFF FFFF DFFF FFFF

512 Mbytes
(229 bytes)
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64-bit Supervisor Mode, Separate Supervisor Space (csseg)
In Supervisor mode, when SX = 1 in the Status register and bits 63:62

of the virtual address are set to 112, the csseg separate supervisor virtual
address space is selected.  Addressing of the csseg is compatible with
addressing sseg in 32-bit mode.  The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000
and runs through 0xFFFF FFFF DFFF FFFF.

 Kernel Mode Operations
The processor operates in Kernel mode when the Status register

contains one of the following values:

• KSU = 002

• EXL = 1

• ERL = 1

In conjunction with these bits, the KX bit in the Status register selects
between 32- or 64-bit Kernel mode addressing:

• when KX = 0, 32-bit kernel space is selected.

• when KX = 1, 64-bit kernel space is selected.

The processor enters Kernel mode whenever an exception is detected
and it remains in Kernel mode until an Exception Return (ERET) instruc-
tion is executed.  The ERET instruction restores the processor to the
mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated
by the high-order bits of the virtual address, as shown in Figure 4.6.
Table 4.3 lists the characteristics of the 32-bit kernel mode segments,
and Table 4.4 lists the characteristics of the 64-bit kernel mode
segments.
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Figure  4.6   Kernel Mode Address Space

Table 4.3    32-bit Kernel Mode Segments

Address Bit 
Values

Status Register
Is One Of These 

Values
Segment

Name
Address Range

Segment
Size

KSU EXL ERL KX

A(31) = 0

KSU = 002
or

EXL = 1
or

ERL =1

0 kuseg
0x0000 0000

through
0x7FFF FFFF

2 Gbytes 
(231 bytes)

A(31:29) = 1002 0 kseg0
0x8000 0000

through
0x9FFF FFFF

512 Mbytes 
(229 bytes)

A(31:29) = 1012 0 kseg1
0xA000 0000

through
0xBFFF FFFF

512 Mbytes 
(229 bytes)

A(31:29) = 1102 0 ksseg
0xC000 0000

through
0xDFFF FFFF

512 Mbytes 
(229 bytes)

A(31:29) = 1112 0 kseg3
0xE000 0000

through
0xFFFF FFFF

512 Mbytes 
(229 bytes)

Address
error

2 GB

0.5 GB

0.5 GB

Mapped

Mapped

Unmapped

Unmapped

kuseg

kseg0

kseg1

0.5 GB

0.5 GB

Mapped

ksseg

kseg3

Uncached

Cached

xkuseg

ckseg0

ckseg1

xksseg

ckseg3Mapped
0.5 GB

Mapped
0.5 GB

0.5 GB
Unmapped
Uncached

0.5 GB
Unmapped

Cached

Unmapped

Address
error

cksseg

1 TB
Mapped

xksegMapped

xkphys

32-bit* 64-bit

Address
error

0x FFFF FFFF FFFF FFFF

0x 4000 0100 0000 0000

0x 0000 0000 0000 0000

0x FFFF FFFF E000 0000

0x FFFF FFFF C000 0000

0x 4000 0000 0000 0000

0x 0000 0100 0000 0000

0x 8000 0000 0000 0000

0x C000 0000 0000 0000

0x FFFF FFFF A000 0000

0x FFFF FFFF 8000 0000

0x C000 00FF 8000 0000

0x FFFF FFFF 

0x 8000 0000 

0x 0000 0000 

0x E000 0000 

0x C000 0000 

0x A000 0000 

1 TB
Mapped
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32-bit Kernel Mode, User Space (kuseg)
In Kernel mode, when KX = 0 in the Status register, and the most-

significant bit of the virtual address, A31, is cleared, the 32-bit kuseg
virtual address space is selected; it covers the full 231 bytes (2 Gbytes) of
the current user address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space 0 (kseg0)
In Kernel mode, when KX = 0 in the Status register and the most-signif-

icant three bits of the virtual address are 1002, 32-bit kseg0 virtual
address space is selected; it is the 229-byte (512-Mbyte) kernel physical
space.  References to kseg0 are not mapped through the TLB; the physical
address selected is defined by subtracting 0x8000 0000 from the virtual
address.   The K0 field of the Config register, described in this chapter,
controls cacheability and coherency.

32-bit Kernel Mode, Kernel Space 1 (kseg1)
In Kernel mode, when KX = 0 in the Status register and the most-signif-

icant three bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual
address space is selected; it is the 229-byte (512-Mbyte) kernel physical
space.

References to kseg1 are not mapped through the TLB; the physical
address selected is defined by subtracting 0xA000 0000 from the virtual
address. 

Caches are disabled for accesses to these addresses, and physical
memory (or memory-mapped I/O device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)
In Kernel mode, when KX = 0 in the Status register and the most-signif-

icant three bits of the 32-bit virtual address are 1102, the ksseg virtual
address space is selected; it is the current 229-byte (512-Mbyte) super-
visor virtual space.  The virtual address is extended with the contents of
the 8-bit ASID field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space 3 (kseg3)
In Kernel mode, when KX = 0 in the Status register and the most-signif-

icant three bits of the 32-bit virtual address are 1112, the kseg3 virtual
address space is selected; it is the current 229-byte (512-Mbyte) kernel
virtual space. The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.
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Table 4.4    64-bit Kernel Mode Segments

64-bit Kernel Mode, User Space (xkuseg)
In Kernel mode, when KX = 1 in the Status register and bits 63:62 of

the 64-bit virtual address are 002, the xkuseg virtual address space is
selected; it covers the current user address space.  The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual
address. 

When ERL = 1 in the Status register, the user address region becomes a
231-byte unmapped (that is, mapped directly to physical addresses)
uncached address space.  

64-bit Kernel Mode, Current Supervisor Space (xksseg)
In Kernel mode, when KX = 1 in the Status register and bits 63:62 of

the 64-bit virtual address are 012, the xksseg virtual address space is
selected; it is the current supervisor virtual space.  The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual
address.

64-bit Kernel Mode, Physical Spaces (xkphys)
In Kernel mode, when KX = 1 in the Status register and bits 63:62 of

the 64-bit virtual address are 102, the xkphys virtual address space is
selected; it is a set of eight 236-byte kernel physical spaces.  Accesses with
address bits 58:36 not equal to 0 cause an address error. 

References to this space are not mapped; the physical address selected
is taken from bits 35:0 of the virtual address.  Bits 61:59 of the virtual
address specify the cacheability and coherency attributes, as shown in
Table 4.5.

Address Bit 
Values

Status Register
Is One Of These 

Values
Segment

Name
Address Range

Segment
Size

KSU EXL ERL KX

A(63:62) = 002

KSU = 002
or

EXL = 1
or

ERL =1

1 xksuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

A(63:62) = 012 1 xksseg
0x4000 0000 0000 0000

through
0x4000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

A(63:62) = 102 1 xkphys
0x8000 0000 0000 0000

through
0xBFFF FFFF FFFF FFFF

8 236-byte 
spaces

A(63:62) = 112 1 xkseg
0xC000 0000 0000 0000

through
0xC000 00FF 7FFF FFFF

(240–231) 
bytes

A(63:62) = 112
A(61:31) = -1 1 ckseg0

0xFFFF FFFF 8000 0000
through

0xFFFF FFFF 9FFF FFFF

512 Mbytes 
(229 bytes)

A(63:62) = 112
A(61:31) = -1 1 ckseg1

0xFFFF FFFF A000 0000
through

0xFFFF FFFF BFFF FFFF

512 Mbytes 
(229 bytes)

A(63:62) = 112
A(61:31) = -1 1 cksseg

0xFFFF FFFF C000 0000
through

0xFFFF FFFF DFFF FFFF

512 Mbytes 
(229 bytes)

A(63:62) = 112
A(61:31) = -1 1 ckseg3

0xFFFF FFFF E000 0000
through

0xFFFF FFFF FFFF FFFF

512 Mbytes 
(229 bytes)
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Table 4.5    Cacheability and Coherency Attributes

64-bit Kernel Mode, Kernel Space (xkseg)
In Kernel mode, when KX = 1 in the Status register and bits 63:62 of

the 64-bit virtual address are 112, the address space selected is one of the
following:

• kernel virtual space, xkseg, the current kernel virtual 
space; the virtual address is extended with the contents 
of the 8-bit ASID field to form a unique virtual address 

• one of the four 32-bit kernel compatibility spaces, as 
described in the next section.

64-bit Kernel Mode, Compatibility Spaces
In Kernel mode, when KX = 1 in the Status register, bits 63:62 of the

64-bit virtual address are 112, and bits 61:31 of the virtual address
equal –1.  The lower two bytes of address, as shown in figure 15, select
one of the following 512-Mbyte compatibility spaces.

• ckseg0.  This 64-bit virtual address space is an 
unmapped region, compatible with the 32-bit address 
model kseg0.  The K0 field of the Config register controls 
cacheability and coherency.

• ckseg1.  This 64-bit virtual address space is an 
unmapped and uncached region, compatible with the 
32-bit address model kseg1. 

• cksseg.  This 64-bit virtual address space is the current 
supervisor virtual space, compatible with the 32-bit 
address model ksseg.

• ckseg3.  This 64-bit virtual address space is kernel 
virtual space, compatible with the 32-bit address model 
kseg3.

System Control Coprocessor
The System Control Coprocessor (CP0) is implemented as an integral

part of the CPU, and supports memory management, address translation,
exception handling, and other privileged operations.  CP0 contains the
registers shown in Figure 4.7 plus a 48-entry TLB.  The sections that
follow describe how the processor uses the memory management-related
registers.

Each CP0 register has a unique number that identifies it; this number
is referred to as the register number.  For instance, the Page Mask register
is register number 5.

Value (61:59) Cacheability and Coherency Attributes Starting Address

0 Cacheable, noncoherent, write-through, 
no write allocate 0x8000  0000 0000 0000

1 Cacheable, noncoherent, write-through, 
write allocate 0x8800  0000 0000 0000

2 Uncached 0x9000  0000 0000 0000

3 Cacheable, noncoherent 0x9800  0000 0000 0000

4-7 Reserved 0xA000 0000 0000 0000
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Figure  4.7   CP0 Registers and the TLB

Format of a TLB Entry
Figure 4.8 shows the TLB entry formats for both 32- and 64-bit modes.

Each field of an entry has a corresponding field in the EntryHi, EntryLo0,
EntryLo1, or PageMask registers. 

EntryLo0
2*

EntryHi

Page Mask

Index

Random

Wired

Count

47

0

BadVAddr

TLB

(“Safe” entries)
(See Random Register,

PRId

0127

8*

15*

Compare 
11*

Config
16*

LLAddr
17*

Reserved
18*

Reserved
19*

TagLo
28*

TagHi
29*

contents of TLB Wired)
ECC
26*

*Register number

Used with exception
processing. See Used with memory 

Chapter 5 for details.

EntryLo0
2*

3*
EntryLo1

EntryHi
10*

5*
Page Mask

Index
0*

Random
1*

Wired
6*

ErrorEPC
30*

Context

4*

Status
12*

Cause
13*

EPC
14*

management system.

CacheErr
27*

XContext

20*

9*
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Figure  4.8   Format of a TLB Entry

The format of the EntryHi, EntryLo0, EntryLo1, and PageMask registers
are nearly the same as the TLB entry.  The one exception is the Global
field (G bit), which is used in the TLB, but is reserved in the EntryHi
register.  Figure 4.9 and Figure 4.10 describe the TLB entry fields shown
in Figure 4.8.
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127

13

96

MASK    0

95

VPN2 G
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1 4 8

ASID

7677
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63 32

PFN
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3334353738
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12356
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140141

   24
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39
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30 29
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C VD
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0

1

0
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64-bit Mode

34

0

167168

R

190 189

22

0

2

204205216217

128-bit TLB 
entry in 32-
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R4000 
processor

256-bit TLB 
entry in 64-
bit mode of 
R4000 
processor
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Figure  4.9   Fields of the PageMask and EntryHi Registers

Figure  4.10   Fields of the EntryLo0 and EntryLo1 Registers
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0
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31
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EntryHi Register
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0

VPN2 ... Virtual page number divided by two (maps to two pages).
ASID .... Address space ID field.  An 8-bit field that lets multiple processes share the TLB; 

each process has a distinct mapping of otherwise identical virtual page numbers. 
R .......... Region. (00 → user, 01 → supervisor, 11 → kernel) used to match vAddr63...62
Fill ........ Reserved.  0 on read; ignored on write.
0 .......... Reserved. Must be written as zeroes, and returns zeroes when read.
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0

5 8
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2
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PFN ......Page frame number; the upper bits of the physical address.
C...........Specifies the TLB page coherency attribute; see Table 4.6.
D...........Dirty.  If this bit is set, the page is marked as dirty and, therefore, writable.  This bit is 

actually a write-protect bit that software can use to prevent alteration of data.
V...........Valid.  If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS 

miss occurs.
G ..........Global. If this bit is set in both Lo0 and Lo1, then the processor ignores the ASID during 

TLB lookup.
0 ...........Reserved. Must be written as zeroes, and returns zeroes when read.
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The TLB page coherency attribute (C) bits specify whether references to
the page should be cached; if cached, the algorithm selects between
several coherency attributes.  Table 4.6 shows the coherency attributes
selected by the C bits.

Table 4.6    TLB Page Coherency (C) Bit Values

CP0 Registers
The following sections describe the CP0 registers that are assigned

specifically as a software interface with memory management (each
register is followed by its register number in parentheses). 

• Index register (CP0 register number 0)

• Random register (1)

• EntryLo0 (2) and EntryLo1 (3) registers

• PageMask register (5)

• Wired register (6)

• EntryHi register (10)

• PRId register (15)

• Config register (16)

• LLAddr register (17)

• TagLo (28) and TagHi (29) registers

Index Register (0)
The Index register is a 32-bit, read/write register containing six bits to

index an entry in the TLB.  The high-order bit of the register shows the
success or failure of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read
(TLBR) or TLB Write Index (TLBWI) instructions.

Figure 4.11 shows the format of the Index register; Table 4.7 describes
the Index register fields.

Figure  4.11   Index Register

C(5:3) Value Page Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate

1 Cacheable, noncoherent, write-through,  write allocate

2 Uncached

3 Cacheable, noncoherent, write-back

4 - 7 Reserved

Index Register

31 

1

30 6 5 0

25 6

    IndexP 0
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Table 4.7    Index Register Field Descriptions

Random Register (1)
The Random register is a read-only register of which six bits index an

entry in the TLB.  This register decrements as each instruction executes,
and its values range between an upper and a lower bound, as follows:

• A lower bound is set by the number of TLB entries 
reserved for exclusive use by the operating system (the 
contents of the Wired register).

• An upper bound is set by the total number of TLB 
entries (47 maximum).

The Random register specifies the entry in the TLB that is affected by
the TLB Write Random instruction.  The register does not need to be read
for this purpose; however, the register is readable to verify proper opera-
tion of the processor.

To simplify testing, the Random register is set to the value of the upper
bound upon system reset.  This register is also set to the upper bound
when the Wired register is written. 

Figure 4.12 shows the format of the Random register.  Table 4.8
describes the Random register fields.

Figure  4.12   Random Register

Table 4.8    Random Register Field Descriptions

EntryLo0 (2), and EntryLo1 (3) Registers
The EntryLo register consists of two registers that have identical

formats: 

• EntryLo0 is used for even virtual pages.

• EntryLo1 is used for odd virtual pages.

Field Description

P Probe failure.  Set to 1 when the previous TLBProbe 
(TLBP) instruction was unsuccessful.

Index Index to the TLB entry affected by the TLBRead and 
TLBWrite instructions

0 Reserved.   Must be written as zeroes, and returns zeroes 
when read.

Field Description

Random TLB Random index

0 Reserved.  Must be written as zeroes, and returns zeroes 
when read.

Random Register
31 6 5 0

26 6

    Random0
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The EntryLo0 and EntryLo1 registers are read/write registers.   They
hold the physical page frame number (PFN) of the TLB entry for even and
odd pages, respectively, when performing TLB read and write operations.
Figure 4.10 shows the format of these registers. 

PageMask Register (5)
The PageMask register is a read/write register used for reading from or

writing to the TLB; it holds a comparison mask that sets the variable page
size for each TLB entry. 

TLB read and write operations use this register as either a source or a
destination; when virtual addresses are presented for translation into
physical address, the corresponding bits in the TLB identify which virtual
address bits among bits 24:13 are used in the comparison.  When the
Mask field is not one of the values shown in Table 4.9, the operation of
the TLB is undefined.

Table 4.9    Mask Field Values for Page Sizes

Wired Register (6)
The Wired register is a read/write register that specifies the boundary

between the wired and random entries of the TLB as shown in Figure
4.13.  Wired entries are fixed, nonreplaceable entries, which cannot be
overwritten by a TLB write operation.  Random entries can be overwritten.

Figure  4.13   Wired Register Boundary

The Wired register is set to 0 upon system reset.  Writing this register
also sets the Random register to the value of its upper bound (see Random
register, above).  Figure 4.14 shows the format of the Wired register;
Table 4.10 describes the register fields.

Page Size
Bit 

24 23 22 21 20 19 18 17 16 15 14 13

4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbyte 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbytes 1 1 1 1 1 1 1 1 1 1 1 1

47

Wired

Range of Random entries

0

TLB

Register
Range of Wired entries
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Figure  4.14   Wired Register

Table 4.10    Wired Register Field Descriptions

EntryHi Register (CP0 Register 10)
The EntryHi register holds the high-order bits of a TLB entry for TLB

read and write operations. 
The EntryHi register is accessed by the TLB Probe, TLB Write Random,

TLB Write Indexed, and TLB Read Indexed instructions.
When either a TLB refill, TLB invalid, or TLB modified exception occurs,

the EntryHi register is loaded with the virtual page number (VPN2) and
the ASID of the virtual address that did not have a matching TLB entry.  

Processor Revision Identifier (PRId) Register (15)
The 32-bit, read-only Processor Revision Identifier (PRId) register

contains information identifying the implementation and revision level of
the CPU and CP0.  Figure 4.15 shows the format of the PRId register;
Table 4.11 describes the PRId register fields.

Figure  4.15   Processor Revision Identifier Register Format

Table 4.11    PRId Register Fields

The low-order byte (bits 7:0) of the PRId register is interpreted as a revi-
sion number, and the high-order byte (bits 15:8) is interpreted as an
implementation number. The implementation number of the R5000
processor is 0x23.  The content of the high-order halfword (bits 31:16) of
the register are reserved.

Field Description

Wired TLB Wired boundary

0 Reserved.  Must be written as zeroes, and returns 
zeroes when read.

Field Description

Imp Implementation number
Imp=0x23

Rev Revision number

0 Reserved.  Must be written as zeroes, and returns zeroes 
when read.

Wired Register 
31 6 5 0

26 6

    Wired0

16 15

PRId Register

31 0

16

Imp

8 8

0

8

Rev

7
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The revision number is stored as a value in the form y.x, where y is a
major revision number in bits 7:4 and x is a minor revision number in
bits 3:0.

The revision number can distinguish some chip revisions, however
there is no guarantee that changes to the chip will necessarily be reflected
in the PRId register, or that changes to the revision number necessarily
reflect real chip changes.  For this reason, these values are not listed and
software should not rely on the revision number in the PRId register to
characterize the chip.

Config Register (16)
The Config register specifies various configuration options which can be

selected.
Some configuration options, as defined by Config bits 31:6, are set by

the hardware during reset and are included in the Config register as read-
only status bits for the software to access.  Other configuration options
are read/write (as indicated by Config register bits 5:0) and controlled by
software; on reset these fields are undefined.

Certain configurations have restrictions.  The Config register should be
initialized by software before caches are used.  Caches should be written
back to memory before line sizes are changed, and caches should be rein-
itialized after any change is made. 

Figure 4.16 shows the format of the Config register; Table 4.12
describes the Config register fields.

Figure  4.16   Config Register Format

Table 4.12    Config Register Fields

Field Description

EC

System clock ratio:
0 → processor clock frequency divided by 2
1 → processor clock frequency divided by 3
2 → processor clock frequency divided by 4
3 → processor clock frequency divided by 5
4 → processor clock frequency divided by 6
5 → processor clock frequency divided by 7
6 → processor clock frequency divided by 8
7 → Reserved

Config Register

 2031 

2 1

  0   0   0EP

1

19 18 1617 815

1 3

DBIB

1

4 2 0

  0 EC

1 3

30 28 27

4

24 23 22

 0

21

 

2 1

SS

1

BE

1

14

  1

1

13

  1

1

SE

12

1

11

IC

3

9 6

DC

5 3

31

  0 K0
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Load Linked Address (LLAddr) Register (17)
The read/write Load Linked Address (LLAddr) register contains the

physical address read by the most recent Load Linked instruction.
This register is for diagnostic purposes only, and serves no function

during normal operation. 
Figure 4.17 shows the format of the LLAddr register; PAddr represents

bits of the physical address, PA(35:4).

Figure  4.17   LLAddr Register Format

EP

Transmit data pattern (pattern for write-back data):
0 → D                                   Doubleword every cycle
1 → DDxDDx                      2 Doublewords every 3 cycles
2 → DDxxDDxx                  2 Doublewords every 4 cycles
3 → DxDxDxDx                  2 Doublewords every 4 cycles
4 → DDxxxDDxxx              2 Doublewords every 5 cycles
5 → DDxxxxDDxxxx          2 Doublewords every 6 cycles
6 → DxxDxxDxxDxx          2 Doublewords every 6 cycles
7 → DDxxxxxxDDxxxxxx  2 Doublewords every 8 cycles
8 → DxxxDxxxDxxxDxxx  2 Doublewords every 8 cycles

SS

Secondary Cache Size
       00 → 512 KByte
       01 → 1 MByte
       10 → 2 MByte
       11 → None

BE
Big Endian Mode:

0 → Little Endian
1 → Big Endian

SE
Secondary Cache Enable

0 → Disabled
1 → Enabled

IC
Primary I-cache Size (I-cache size = 212+IC  bytes).  In the R5000 processor, 
this is set to 32 Kbytes.

DC
Primary D-cache Size (D-cache size = 212+DC  bytes).  In the R5000 processor, 
this is set to 32 Kbytes.

IB
Primary I-cache line size. In the R5000 processor, this is set to 32 bytes.

0 → 16 bytes
1 → 32 bytes

DB
Primary D-cache line size.  In the R5000 processor, this is set to 32 bytes.

0 → 16 bytes
1 → 32 bytes

K0 kseg0 coherency algorithm (see EntryLo0 and EntryLo1 registers and the C 
field of Table 4.6)

Field Description

LLAddr Register
31 0

PAddr(35:4)

32
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Cache Tag Registers [TagLo (28) and TagHi (29)]
The TagLo and TagHi registers are 32-bit read/write registers that hold

either the primary cache tag and parity, or the secondary cache tag and
ECC during cache initialization, cache diagnostics, or cache error
processing.  The Tag registers are written by the CACHE and MTC0
instructions.

The P and ECC fields of these registers are ignored on Index Store Tag
operations.  Parity and ECC are computed by the store operation. 

Figure 4.18 shows the format of these registers for primary cache oper-
ations.  Figure 4.19 shows the format of these registers for secondary
cache operations.

Table 4.13 lists the field definitions of the TagLo and TagHi registers.

Figure  4.18   TagLo and TagHi Register (P-cache) Formats

Figure  4.19   TagLo and TagHi Register (S-cache) Formats

Table 4.13    Cache Tag Register Fields

Field  Description

PTagLo Specifies the physical address bits 35:12

PState Specifies the primary cache state

P Specifies the primary tag even parity bit

STagLo Specifies the physical address bits 35:19

SV Specifies the Valid bit for secondary cache

0 Reserved.  Must be written as zeroes, and returns zeroes when read.

31 0

32

TagLo

TagHi

31

1

0

24

P

8 7

PState

6 5 1

32

PTagLo

0

0

23

FRWNT

11

31 0

32

TagLo

TagHi

31

7

7 0

17

STagLo

13 12

SV

10 9 6

32

15 14

0

11

0 0 0

0

2 1
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Virtual-to-Physical Address Translation Process
During virtual-to-physical address translation, the CPU compares the 

8-bit ASID (if the Global bit, G, is not set) of the virtual address to the
ASID of the TLB entry to see if there is a match.  One of the following
comparisons are also made:

• In 32-bit mode, the highest 7-to-19 bits (depending 
upon the page size) of the virtual address are 
compared to the contents of the TLB virtual page 
number.

• In 64-bit mode, the highest 15-to-27 bits (depending 
upon the page size) of the virtual address are 
compared to the contents of the TLB virtual page 
number.

If a TLB entry matches, the physical address and access control bits (C,
D, and V) are retrieved from the matching TLB entry.  While the V bit of
the entry must be set for a valid translation to take place, it is not
involved in the determination of a matching TLB entry.
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Figure 4.20 illustrates the TLB address translation process.

Figure  4.20   TLB Address Translation

TLB Misses
If there is no TLB entry that matches the virtual address, a TLB miss

exception occurs.  If the access control bits (D and V) indicate that the
access is not valid, a TLB modification or TLB invalid exception occurs.  If
the C bits equal 0102, the physical address that is retrieved accesses
main memory, bypassing the cache.
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TLB Instructions
Table 4.14 lists the instructions that the CPU provides for working with

the TLB.

Table 4.14    TLB Instructions

Secondary Cache Operations
The CACHE instruction defines two operations for the secondary cache:

index load tag and index store tag.  The following orientation of the index
bits determine the type of operation:

Index Bits [17:16] equal to 11b (3h) specifies the secondary cache. 
Index bits [20:18] equal to 001b (1h) specifies the index load tag. The

index load tag reads the secondary cache for the specified index and
places it into the TagLo CP0 register.

Index bits [20:18] equal to 010b (2h) specify the index store tag.  The
index store tag writes the secondary cache for the specified index from the
physical address generated by the CACHE instruction. 

Index bits [20:18] equal to 000b (0h) generates a valid clear sequence to
flush the entire cache in one operation.

Index bits [20:18] equal to 101b (5h) generates a cache page invalidate
instruction to flush 128 lines of the cache in one operation with the tag
value from the TagLo CP0 register. The index for the cache page invalidate
must be page aligned.

Interrupts are deferred until a cache page invalidate instruction
completes (up to 512 processor clocks for a SysClock ratio of 4).

TagLo[12] is the valid bit and TagLo[31:15] is the tag for all secondary
cache operations.

Secondary Cache Software Enable
The secondary cache may be enabled or disabled by software control

via CP0 config register bit 12 (SE). When the SE bit is set (1) the
secondary cache is enabled. When the SE bit is cleared (0) the secondary
cache is disabled.  The SE bit is cleared at reset. When the secondary
cache is enabled by setting the SE bit, the state of the cache is undefined
and software must explicitly invalidate the entire secondary cache before
using it. 

Op Code Description of Instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random



 

5 - 1

 

Integrated Device Technology, Inc.

 

CPU Exception Processing Chapter 5

 

Introduction

 

This section describes the CPU exception processing, including an
explanation of exception processing, followed by the format and use of
each CPU exception register.

 

Overview of Exception Processing

 

The processor receives exceptions from a number of sources, including
translation lookaside buffer (TLB) misses, arithmetic overflows, I/O inter-
rupts, and system calls.  When the CPU detects one of these exceptions,
the normal sequence of instruction execution is suspended and the
processor enters Kernel mode.

The processor then disables interrupts and forces execution of a soft-
ware exception processor (called a 

 

handler

 

) located at a fixed address.
The handler saves the context of the processor, including the contents of
the program counter, the current operating mode (User or Supervisor),
and the status of the interrupts (enabled or disabled).  This context is
saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the 

 

Exception Program
Counter

 

 (

 

EPC

 

) register with a location where execution can restart after
the exception has been serviced.  The restart location in the 

 

EPC

 

 register
is the address of the instruction that caused the exception or, if the
instruction was executing in a branch delay slot, the address of the
branch instruction immediately preceding the delay slot.

The registers described later in the section assist in this exception
processing by retaining address, cause and status information.

 

Exception Processing Registers

 

This section describes the CP0 registers that are used in exception
processing.  Table 5.1 lists these registers, along with their number—each
register has a unique identification number that is referred to as its

 

register number

 

.  For instance, the 

 

ECC

 

 register is register number 26.
The remaining CP0 registers are used in memory management.

Software examines the CP0 registers during exception processing to
determine the cause of the exception and the state of the CPU at the time
the exception occurred.  The registers in Table 5.1 are used in exception
processing, and are described in the sections that follow.

 

Table 5.1    CP0 Exception Processing Registers

 

Register Name Reg.  No.

 

Context 4

BadVAddr (Bad Virtual Address) 8

Count 9

Compare register 11

Status 12

Cause 13

EPC (Exception Program Counter) 14

WatchLo (Memory Reference Trap Address Low) 18
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CPU general registers are interlocked and the result of an instruction
can normally be used by the next instruction; if the result is not available
right away, the processor stalls until it is available.  CP0 registers and the
TLB are not interlocked, however; there may be some delay before a value
written by one instruction is available to following instructions.  

 

Context Register (4)

 

The 

 

Context

 

 register is a read/write register containing the pointer to
an entry in the page table entry (PTE) array; this array is an operating
system data structure that stores virtual-to-physical address transla-
tions.  When there is a TLB miss, the CPU loads the TLB with the missing
translation from the PTE array.  Normally, the operating system uses the

 

Context 

 

register to address the current page map which resides in the
kernel-mapped segment, 

 

kseg3

 

.  The 

 

Context 

 

register duplicates some of
the information provided in the 

 

BadVAddr 

 

register, but the information is
arranged in a form that is more useful for a software TLB exception
handler.  Figure 5.1 shows the format of the 

 

Context 

 

register; Table 5.2
describes the 

 

Context 

 

register fields. 

 

Figure  5.1   Context Register Format

Table 5.2    Context Register Fields

 

WatchHi (Memory Reference Trap Address High) 19

XContext 20

ECC 26

CacheErr (Cache Error and Status) 27

ErrorEPC (Error Exception Program Counter) 30

 

Field Description 

 

BadVPN2
This field is written by hardware on a miss.  It contains 
the virtual page number (VPN) of the most recent 
virtual address that did not have a valid translation.

PTEBase

This field is a read/write field for use by the operating 
system.  It is normally written with a value that allows 
the operating system to use the 

 

Context

 

 register as a 
pointer into the current PTE array in memory.

 

Register Name Reg.  No.

23 22 4 331 0

9

PTEBase BadVPN2

19 4

0

Context Register 

23 22 4 363 0

41

PTEBase BadVPN2

19 4

0

32-bit
Mode

64-bit
Mode
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The 19-bit 

 

BadVPN2

 

 field contains bits 31:13 of the virtual address
that caused the TLB miss; bit 12 is excluded because a single TLB entry
maps to an even-odd page pair.  For a 4-Kbyte page size, this format can
directly address the pair-table of 8-byte PTEs.  For other page and PTE
sizes, shifting and masking this value produces the appropriate address.

 

Bad Virtual Address Register (BadVAddr) (8)

 

The Bad Virtual Address register (

 

BadVAddr

 

) is a read-only register
that displays the most recent virtual address that caused one of the
following exceptions: TLB Invalid, TLB Modified, TLB Refill, Virtual Coher-
ency Data Access, or Virtual Coherency Instruction Fetch.

Figure 5.2 shows the format of the 

 

BadVAddr 

 

register.

 

Figure  5.2   BadVAddr Register Format

 

Note: 

 

The 

 

BadVAddr 

 

register does not save any information for bus
errors, since bus errors are not addressing errors. 

 

Count Register (9)

 

The 

 

Count

 

 register acts as a timer, incrementing at a constant rate—
half the maximum instruction issue rate—whether or not an instruction
is executed, retired, or any forward progress is made through the pipeline.

This register can be read or written.  It can be written for diagnostic
purposes or system initialization; for example, to synchronize processors.

Figure 5.3 shows the format of the 

 

Count

 

 register.

 

Figure  5.3   Count Register Format

 

Compare Register (11)

 

The 

 

Compare

 

 register acts as a timer (see also the 

 

Count

 

 register); it
maintains a stable value that does not change on its own. 

When the value of the 

 

Count

 

 register equals the value of the 

 

Compare

 

register, interrupt bit

 

 IP(7)

 

 in the 

 

Cause

 

 register is set.  This causes an
interrupt as soon as the interrupt is enabled.

Writing a value to the 

 

Compare

 

 register, as a side effect, clears the timer
interrupt.

For diagnostic purposes, the 

 

Compare

 

 register is a read/write
register.   In normal use however, the 

 

Compare

 

 register is write-only.
Figure 5.4 shows the format of the 

 

Compare 

 

register.

BadVAddr Register
31 0

32

Bad Virtual Address

63 0

64

Bad Virtual Address

32-bit
Mode

64-bit
Mode

Count Register
31 0

32

    Count
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Figure  5.4   Compare Register Format

 

Status Register (12)

 

The 

 

Status

 

 register (SR) is a read/write register that contains the oper-
ating mode, interrupt enabling, and the diagnostic states of the processor.
The following list describes the more important 

 

Status

 

 register fields;
Figures 34 and 35 show the format of the entire register, including
descriptions of the fields.  Some of the important fields include:

 

• The 8-bit 

 

Interrupt Mask

 

 (

 

IM

 

) field controls the enabling 
of eight interrupt conditions.  Interrupts must be 
enabled before they can be asserted, and the 
corresponding bits are set in both the 

 

Interrupt Mask

 

 
field of the 

 

Status

 

 register and the 

 

Interrupt Pending

 

 
field of the 

 

Cause

 

 register. IM[1:0] are soft3ware 
interrupt masks, while IM[7:2] correspond to Int[5:0].

• The 4-bit 

 

Coprocessor

 

 

 

Usability

 

 (

 

CU

 

) field controls the 
usability of 4 possible coprocessors.  Regardless of the 

 

CU0

 

 bit setting, CP0 is always usable in Kernel mode. 
For all other cases, an access to an unusable 
coprocessor causes an exception.

• The 9-bit 

 

Diagnostic

 

 

 

Status

 

 (

 

DS

 

) field is used for self-
testing, and checks the cache and virtual memory 
system.

• The 

 

Reverse-Endian (RE)

 

 bit, bit 25, reverses the 
endianness of the machine.  The processor can be 
configured as either little-endian or big-endian at 
system reset; reverse-endian selection is used in Kernel 
and Supervisor modes, and in the User mode when the 

 

RE

 

 bit is 0.  Setting the 

 

RE

 

 bit to 1 inverts the User 
mode endianness.

 

Status Register Format

 

Figure 5.5 shows the format of the 

 

Status 

 

register.  Table 5.3 describes
the 

 

Status

 

 register fields.  Figure 5.6 and Table 5.4 provide additional
information on the 

 

Diagnostic Status

 

 (

 

DS

 

) field.  All bits in the 

 

DS

 

 field
except 

 

TS

 

 are readable and writable.

 

Figure  5.5   Status Register
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Table 5.3    Status Register Fields

 

Field Description

 

CU

Controls the usability of each of the four coprocessor unit 
numbers.  CP0 is always usable when in Kernel mode, 
regardless of the setting of the 

 

CU

 

0

 

 bit. Setting

 

 CU

 

3

 

 enables 
the MIPS IV instruction set,
1 

 

→

 

 usable
0 

 

→

 

 unusable

0 Reserved. Set to 0.

FR
Enables additional floating-point registers

0 

 

→

 

 16 registers
1 

 

→

 

 32 registers

RE

 

Reverse-Endian

 

 bit, valid in User mode.

DS

 

Diagnostic Status

 

 field (see Figure 5.6).

IM

 

Interrupt Mask

 

: controls the enabling of each of the external, 
internal, and software interrupts.  An interrupt is taken if 
interrupts are enabled, and the corresponding bits are set in 
both the Interrupt Mask field of the Status register and the 
Interrupt Pending field of the Cause register. 

0 → disabled
1→ enabled

KX

Enables 64-bit addressing in Kernel mode.  The extended-
addressing TLB refill exception is used for TLB misses on 
kernel addresses.

0 → 32−bit
1 → 64−bit

SX

Enables 64-bit addressing and operations in Supervisor 
mode.  The extended-addressing TLB refill exception is used 
for TLB misses on supervisor addresses.

0 → 32−bit
1 → 64−bit

UX

Enables 64-bit addressing and operations in User mode.  The 
extended-addressing TLB refill exception is used for TLB 
misses on user addresses.

0 → 32−bit
1 → 64−bit

KSU

Mode bits
102  → User
012  → Supervisor
002  → Kernel

ERL

Error Level; set by the processor when Reset, Soft Reset, 
NMI, or Cache Error exception are taken.

0  → normal
1  → error

EXL

Exception Level; set by the processor when any exception 
other than Reset, Soft Reset, NMI, or Cache Error exception 
are taken.

0  → normal
1  → exception

IE
Interrupt Enable

0  → disable interrupts
1 → enables interrupts
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Figure  5.6   Status Register DS Field

Table 5.4    Status Register Diagnostic Status Bits

Status Register Modes and Access States
Fields of the Status register set the modes and access states described

in the sections that follow.
Interrupt Enable: Interrupts are enabled when all of the following

conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

If these conditions are met, the settings of the IM bits enable the inter-
rupt.

Operating Modes: The following CPU Status register bit settings are
required for User, Kernel, and Supervisor modes.

• The processor is in User mode when KSU = 102, EXL = 
0, and ERL = 0.

• The processor is in Supervisor mode when KSU = 012, 
EXL = 0, and ERL = 0.

Bit Description

BEV

Controls the location of TLB refill and general exception 
vectors.

0 → normal
1→ bootstrap

0 Reserved. Must be written as zeroes. Returns zeroes when 
read.

SR 1→ Indicates that a soft reset or NMI has occurred.

CH

Hit (tag match and valid state) or miss indication for last 
CACHE Hit Invalidate, Hit Write Back Invalidate, Hit Write 
Back, Hit Set Virtual, or Create Dirty Exclusive for a 
secondary cache.

0 → miss
1 → hit

CE Contents of the ECC register set or modify the check bits of 
the caches when CE = 1; see description of the ECC register.

DE

Specifies that cache parity or ECC errors cannot cause 
exceptions.

0 → parity/ECC remain enabled
1 → disables parity/ECC

0 Reserved.   Must be written as zeroes, and returns zeroes 
when read.

Diagnostic Status Field
24 22 21 20 19 18 17 16

TS SR CH CE DE

2 1 1 1 1 1 1

BEV

23

1

0 0
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• The processor is in Kernel mode when KSU = 002, or 
EXL = 1, or ERL = 1. 

32- and 64-bit Modes: The following CPU Status register bit settings
select 32- or 64-bit operation for User, Kernel, and Supervisor operating
modes.  Enabling 64-bit operation permits the execution of 64-bit
opcodes and translation of 64-bit addresses.  64-bit operation for User,
Kernel and Supervisor modes can be set independently.

• 64-bit addressing for Kernel mode is enabled when KX 
= 1.      64-bit operations are always valid in Kernel 
mode.

• 64-bit addressing and operations are enabled for 
Supervisor mode when SX = 1.

• 64-bit addressing and operations are enabled for User 
mode when UX = 1.

Kernel Address Space Accesses: Access to the kernel address space is
allowed when the processor is in Kernel mode.

Supervisor Address Space Accesses: Access to the supervisor address
space is allowed when the processor is in Kernel or Supervisor mode, as
described above in the section above titled, Operating Modes.

User Address Space Accesses: Access to the user address space is
allowed in any of the three operating modes.

Status Register Reset
The contents of the Status register are undefined at reset, except for the

following bits in the Diagnostic Status field:

• ERL and BEV = 1
The SR bit distinguishes between the Reset exception and the Soft

Reset exception (caused either by Reset* or Nonmaskable Interrupt
[NMI]).

Cause Register (13)
The 32-bit read/write Cause register describes the cause of the most

recent exception.
Figure 5.7 shows the fields of this register. Table 5.5 describes the

Cause register fields.
All bits in the Cause register, with the exception of the IP(1:0) bits, are

read-only; IP(1:0) are used for software interrupts.

Table 5.5    Cause Register Fields

Field Description

BD
Indicates whether the last exception taken occurred in a branch delay slot.

1 → delay slot
0 → normal

CE Coprocessor unit number referenced when a Coprocessor Unusable 
exception is taken.

IP
Indicates an interrupt is pending.

1 → interrupt pending
0 → no interrupt

ExcCode Exception code field (see Table 5.6)

0 Reserved.  Must be written as zeroes, and returns zeroes when read.
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Figure  5.7   Cause Register Format

Table 5.6    Cause Register ExcCode Field 

Exception Program Counter (EPC) Register (14)
The Exception Program Counter (EPC) is a read/write register that

contains the address at which processing resumes after an exception has
been serviced.

For synchronous exceptions, the EPC register contains either:

• the virtual address of the instruction that was the direct 
cause of the exception, or

• the virtual address of the immediately preceding 
branch or jump instruction (when the instruction is in a 
branch delay slot, and the Branch Delay bit in the Cause 
register is set).

The processor does not write to the EPC register when the EXL bit in
the Status register is set to a 1.

Figure 5.8 shows the format of the EPC register.

Exception
Mnemonic Description

Code Value

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 ---- Reserved

15 FPE Floating-Point exception

16–31 –-- Reserved

Cause Register

 1

IP7

31 1527 16

2 12

8 7 6 2 0

8 1 251

0Exc
Code

1

00

282930

BD 0 CE IP0
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Figure  5.8   EPC Register Format

XContext Register (20)
The read/write XContext register contains a pointer to an entry in the

page table entry (PTE) array, an operating system data structure that
stores virtual-to-physical address translations.  When there is a TLB
miss, the operating system software loads the TLB with the missing trans-
lation from the PTE array.  The XContext register duplicates some of the
information provided in the BadVAddr register, and puts it in a form
useful for a software TLB exception handler.  The XContext register is for
use with the XTLB refill handler, which loads TLB entries for references to
a 64-bit address space, and is included solely for operating system use.
The operating system sets the PTE base field in the register, as needed.
Normally, the operating system uses the Context register to address the
current page map, which resides in the kernel-mapped segment kseg3.
Figure 5.9 shows the format of the XContext register; Table 5.7 describes
the XContext register fields. 

Figure  5.9   XContext Register Format

The 27-bit BadVPN2 field has bits 39:13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry maps
to an even-odd page pair.  For a 4-Kbyte page size, this format may be
used directly to address the pair-table of 8-byte PTEs.  For other page and
PTE sizes, shifting and masking this value produces the appropriate
address.

EPC Register
31 0

EPC

32

63 0

EPC

64

32-bit
Mode

64-bit
Mode

XContext Register 
31 30 4 363 0

31

PTEBase BadVPN2

27 4

0R

2

33 32
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Table 5.7    XContext Register Fields

Error Checking and Correcting (ECC) Register (26)
The 8-bit Error Checking and Correcting (ECC) register reads or writes

primary-cache data parity bits for cache initialization, cache diagnostics,
or cache error processing.  (Tag ECC and parity are loaded from and
stored to the TagLo register.)

The ECC register is loaded by the Index Load Tag CACHE operation.
Content of the ECC register is:

• written into the primary data cache on store 
instructions (instead of the computed parity) when the 
CE bit of the Status register is set.

• substituted for the computed instruction parity for the 
CACHE operation Fill.

Figure 5.10 shows the format of the ECC register; Table 5.8 describes
the register fields.

Figure  5.10   ECC Register Format

Table 5.8    ECC Register Fields

Cache Error (CacheErr) Register (27)
The 32-bit read-only CacheErr register processes ECC errors in the

secondary cache and parity errors in the primary cache.  Parity errors
cannot be corrected. 

The CacheErr register holds cache index and status bits that indicate
the source and nature of the error; it is loaded when a Cache Error excep-
tion is asserted.

Figure 5.11 shows the format of the CacheErr register and Table 5.9
describes the CacheErr register fields.

Field Description

BadVPN2 The Bad Virtual Page Number/2 field is written by hardware on a miss.  It 
contains the VPN of the most recent invalidly translated virtual address.

R

The Region field contains bits 63:62 of the virtual address.
002 = user
012 = supervisor
112 = kernel. 

PTEBase
The Page Table Entry Base read/write field is normally written with a value 
that allows the operating system to use the Context register as a pointer into 
the current PTE array in memory.

Field Description

ECC An 8-bit field specifying the parity bits read from or 
written to a primary cache.

0 Reserved.  Must be written as zeroes, and returns zeroes 
when read.

ECC Register
31 

24 8

8 07

0 ECC
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Figure  5.11   CacheErr Register Format

Table 5.9    CacheErr Register Fields

Error Exception Program Counter (Error EPC) Register (30)
The ErrorEPC register is similar to the EPC register, except that

ErrorEPC is used on parity error exceptions.  It is also used to store the
program counter (PC) on Reset, Soft Reset, and nonmaskable interrupt
(NMI) exceptions. 

The read/write ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error.  This address
can be: 

Field Description

ER
Type of reference

0 → instruction
1 → data

EC
Cache level of the error

0 → primary
1 → reserved

ED
Indicates if a data field error occurred

0 → no error
1 → error

ET
Indicates if a tag field error occurred

0 → no error
1  → error

ES

Indicates that a parity error occurred in the first 
doubleword of the read response data.

0 → no cache miss parity error
1 → cache miss parity error

EE This bit is set if the error occurred on the SysAD 
bus.

EB

This bit is set if a data error occurred in addition 
to the instruction error (indicated by the 
remainder of the bits).  If so, this requires 
flushing the data cache after fixing the 
instruction error.

0 Reserved.  Must be written as zeroes, and 
returns zeroes when read.

CacheErr Register

31 

 0

19

2 0

ER ES

1

30 28 25

1

24 23 22 21

0

1 1

            0

3

    0EBEE

111

ETEDEC

1 1

262729

1

   0
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• the virtual address of the instruction that caused the 
exception

• the virtual address of the immediately preceding 
branch or jump instruction, when this address is in a 
branch delay slot. 

There is no branch delay slot indication for the ErrorEPC register. 
Figure 5.12 shows the format of the ErrorEPC register.

Figure  5.12   ErrorEPC Register Format

Processor Exceptions
This section describes the processor exceptions—it describes the cause

of each exception, its processing by the hardware, and servicing by a
handler (software).  The types of exception, with exception processing
operations, are described in the next section.

Exception Types
This section gives sample exception handler operations for the following

exception types:

• reset

• soft reset

• nonmaskable interrupt (NMI)

• cache error

• remaining processor exceptions

When the EXL bit in the Status register is 0, either User, Supervisor, or
Kernel operating mode is specified by the KSU bits in the Status register.
When the EXL bit is a 1, the processor is in Kernel mode. 

When the processor takes an exception, the EXL bit is set to 1, which
means the system is in Kernel mode.  After saving the appropriate state,
the exception handler typically changes KSU to Kernel mode and resets
the EXL bit back to 0.  When restoring the state and restarting, the
handler restores the previous value of the KSU field and sets the EXL bit
back to 1. 

Returning from an exception, also resets the EXL bit to 0.
In the following sections, sample hardware processes for various excep-

tions are shown, together with the servicing required by the handler (soft-
ware).

Reset Exception Process

ErrorEPC Register
31 0

ErrorEPC

32

63 0

ErrorEPC

64

32-bit
Mode

64-bit
Mode
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Figure 5.13 shows the Reset exception process.

Figure  5.13   Reset Exception Processing

Cache Error Exception Process
Figure 5.14 shows the Cache Error exception process.

Figure  5.14   Cache Error Exception Processing

Soft Reset and NMI Exception Process
Figure 5.15 shows the Soft Reset and NMI exception process.

Figure  5.15   Soft Reset and NMI Exception Processing

General Exception Process
Figure 5.16 shows the process used for exceptions other than Reset,

Soft Reset, NMI, and Cache Error.

Figure  5.16   General Exception Processing

T: undefined
Random ← TLBENTRIES–1
Wired ← 0
Config ← 0 || EC || EP || 00000000 || BE || 110 || 010 || 1 || 1 || 0 || undefined

 || DC || undefined6

ErrorEPC ← PC
SR ← SR31:23 || 1 || 0 || 0 || SR19:3 || 1 || SR1:0
PC ← 0xFFFF FFFF BFC0 0000

T: ErrorEPC ← PC  
CacheErr ← ER || EC || ED || ET || ES || EE || ED || 025 
SR ← SR31:3 || 1 ||SR1:0
if SR22 = 1 then      /*What is the BEV bit setting*/
    PC ← 0xFFFF FFFF BFC0 0200 + 0x100  /*Access boot-PROM area*/
else
    PC ← 0xFFFF FFFF A000 0000 + 0x100  /*Access main memory area*/
endif

T: ErrorEPC ← PC    
SR ← SR31:23 || 1 || 0 || 1 || SR19:3 || 1 || SR1:0
PC ← 0xFFFF FFFF BFC0 0000

T:  Cause ← BD || 0 || CE || 012 || Cause15:8 || ExcCode || 02 
if SR1 = 0 then/* System is in User or Supervisor mode with no current exception */

    EPC ← PC           
endif
SR ← SR31:2 || 1 || SR0  
if SR22 = 1 then
    PC ← 0xFFFF FFFF BFC0 0200 + vector  /*access to uncached space*/
else
    PC ← 0xFFFF FFFF 8000 0000 + vector  /*access to cached space*/
endif
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Exception Vector Locations
The Reset, Soft Reset, and NMI exceptions are always vectored to loca-

tion 0xFFFF FFFF BFC0 0000.  Addresses for all other exceptions are a
combination of a vector offset and a base address.

The base address is determined by the BEV bit of the Status register. 
Table 5.10 shows the 64-bit-mode vector base address for all excep-

tions; the 32-bit mode address is the low-order 32 bits (for instance, the
base address for NMI in 32-bit mode is 0xBFC0 0000).

Table 5.11 shows the vector offset added to the base address to create
the exception address.

Table 5.10    Exception Vector Base Addresses

Table 5.11    Exception Vector Offsets

When BEV = 0, the vector base address for the cache error exception
changes from kseg0 (0xFFFF FFFF 8000 0000) to kseg1 (0xFFFF FFFF
A000 0000). This change indicates that the caches are initialized and that
the vector can be cached. When BEV = 1, the vector base for the cache
error exception is 0xFFFF FFFF BFC0 0200. This is an uncached and
unmapped space, allowing the exception to bypass the cache and the
TLB. 

Priority of Exceptions
Table 5.12 describes exceptions in the order of highest to lowest

priority.   While more than one exception can occur for a single instruc-
tion, only the exception with the highest priority is reported.

Table 5.12    Exception Priority Order

BEV Bit R5000 Processor Vector Base Address

0 0xFFFF FFFF 8000 0000

1 0xFFFF FFFF BFC0 0200

Exception R5000 Processor Vector Offset

TLB refill, EXL = 0 0x000

XTLB refill, EXL = 0 
(X = 64-bit TLB) 0x080

Cache Error 0x100

Others 0x180

Reset, Soft Reset, NMI none

Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)

Address error –– Instruction fetch

TLB refill –– Instruction fetch

TLB invalid –– Instruction fetch

Cache error –– Instruction fetch 

Bus error –– Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved 
Instruction, Coprocessor Unusable, or Floating-Point Exception

Address error –– Data access
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Generally speaking, the exceptions described in the following sections
are handled (“processed”) by hardware; these exceptions are then serviced
by software.

Reset Exception

Cause

The Reset exception occurs when the ColdReset* signal is asserted and
then deasserted.  This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

• location 0xFFFF FFFF BFC0 0000 in 64-bit mode

The Reset vector resides in unmapped and uncached CPU address
space, so the hardware need not initialize the TLB or the cache to process
this exception.  It also means the processor can fetch and execute
instructions while the caches and virtual memory are in an undefined
state.

The contents of all registers in the CPU are undefined when this excep-
tion occurs, except for the following register fields:

• In the Status register, SR is cleared to 0, and ERL and 
BEV are set to 1.  All other bits are undefined.

• Some Config register are initialized from the boot-time 
mode stream.

• The Random register is initialized to the value of its 
upper bound.

• The Wired register is initialized to 0.

Servicing

The Reset exception is serviced by:

• initializing all processor registers, coprocessor 
registers, caches, and the memory system

• performing diagnostic tests

•  bootstrapping the operating system

Soft Reset Exception

Cause

TLB refill –– Data access

TLB invalid –– Data access

TLB modified –– Data write

Cache error –– Data access 

Bus error –– Data access

Interrupt (lowest priority)
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The Soft Reset exception occurs in response to assertion of the Reset*
input Execution begins at the Reset vector when the Reset* signal is
negated.

The Soft Reset exception is not maskable.

Processing

The Reset vector is used for this exception. The Reset vector is located
within uncached and unmapped address space. Hence the cache and TLB
need not be initialized in order to process the exception. Regardless of the
cause, when this exception occurs the SR bit of the Status register is set,
distinguishing this exception from a Reset exception.

The primary purpose of the Soft Reset exception is to reinitialize the
processor after a fatal error during normal operation. Unlike an NMI, all
cache and bus state machines are reset by this exception. 

When the Soft Reset exception occurs, all register contents are
preserved with the following exceptions:

• ErrorEPC register, which contains the restart PC.

• ERL, BEV, and SR bits of the Status Register, each of 
which is set to 1.

Because the Soft Reset can abort cache and bus operations, the cache
and memory states are undefined when the Soft Reset exception occurs.

Servicing

 The Soft Reset exception is serviced by saving the current processor
state for diagnostic purposes,  and reinitializing for the Reset exception.  

Non Maskable Interrupt (NMI) Exception

Cause

The Non Maskable Interrupt exception occurs in response to falling
edge of the NMI signal, or an external write to the Int*[6] bit of the Inter-
rupt Register. The NMI interrupt is not maskable and occurs regardless of
the settings of the EXL, ERL, and IE bits in the Status Register.

Processing

The Reset vector is used for this exception. The Reset vector is located
within uncached and unmapped address space. Hence the cache and TLB
need not be initialized in order to process the exception. Regardless of the
cause, when this exception occurs the SR bit of the Status register is set,
distinguishing this exception from a Reset exception.

Because the NMI can occur in the midst of another exception, it is typi-
cally not possible to continue program execution after servicing an NMI.
An NMI exception is taken only at instruction boundaries. The state of the
caches and memory system are preserved.  

When the NMI exception occurs, all register contents are preserved
with the following exceptions:

• ErrorEPC register, which contains the restart PC.
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• ERL, BEV, and SR bits of the Status Register, each of 
which is set to 1.

Servicing

 The NMI exception is serviced by saving the current processor state for
diagnostic purposes,  and reinitializing for the Reset exception.  

Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to
execute one of the following:

• load or store a doubleword that is not aligned on a 
doubleword boundary

• load, fetch, or store a word that is not aligned on a 
word boundary

• load or store a halfword that is not aligned on a 
halfword boundary

• reference the kernel address space from User or 
Supervisor mode

• reference the supervisor address space from User mode

This exception is not maskable.

Processing

The common exception vector is used for this exception.  The AdEL or
AdES code in the Cause register is set, indicating whether the instruction
caused the exception with an instruction reference, load operation, or
store operation shown by the EPC register and BD bit in the Cause
register.

When this exception occurs, the BadVAddr register retains the virtual
address that was not properly aligned or that referenced protected
address space.  The contents of the VPN field of the Context and EntryHi
registers are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused
the exception, unless this instruction is in a branch delay slot.  If it is in a
branch delay slot, the EPC register contains the address of the preceding
branch instruction and the BD bit of the Cause register is set as indica-
tion.

Servicing

The process executing at the time is handed a segmentation violation
signal. This error is usually fatal to the process incurring the exception.

TLB Exceptions

Three types of TLB exceptions can occur:

• TLB Refill occurs when there is no TLB entry that 
matches an attempted reference to a mapped address 
space.
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• TLB Invalid occurs when a virtual address reference 
matches a TLB entry that is marked invalid.

• TLB Modified occurs when a store operation virtual 
address reference to memory matches a TLB entry 
which is marked valid but is not dirty (the entry is not 
writable).

The following three sections describe these TLB exceptions.

TLB Refill Exception

Cause

The TLB refill exception occurs when there is no TLB entry to match a
reference to a mapped address space.  This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for refer-
ences to 32-bit address spaces, and one for references to 64-bit address
spaces.  The UX, SX, and KX bits of the Status register determine whether
the user, supervisor or kernel address spaces referenced are 32-bit or 64-
bit spaces.  All references use these vectors when the EXL bit is set to 0 in
the Status register.  This exception sets the TLBL or TLBS code in the
ExcCode field of the Cause register.  This code indicates whether the
instruction, as shown by the EPC register and the BD bit in the Cause
register, caused the miss by an instruction reference, load operation, or
store operation.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers hold the virtual address that failed address translation.
The EntryHi register also contains the ASID from which the translation
fault occurred.  The Random register normally contains a valid location in
which to place the replacement TLB entry.  The contents of the EntryLo
register are undefined.  The EPC register contains the address of the
instruction that caused the exception, unless this instruction is in a
branch delay slot, in which case the EPC register contains the address of
the preceding branch instruction and the BD bit of the Cause register is
set.

Servicing

To service this exception, the contents of the Context or XContext
register are used as a virtual address to fetch memory locations
containing the physical page frame and access control bits for a pair of
TLB entries.  The two entries are placed into the EntryLo0/EntryLo1
register; the EntryHi and EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical
address and access control information is on a page that is not resident in
the TLB. This condition is processed by allowing a TLB refill exception in
the TLB refill handler.  This second exception goes to the common excep-
tion vector because the EXL bit of the Status register is set.

TLB Invalid Exception

Cause
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The TLB invalid exception occurs when a virtual address reference
matches a TLB entry that is marked invalid (TLB valid bit cleared).  This
exception is not maskable.

Processing

The common exception vector is used for this exception.  The TLBL or
TLBS code in the ExcCode field of the Cause register is set.  This indicates
whether the instruction, as shown by the EPC register and BD bit in the
Cause register, caused the miss by an instruction reference, load opera-
tion, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers contain the virtual address that failed address transla-
tion.  The EntryHi register also contains the ASID from which the transla-
tion fault occurred.  The Random register normally contains a valid
location in which to put the replacement TLB entry.  The contents of the
EntryLo register is undefined.

The EPC register contains the address of the instruction that caused
the exception unless this instruction is in a branch delay slot, in which
case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing

A TLB entry is typically marked invalid when one of the following is
true:

• a virtual address does not exist

• the virtual address exists, but is not in main memory (a 
page fault)

• a trap is desired on any reference to the page (for 
example, to maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is
located with TLBP (TLB Probe), and replaced by an entry with that entry’s
Valid bit set.

TLB Modified Exception

Cause

The TLB modified exception occurs when a store operation virtual
address reference to memory matches a TLB entry that is marked valid
but is not dirty and therefore is not writable.  This exception is not
maskable.

Processing

The common exception vector is used for this exception, and the Mod
code in the Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers contain the virtual address that failed address transla-
tion.  The EntryHi register also contains the ASID from which the transla-
tion fault occurred.  The contents of the EntryLo register is undefined.
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The EPC register contains the address of the instruction that caused
the exception unless that instruction is in a branch delay slot, in which
case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing

The kernel uses the failed virtual address or virtual page number to
identify the corresponding access control information.  The page identi-
fied may or may not permit write accesses; if writes are not permitted, a
write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable
by the kernel in its own data structures. The TLBP instruction places the
index of the TLB entry that must be altered into the Index register. The
EntryLo register is loaded with a word containing the physical page frame
and access control bits (with the D bit set), and the EntryHi and EntryLo
registers are written into the TLB.

Cache Error Exception

Cause

The Cache Error exception occurs when either a primary or secondary
cache parity error is detected. This exception is maskable by the DE bit in
the Status Register.

Processing

The processor sets the ERL bit in the Status register, saves the excep-
tion restart address in the ErrorEPC register, and then transfers the infor-
mation to a special vector in uncached space;

   If BEV = 0, the vector is 0xFFFF FFFF A000 0100.
   If BEV = 0, the vector is 0xFFFF FFFF BFC0 0300.

Servicing

All errors should be logged.  To correct parity errors the system uses
the CACHE instruction to invalidate the cache block, overwrite the old
data through a cache miss, and resumes execution with an ERET. Other
errors are not correctable and are likely to be fatal to the current process.

Bus Error Exception

Cause

A Bus Error exception is raised by board-level circuitry for events such
as bus time-out, backplane bus parity errors, and invalid physical
memory addresses or access types.  This exception is not maskable.

A Bus Error exception occurs when a cache miss refill, uncached refer-
ence, or an unbuffered write occurs synchronously; a Bus Error exception
resulting from a buffered write transaction must be reported using the
general interrupt mechanism.

Processing
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The common interrupt vector is used for a Bus Error exception.  The
IBE or DBE code in the ExcCode field of the Cause register is set, signi-
fying whether the instruction (as indicated by the EPC register and BD bit
in the Cause register) caused the exception by an instruction reference,
load operation, or store operation.

The EPC register contains the address of the instruction that caused
the exception, unless it is in a branch delay slot, in which case the EPC
register contains the address of the preceding branch instruction and the
BD bit of the Cause register is set.

Servicing

The physical address at which the fault occurred can be computed
from information available in the CP0 registers.

• If the IBE code in the Cause register is set (indicating an 
instruction fetch reference), the virtual address is 
contained in the EPC register. 

• If the DBE code is set (indicating a load or store 
reference), the instruction that caused the exception is 
located at the virtual address contained in the EPC 
register (or 4+ the contents of the EPC register if the BD 
bit of the Cause register is set). 

The virtual address of the load and store reference can then be
obtained by interpreting the instruction.  The physical address can be
obtained by using the TLBP instruction and reading the EntryLo register
to compute the physical page number.  The process executing at the time
of this exception is handed a bus error signal, which is usually fatal.

Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB,
DADD, DADDI or DSUB instruction results in a 2’s complement overflow.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the OV
code in the Cause register is set.

The EPC register contains the address of the instruction that caused
the exception unless the instruction is in a branch delay slot, in which
case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of the exception is handed a floating-
point exception/integer overflow signal. This error is usually fatal to the
current process.

Trap Exception

Cause
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The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE,
TGEI, TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction results in a TRUE
condition. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr
code in the Cause register is set.

The EPC register contains the address of the instruction causing the
exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Servicing

The process executing at the time of a Trap exception is handed a
floating-point exception/integer overflow signal. This error is usually
fatal.

System Call Exception

Cause

A System Call exception occurs during an attempt to execute the
SYSCALL instruction.  This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys
code in the Cause register is set.

The EPC register contains the address of the SYSCALL instruction
unless it is in a branch delay slot, in which case the EPC register contains
the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the
Status register is set; otherwise this bit is cleared.

Servicing

When this exception occurs, control is transferred to the applicable
system routine. 

To resume execution, the EPC register must be altered so that the
SYSCALL instruction does not re-execute; this is accomplished by adding
a value of 4 to the EPC register (EPC register + 4) before returning. 

If a SYSCALL instruction is in a branch delay slot, a more complicated
algorithm, beyond the scope of this description, may be required.

Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the
BREAK instruction.  This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP
code in the Cause register is set.
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The EPC register contains the address of the BREAK instruction unless
it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the
Status register is set, otherwise the bit is cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the
applicable system routine.  Additional distinctions can be made by
analyzing the unused bits of the BREAK instruction (bits 25:6), and
loading the contents of the instruction whose address the EPC register
contains.  A value of 4 must be added to the contents of the EPC register
(EPC register + 4) to locate the instruction if it resides in a branch delay
slot.

To resume execution, the EPC register must be altered so that the
BREAK instruction does not re-execute; this is accomplished by adding a
value of 4 to the EPC register (EPC register + 4) before returning. 

If a BREAK instruction is in a branch delay slot, interpretation of the
branch instruction is required to resume execution.

Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following
conditions occurs:

• an attempt is made to execute an instruction with an 
undefined major opcode (bits 31:26) 

• an attempt is made to execute a SPECIAL instruction 
with an undefined minor opcode (bits 5:0)

• an attempt is made to execute a REGIMM instruction 
with an undefined minor opcode (bits 20:16)

• an attempt is made to execute 64-bit operations in 32-
bit mode when in User or Supervisor modes

64-bit operations are always valid in Kernel mode regardless of the
value of the KX bit in the Status register. 

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI
code in the Cause register is set.

The EPC register contains the address of the reserved instruction
unless it is in a branch delay slot, in which case the EPC register contains
the address of the preceding branch instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted.  The process
executing at the time of this exception is handed an illegal instruction/
reserved operand fault signal. This error is usually fatal.
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Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made
to execute a coprocessor instruction for either:

• a corresponding coprocessor unit that has not been 
marked usable, or

• CP0 instructions, when the unit has not been marked 
usable and the process executes in either User or 
Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU
code in the Cause register is set.  The contents of the Coprocessor Usage
Error field of the coprocessor Control register indicate which of the four
coprocessors was referenced.  The EPC register contains the address of
the unusable coprocessor instruction unless it is in a branch delay slot,
in which case the EPC register contains the address of the preceding
branch instruction.

Servicing

The coprocessor unit to which an attempted reference was made is
identified by the Coprocessor Usage Error field, which results in one of
the following situations:

• If the process is entitled access to the coprocessor, the 
coprocessor is marked usable and the corresponding 
user state is restored to the coprocessor. 

• If the process is entitled access to the coprocessor, but 
the coprocessor does not exist or has failed, 
interpretation of the coprocessor instruction is possible.

• If the BD bit is set in the Cause register, the branch 
instruction must be interpreted; then the coprocessor 
instruction can be emulated and execution resumed 
with the EPC register advanced past the coprocessor 
instruction.

• If the process is not entitled access to the coprocessor, 
the process executing at the time is handed an illegal 
instruction/privileged instruction fault signal. This 
error is usually fatal.

Floating-Point Exception

Cause

The Floating-Point exception is used by the floating-point coprocessor.
This exception is not maskable.

Processing
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The common exception vector is used for this exception, and the FPE
code in the Cause register is set.

The contents of the Floating-Point Control/Status register indicate the
cause of this exception.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-
Point Control/Status register.

For an unimplemented instruction exception, the kernel should
emulate the instruction; for other exceptions, the kernel should pass the
exception to the user program that caused the exception.

Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt condi-
tions is asserted. The significance of these interrupts is dependent upon
the specific system implementation.

Each of the eight interrupts can be masked by clearing the corre-
sponding bit in the Int-Mask field of the Status register, and all of the eight
interrupts can be masked at once by clearing the IE bit of the Status
register.

Processing

The common exception vector is used for this exception, and the Int
code in the Cause register is set.

The IP field of the Cause register indicates current interrupt requests.
It is possible that more than one of the bits can be simultaneously set (or
even no bits may be set) if the interrupt is asserted and then deasserted
before this register is read.

Servicing

If the interrupt is caused by one of the two software-generated excep-
tions (SW1 or SW0), the interrupt condition is cleared by setting the corre-
sponding Cause register bit to 0.

If the interrupt is hardware-generated, the interrupt condition is
cleared by correcting the condition causing the interrupt pin to be
asserted.

Due to the on-chip write buffer, a store to an external device may not
occur until after other instructions in the pipeline finish. Hence, the user
must ensure that the store will occur before the return from exception
instruction (ERET) is executed. Otherwise the interrupt may be serviced
again even though there is no actual interrupt pending. 

Exception Handling and Servicing Flowcharts
The remainder of this section contains flowcharts for the following

exceptions and guidelines for their handlers:

• general exceptions and their exception handler

• TLB/XTLB miss exception and their exception handler

• cache error exception and its handler

• reset, soft reset and NMI exceptions, and a guideline to 
their handler.
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Generally speaking, the exceptions are handled by hardware (HW); the
exceptions are then serviced by software (SW).

Figure  5.17   General Exception Handler (HW)

PC <- 0xFFFF FFFF BFC0 0200 + 180PC <- 0xFFFF FFFF 8000 0000 + 180
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Figure  5.18   General Exception Servicing Guidelines (SW)
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Figure  5.19   TLB/XTLB Miss Exception Handler (HW)
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Figure  5.20   TLB/XTLB Exception Servicing Guidelines (SW)
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Figure  5.21   Cache Error Exception Handling (HW) and Servicing 
Guidelines
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Figure  5.22   Reset, Soft Reset & NMI Exception Handling

R
es

et
, S

o
ft

 R
es

et
 &

 N
M

I E
xc

ep
ti

o
n

 H
an

d
lin

g
 (

H
W

) Random <- TLBENTRIES - 1

Wired <- 0

Config <- Update(31:6)|| Undef(5:0)

Status: 
BEV <- 1
SR<- 0

ERL <- 1

ErrorEPC <- PC

PC <- 0xFFFF FFFF BFC0 0000

Status: 
BEV <- 1

SR<- 1

ERL <- 1

Soft Reset or NMI Exception Reset Exception

NMI Service Code

Soft Reset Service Code

NMI?

Reset Service Code

Yes

No

Status bit 20

= 1

=0

ERET(Optional)

Note: There is no indication from the 
processor to differentiate between

there must be a system level indication.

(SR)

R
es

et
, S

o
ft

 R
es

et
 &

 N
M

I 
S

er
vi

ci
n

g
 G

u
id

el
in

es
 (

S
W

)

NMI & Soft Reset;



 

6 - 1

 

Integrated Device Technology, Inc.

 

Floating Point Unit Chapter 6

 

Introduction

 

This section describes the floating-point unit (FPU) of the IDT R5000
processor, including the programming model, instruction set and
formats, and the pipeline.

The FPU, with associated system software, fully conforms to the
requirements of ANSI/IEEE Standard 754–1985, 

 

IEEE Standard for
Binary Floating-Point Arithmetic

 

.  In addition, the MIPS architecture fully
supports the recommendations of the standard and precise exceptions. 

 

Overview

 

The FPU operates as a coprocessor for the CPU (it is assigned copro-
cessor label 

 

CP1

 

), and extends the CPU instruction set to perform arith-
metic operations on floating-point values. 

Figure 6.1 illustrates the functional organization of the FPU.

 

Figure  6.1   FPU Functional Block Diagram

 

FPU Features

 

This section briefly describes the operating model, the load/store instruction 
set, and the coprocessor interface in the FPU.  A more detailed description is given 
in the sections that follow.

FP Add/

Data Cache

FP Bypass
Pipeline Chain

FCU

64
64

Sub/Cvt FP Mul

64

FP Reg File

Control

646464

64

FP 
Div/Sqrt

64 64
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•

 

Full 64-bit Operation

 

. When the 

 

FR 

 

bit in the CPU 

 

Status 

 

register equals 0, the FPU is in 32-bit mode and 
contains thirty-two 32-bit registers that hold single- or, 
when used in pairs, double-precision values.  When the 

 

FR 

 

bit in the CPU 

 

Status 

 

register equals 1, the FPU is in 
64-bit mode and the registers are expanded to 64 bits 
wide.  Each register can hold single- or double-
precision values. The FPU also includes a 32-bit 

 

Control/Status

 

 register that provides access to all IEEE-
Standard exception handling capabilities.

•

 

Load and Store Instruction Set

 

. Like the CPU, the FPU 
uses a load- and store-oriented instruction set, with 
single-cycle load and store operations.

•

 

Tightly Coupled Coprocessor Interface

 

. The FPU 
resides on-chip to form a tightly coupled unit with a 
seamless integration of floating-point and fixed-point 
instruction sets.  Since each unit receives and executes 
instructions in parallel, some floating-point 
instructions can execute at the same single-cycle-per-
instruction rate as fixed-point instructions.

 

FPU Programming Model

 

This section describes the set of FPU registers and their data organiza-
tion.  The FPU registers include 

 

Floating-Point General Purpose 

 

registers

 

(FGR

 

s) and two control registers: 

 

Control/Status

 

 and 

 

Implementation/
Revision

 

.

 

Floating-Point General Registers (FGRs)

 

The FPU has a set of

 

 Floating-Point General Purpose 

 

registers

 

 (FGR

 

s)
that can be accessed in the following ways:

 

• As 32 general purpose registers (32 FGRs), each of 
which is 32 bits wide when the 

 

FR

 

 bit in the CPU

 

 Status

 

 
register equals 0; or as 32 general purpose registers (32 
FGRs), each of which is 64-bits wide when 

 

FR

 

 equals 1.  
The CPU accesses these registers through move, load, 
and store instructions.

• As 16 floating-point registers (see the next section for a 
description of FPRs), each of which is 64-bits wide, 
when the 

 

FR

 

 bit in the CPU 

 

Status 

 

register equals 0.  
The FPRs hold values in either single- or double-
precision floating-point format.  Each FPR corresponds 
to adjacently numbered FGRs as shown in Figure 53.

• As 32 floating-point registers (see the next section for a 
description of FPRs), each of which is 64-bits wide, 
when the 

 

FR

 

 bit in the CPU 

 

Status 

 

register equals 1.  
The FPRs hold values in either single- or double-
precision floating-point format.  Each FPR corresponds 
to an FGR as shown in Figure 6.2.
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Figure  6.2   FPU Registers

 

Floating-Point Registers

 

The FPU provides:

 

• 16 

 

Floating-Point

 

 registers (

 

FPR

 

s) when the 

 

FR

 

 bit in the 

 

Status 

 

register equals 0, or 

• 32 

 

Floating-Point

 

 registers (

 

FPR

 

s) when the 

 

FR

 

 bit in the 

 

Status 

 

register equals 1. 

 

These 64-bit registers hold floating-point values during floating-point
operations and are physically formed from the 

 

General Purpose

 

 registers
(

 

FGRs

 

).  When the 

 

FR

 

 bit in the 

 

Status 

 

register equals 1, the 

 

FPR

 

 refer-
ences a single 64-bit 

 

FGR.

 

The 

 

FPR

 

s hold values in either single- or double-precision floating-
point format.  If the 

 

FR

 

 bit equals 0, only even numbers (the

 

 least

 

 register,
as shown in Figure 6.2) can be used to address 

 

FPR

 

s.  When the 

 

FR

 

 bit is
set to a 1, all 

 

FPR 

 

register numbers are valid. 
If the 

 

FR

 

 bit equals 0 during a double-precision floating-point opera-
tion, the general registers are accessed in double pairs.  Thus, in a
double-precision operation, selecting 

 

Floating-Point Register 0

 

 (

 

FPR0

 

)
actually addresses adjacent 

 

Floating-Point General Purpose

 

 registers 

 

FGR0

 

and 

 

FGR1

 

.

 

Floating-Point Control Registers

 

The FPU has 32 control registers (

 

FCR

 

s) that can only be accessed by
move operations. The 

 

FCR

 

s are described below:

 

• The 

 

Implementation/Revision 

 

register

 

 (FCR0)

 

 holds 
revision information about the FPU.

Control/Status Register
31 0 31 0
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•
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•
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• The 

 

Control/Status 

 

register

 

 (FCR31)

 

 controls and 
monitors exceptions, holds the result of compare 
operations, and establishes rounding modes.

•

 

FCR1

 

 to 

 

FCR30

 

 are reserved.

 

Table 6.1 lists the assignments of the 

 

FCR

 

s.

 

Table 6.1    Floating-Point Control Register Assignments

 

Implementation and Revision Register, (FCR0)

 

The read-only 

 

Implementation and Revision

 

 register (

 

FCR0

 

) specifies the
implementation and revision number of the FPU.  This information can
determine the coprocessor revision and performance level, and can also
be used by diagnostic software. 

Figure 6.3 shows the layout of the register; Table 6.2 describes the

 

Implementation and Revision

 

 register (

 

FCR0

 

) fields.

 

Figure  6.3   Implementation/Revision Register

Table 6.2    FCR0 Fields

 

The revision number is a value of the form 

 

y.x

 

, where:

 

•

 

y

 

 is a major revision number held in bits 7:4.

•

 

x

 

 is a minor revision number held in bits 3:0.

 

The revision number distinguishes some chip revisions; however, MIPS
does not guarantee that changes to its chips are necessarily reflected by
the revision number, or that changes to the revision number necessarily
reflect real chip changes.  For this reason revision number values are not
listed, and software should not rely on the revision number to charac-
terize the chip. 

 

 FCR Number Use

 

FCR0 Coprocessor implementation and revision register

FCR1 to FCR30 Reserved

FCR31 Rounding mode, cause, trap enables, and flags

 

Field Description

 

Imp Implementation number (0x23)

Rev Revision number in the form of 

 

y.x

 

0 Reserved.  Must be written as zeroes, and returns zeroes 
when read.

16 15 7

Implementation/Revision Register (FCR0)

31 0

16

Rev

8 8

8

0 Imp
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Control/Status Register (FCR31) 

 

The 

 

Control

 

/Status register (FCR31) contains control and status infor-
mation that can be accessed by instructions in either Kernel or User
mode.  FCR31 also controls the arithmetic rounding mode and enables
User mode traps, as well as identifying any exceptions that may have
occurred in the most recently executed instruction, along with any excep-
tions that may have occurred without being trapped.

Figure 6.4 shows the format of the Control/Status register, and Table
6.3 describes the Control/Status register fields.  Figure 6.5 shows the
Control/Status register Cause, Flag, and Enable fields.

Figure  6.4   FP Control/Status Register Bit Assignments

Table 6.3    Control/Status Register Fields

Accessing the Control/Status Register
When the Control/Status register is read by a Move Control From

Coprocessor 1 (CFC1) instruction, all unfinished instructions in the pipe-
line are completed before the contents of the register are moved to the
main processor.  If a floating-point exception occurs as the pipeline
empties, the FP exception is taken and the CFC1 instruction is re-
executed after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing
to the register using a Move Control To Coprocessor 1 (CTC1) instruction.
FCR31 must only be written to when the FPU is not actively executing
floating-point operations; this can be ensured by reading the contents of
the register to empty the pipeline.

Field Description

CC Condition code.

FS When set, denormalized results are flushed to 0 instead of causing an 
unimplemented operation exception.

C Condition bit.  See description of Control/Status register Condition bit.

Cause Cause bits. See description of Control/Status register Cause, Flag, and Enable 
bits.

Enables Enable bits.  See description of Control/Status register Cause, Flag, and 
Enable bits.

Flags Flag bits.  See description of Control/Status register Cause, Flag, and Enable 
bits.

RM Rounding mode bits.  See description of Control/Status register Rounding 
Mode Control bits.

Control/Status Register (FCR31)

31 24 23 22 18 17 12 11 7 6 2 1 0

7 1 5 6 5 5 2

C RMFlagsEnablesCause
CC 0 E V Z O U I V Z O U I V Z O U I

25

FS

1

Legend:
E = Unimplemented Operation
V = Invalid Operation

Z = Division by zero
O = Overflow

U = Underflow
I = Inexact Operation
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IEEE Standard 754
IEEE Standard 754 specifies that floating-point operations detect

certain exceptional cases, raise flags, and can invoke an exception
handler when an exception occurs.  These features are implemented in
the MIPS architecture with the Cause, Enable, and Flag fields of the
Control/Status register.  The Flag bits implement IEEE 754 exception
status flags, and the Cause and Enable bits implement exception
handling.

Control/Status Register FS Bit
When the FS bit is set, denormalized results are flushed to 0 instead of

causing an unimplemented operation exception.

Control/Status Register Condition Bit
When a floating-point Compare operation takes place, the result is

stored at bit 23, the Condition bit, to save or restore the state of the condi-
tion line.  The C bit is set to 1 if the condition is true; the bit is cleared to
0 if the condition is false.  Bit 23 is affected only by compare and Move
Control To FPU instructions.

Figure  6.5   Control/Status Register Cause, Flag, and Enable Fields

Control/Status Register Cause, Flag, and Enable Fields 
Figure 6.5 illustrates the Cause, Flag, and Enable fields of the Control/

Status register.

Cause Bits
Bits 17:12 in the Control/Status register contain Cause bits, as shown

in Figure 6.5, which reflect the results of the most recently executed
instruction. The Cause bits are a logical extension of the CP0 Cause
register; they identify the exceptions raised by the last floating-point oper-
ation and raise an interrupt or exception if the corresponding enable bit is
set.  If more than one exception occurs on a single instruction, each
appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by
load, store, or move operations).  The Unimplemented Operation (E) bit is
set to a 1 if software emulation is required, otherwise it remains 0.  The
other bits are set to 0 or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception.

E Z O U IV

17 16 15 14 13 12

Unimplemented Operation

Invalid Operation
Division by Zero

Inexact Operation

Overflow
Underflow

Bit #

Z O U IV

11 10 9 8 7Bit #

Z O U IV

6 5 4 3 2Bit #

Cause
Bits

Flag
Bits

Enable
Bits
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When a floating-point exception is taken, no results are stored, and the
only state affected is the Cause bit. 

Enable Bits
A floating-point exception is generated any time a Cause bit and the

corresponding Enable bit are set.  A floating-point operation that sets an
enabled Cause bit forces an immediate exception, as does setting both
Cause and Enable bits with CTC1. 

There is no enable for Unimplemented Operation (E).  Setting Unimple-
mented Operation always generates a floating-point exception.

Before returning from a floating-point exception, software must first
clear the enabled Cause bits with a CTC1 instruction to prevent a repeat
of the interrupt.  Thus, User mode programs can never observe enabled
Cause bits set; if this information is required in a User mode handler, it
must be passed somewhere other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no
exception occurs and the default result defined by IEEE 754 is stored.  In
this case, the exceptions that were caused by the immediately previous
floating-point operation can be determined by reading the Cause field.

Flag Bits
The Flag bits are cumulative and indicate that an exception was raised

by an operation that was executed since they were explicitly reset.  Flag
bits are set to 1 if an IEEE 754 exception is raised, otherwise they remain
unchanged.  The Flag bits are never cleared as a side effect of floating-
point operations; however, they can be set or cleared by writing a new
value into the Status register, using a Move To Coprocessor Control
instruction.

When a floating-point exception is taken, the flag bits are not set by the
hardware; floating-point exception software is responsible for setting
these bits before invoking a user handler.

Control/Status Register Rounding Mode Control Bits 
Bits 1 and 0 in the Control/Status register constitute the Rounding

Mode (RM) field.
As shown in Table 6.4, these bits specify the rounding mode that the

FPU uses for all floating-point operations.

Table 6.4    Rounding Mode Bit Decoding

Rounding 
Mode 

RM(1:0)
Mnemonic    Description

0 RN

Round result to nearest representable 
value; round to value with least-
significant bit 0 when the two nearest 
representable values are equally near.

1 RZ
Round toward 0: round to value closest to 
and not greater in magnitude than the 
infinitely precise result.

2 RP
Round toward +∞: round to value closest 
to and not less than the infinitely precise 
result.

3 RM
Round toward – ∞: round to value closest 
to and not greater than the infinitely 
precise result.
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Floating-Point Formats
The FPU performs both 32-bit (single-precision) and 64-bit (double-

precision) IEEE standard floating-point operations.  The 32-bit single-
precision format has a 24-bit signed-magnitude fraction field (f+s) and an
8-bit exponent (e), as shown in Figure 6.6.

Figure  6.6   Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude frac-
tion field (f+s) and an 11-bit exponent, as shown in Figure 6.7.

Figure  6.7   Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are
composed of three fields:

• sign field, s

• biased exponent, e = E + bias

• fraction, f = .b1b2....bp–1
The range of the unbiased exponent E includes every integer between

the two values Emin and Emax inclusive, together with two other reserved
values: 

• Emin -1 (to encode ±0 and denormalized numbers)

• Emax +1 (to encode ±∞ and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero
numerical value has just one encoding.

For single- and double-precision formats, the value of a number, v, is
determined by the equations shown in Table 6.5.

Table 6.5    Calculating Values in Single and Double-Precision Formats

No. Equation

(1) if E = Emax+1 and f ≠ 0, then v is NaN, regardless of s

(2) if E = Emax+1 and f = 0, then v = (–1)s ∞

(3) if Emin ≤ E ≤ Emax, then v = (–1)s2E(1.f)

(4) if E = Emin–1 and f ≠ 0, then v = (–1)s2Emin(0.f)

(5) if E = Emin–1 and f = 0, then v = (–1)s0

31 30 23 22 0

FractionSign Exponent

231 8

s e f

63 62 52 51 0

FractionSign Exponent

521 11

s e f
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For all floating-point formats, if v is NaN, the most-significant bit of f
determines whether the value is a signaling or quiet NaN: v is a signaling
NaN if the most-significant bit of f is set, otherwise, v is a quiet NaN.

Table 6.6 defines the values for the format parameters; minimum and
maximum floating-point values are given in Table 6.7.

Table 6.6    Floating-Point Format Parameter Values

Table 6.7    Minimum and Maximum Floating-Point Values

Binary Fixed-Point Format
Binary fixed-point values are held in 2’s complement format.  Unsigned

fixed-point values are not directly provided by the floating-point instruc-
tion set.  Figure 6.8 illustrates binary fixed-point format; Table 6.8 lists
the binary fixed-point format fields.

Figure  6.8   Binary Fixed-Point Format

Field assignments of the binary fixed-point format are:

Table 6.8    Binary Fixed-Point Format Fields

Parameter
Format

Single Double

Emax +127 +1023

Emin –126 –1022

Exponent bias +127 +1023

Exponent width in bits 8 11

Integer bit hidden hidden

f  (Fraction width in bits) 24 53

Format width in bits 32 64

Type Value

Float Minimum 1.40129846e–45

Float Minimum Norm 1.17549435e–38

Float Maximum 3.40282347e+38

Double Minimum 4.9406564584124654e–324

Double Minimum Norm 2.2250738585072014e–308

Double Maximum 1.7976931348623157e+308

Field Description

sign sign bit

integer integer value

31 30 0

Sign

311

Integer
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Floating-Point Instruction Set Overview
All FPU instructions are 32 bits long, aligned on a word boundary.

They can be divided into the following groups:

• Load, Store, and Move instructions move data between 
memory, the main processor, and the FPU General 
Purpose registers.

• Conversion instructions perform conversion operations 
between the various data formats.

• Computational instructions perform arithmetic 
operations on floating-point values in the FPU 
registers.

• Compare instructions perform comparisons of the 
contents of registers and set a conditional bit based on 
the results.

• Branch on FPU Condition instructions perform a 
branch to the specified target if the specified 
coprocessor condition is met.

In the instruction formats shown in Table 6.9 through Table 6.12, the
fmt appended to the instruction opcode specifies the data format: S speci-
fies single-precision binary floating-point, D specifies double-precision
binary floating-point,  W specifies 32-bit binary fixed-point, and L speci-
fies 64-bit (long) binary fixed-point.

Table 6.9    FPU Instruction Summary: Load, Move and Store Instructions

Table 6.10    FPU Instruction Summary: Conversion Instructions

OpCode Description

LWC1 Load Word to FPU

LWXC1 Load Word Indexed to FPU

SWC1 Store Word from FPU

SWXC1 Store Word Indexed from FPU

LDC1 Load Doubleword to FPU

LDXC1 Load Doubleword Indexed to FPU

SDC1 Store Doubleword From FPU

SDXC1 Store Doubleword Indexed From FPU

MTC1 Move Word To FPU

MFC1 Move Word From FPU

CTC1 Move Control Word To FPU

CFC1 Move Control Word From FPU

DMTC1 Doubleword Move To FPU

DMFC1 Doubleword Move From FPU

PREF Prefetch - Register + Offset

PREFX Prefetch Indexed - Register + Register

OpCode Description

CVT.S.fmt Floating-point Convert to Single FP

CVT.D.fmt Floating-point Convert to Double FP
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Table 6.11    FPU Instruction Summary: Computational Instructions

Table 6.12    FPU Instruction Summary: Compare and Branch Instructions

Floating-Point Load, Store, and Move Instructions
This section discusses the manner in which the FPU uses the load,

store and move instructions listed in Table 44.

Transfers Between FPU and Memory
All data movement between the FPU and memory is accomplished by

using one of the following instructions: 

• Load Word To Coprocessor 1 (LWC1) or Store Word 
From Coprocessor 1 (SWC1) instructions, which 
reference a single 32-bit word of the FPU general 
registers

• Load Doubleword (LDC1) or Store Doubleword (SDC1) 
instructions, which reference a 64-bit doubleword.

CVT.W.fmt Floating-point Convert to 32-bit Fixed Point 

CVT.L.fmt Floating-point Convert to 64-bit Fixed Point 

ROUND.W.fmt Floating-point Round to 32-bit Fixed Point

ROUND.L.fmt Floating-point Round to 64-bit Fixed Point

TRUNC.W.fmt Floating-point Truncate to 32-bit Fixed Point

TRUNC.L.fmt Floating-point Truncate to 64-bit Fixed Point

CEIL.W.fmt Floating-point Ceiling to 32-bit Fixed Point

CEIL.L.fmt Floating-point Ceiling to 64-bit Fixed Point

FLOOR.W.fmt Floating-point Floor to 32-bit Fixed Point

FLOOR.L.fmt Floating-point Floor to 64-bit Fixed Point

OpCode Description

ADD.fmt Floating-point Add

SUB.fmt Floating-point Subtract

MUL.fmt Floating-point Multiply

DIV.fmt Floating-point Divide

ABS.fmt Floating-point Absolute Value

MOV.fmt Floating-point Move

NEG.fmt Floating-point Negate

SQRT.fmt Floating-point Square Root

RECIP Floating-point Reciprocal

RSQRT Floating-point Reciprocal Square Root

OpCode Description

C.cond.fmt Floating-point Compare

BC1T Branch on FPU True

BC1F Branch on FPU False

BC1TL Branch on FPU True Likely

BC1FL Branch on FPU False Likely

OpCode Description
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These load and store operations are unformatted; no format conver-
sions are performed and therefore no floating-point exceptions can occur
due to these operations.   

Transfers Between FPU and CPU
Data can also be moved directly between the FPU and the CPU by using

one of the following instructions:

• Move To Coprocessor 1 (MTC1)

• Move From Coprocessor 1 (MFC1)

• Doubleword Move To Coprocessor 1 (DMTC1)

• Doubleword Move From Coprocessor 1 (DMFC1)

Like the floating-point load and store operations, these operations
perform no format conversions and never cause floating-point exceptions.

Load Delay and Hardware Interlocks
The instruction immediately following a load can use the contents of

the loaded register.  In such cases the hardware interlocks, requiring
additional real cycles; for this reason, scheduling load delay slots is desir-
able, although it is not required for functional code.

Data Alignment
All coprocessor loads and stores reference the following aligned data

items:

• For word loads and stores, the access type is always 
WORD, and the low-order 2 bits of the address must 
always be 0.

• For doubleword loads and stores, the access type is 
always DOUBLEWORD, and the low-order 3 bits of 
the address must always be 0.

Endianness
Regardless of byte-numbering order (endianness) of the data, the

address specifies the byte that has the smallest byte address in the
addressed field. For a big-endian system, it is the leftmost byte; for a
little-endian system, it is the rightmost byte.

Floating-Point Conversion Instructions
Conversion instructions perform conversions between the various data

formats such as single- or double-precision, fixed- or floating-point
formats.

Floating-Point Computational Instructions
Computational instructions perform arithmetic operations on floating-

point values, in registers.  There are two categories of computational
instructions:

• 3-Operand Register-Type instructions, which perform 
floating-point addition, subtraction, multiplication, and 
division

• 2-Operand Register-Type instructions, which perform 
floating-point absolute value, move, negate, and square 
root operations

For a detailed description of each instruction, refer to the MIPS IV
instruction set manual.
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Branch on FPU Condition Instructions
The Branch on FPU (coprocessor unit 1) condition instructions that can

test the result of the FPU compare (C.cond) instructions.  For a detailed
description of each instruction, refer to the MIPS IV instruction set
manual.

Floating-Point Compare Operations
The floating-point compare (C.fmt.cond) instructions interpret the

contents of two FPU registers (fs, ft) in the specified format (fmt) and arith-
metically compare them.  A result is determined based on the comparison
and conditions (cond) specified in the instruction. 

Table 6.13 lists the mnemonics for the compare instruction conditions.
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Table 6.13     Mnemonics and Definitions of Compare Instruction Conditions

FPU Instruction Pipeline Overview
The FPU provides an instruction pipeline that parallels the CPU

instruction pipeline.  It shares the same eight-stage pipeline architecture
with the CPU.

Instruction Execution
Figure 6.9 illustrates the 8-instruction overlap in the FPU pipeline.

Figure  6.9   FPU Instruction Pipeline

Mnemonic Definition Mnemonic Definition

T True F False

OR Ordered UN Unordered

NEQ Not Equal EQ Equal

OLG
Ordered or Less Than or 
Greater Than UEQ Unordered or Equal

UGE
Unordered or Greater Than 
or Equal OLT Ordered Less Than

OGE Ordered Greater Than ULT Unordered or Less Than

UGT Unordered or Greater Than OLE Ordered Less Than or Equal

OGT Ordered Greater Than ULE
Unordered or Less Than or 
Equal

ST Signaling True SF Signaling False

GLE
Greater Than, or Less Than 
or Equal NGLE

Not Greater Than or Less 
Than or Equal

SNE Signaling Not Equal SEQ Signaling Equal

GL Greater Than or Less Than NGL
Not Greater Than or Less 
Than

NLT Not Less Than LT Less Than

GE Greater Than or Equal NGE Not Greater Than or Equal

NLE Not Less Than or Equal LE Less Than or Equal

GT Greater Than NGT Not Greater Than

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

 One 
Cycle

 One 
Cycle

 One  One 
Cycle Cycle

 One 
Cycle

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W
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Figure 6.9 assumes that one instruction is completed every PCycle.
Most FPU instructions, however, require more than one cycle in the EX
stage. This means the FPU must stall the pipeline if an instruction execu-
tion cannot proceed because of register or resource conflicts.

Instruction Execution Cycle Time
Unlike the CPU, which executes almost all instructions in a single

cycle, more time may be required to execute FPU instructions. 
Table 6.14 gives the minimum latency, in processor pipeline cycles, of

each floating-point operation for the currently implemented configura-
tions. These latency calculations assume the result of the operation is
immediately used in a succeeding operation.

Table 6.14    Floating-Point Operation Latencies

(a) ........These operations are illegal.
 * ..........Trap on greater than 52 bits of significance.
 ** .........Trap on greater than 53 bits of significance.

Operation
Pipeline Cycles
Latency/Repeat Operation

Pipeline Cycles
Latency/Repeat

S D W L S D

ADD.fmt 4/1 4/1 CVT.[W,L] 4/1 4/1

SUB.fmt 4/1 4/1 C.fmt.cond 1/1 1/1

MUL.fmt 4/1 5/2 BC1T 1

DIV.fmt 21/19 36/34 BC1F 1

SQRT.fmt 21/19 36/34 BC1TL 1

RECIP 21/19 36/34 BC1FL 1

RSQRT 38/36 68/66 LWC1 1

ABS.fmt 1/1 1/1 SWC1, 
SDC1 1

MOV.fmt 1/1 1/1 LDC1, 
SDC1 2

NEG.fmt 1/1 1/1 MTC1, 
DMTC1 2

ROUND.W
/TRUNC.W 4/1 4/1 MFC1, 

DMFC1 2

ROUND.L/
TRUNC.L 4/1** 4/1** CTC1 3

CEIL.W/
FLOOR.W 4/1 4/1 CFC1 2

CEIL.L/
FLOOR.L 4/1** 4/1** MADD 4/1 5/2

CVT.D.fmt 4/1 (a) 4/1 4/1* MSUB 4/1 5/2

CVT.S.fmt (a) 4/1 6/3 6/3* NMADD 4/1 5/2

NMSUB 4/1 5/2
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Instruction Scheduling Constraints
The FPU resource scheduler is kept from issuing instructions to the

FPU op units (adder, multiplier, and divider) by the limitations in their
micro-architectures.  An FPU ALU instruction can be issued at the same
time as any other non-FP-ALU instructions. This includes all integer
instructions as well as floating-point loads and stores.
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Introduction

 

This section describes FPU floating-point exceptions, including FPU exception 
types, exception trap processing, exception flags, saving and restoring state when 
handling an exception, and trap handlers for IEEE Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle either the 
operands or the results of a floating-point operation in its normal way.   The FPU 
responds by generating an exception to initiate a software trap or by setting a 
status flag.

 

Exception Types

 

The FP

 

 Control/Status

 

 register described in section 6 contains an

 

 Enable 

 

bit for 
each exception type; exception 

 

Enable

 

 bits determine whether an exception will 
cause the FPU to initiate a trap or set a status flag. 

• If a trap is taken, the FPU remains in the state found at 
the beginning of the operation and a software 
exception handling routine executes.

• If no trap is taken, an appropriate value is written into 
the FPU destination register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:

• Inexact (I)

• Underflow (U)

• Overflow (O)

• Division by Zero (Z)

• Invalid Operation (V)

 

Cause

 

 bits, 

 

Enables

 

, and 

 

Flag

 

 bits (status flags) are used.
The FPU adds a sixth exception type, Unimplemented Operation (E), to use 

when the FPU cannot implement the standard MIPS floating-point architecture, 
including cases in which the FPU cannot determine the correct exception behavior.  
This exception indicates the use of a software implementation. The 
Unimplemented Operation exception has no 

 

Enable

 

 or 

 

Flag

 

 bit; whenever this 
exception occurs, an unimplemented exception trap is taken (if the FPU interrupt 
input to the CPU is enabled). 

Figure 7.1 illustrates the 

 

Control/Status

 

 register bits that support exceptions.
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Figure  7.1   Control/Status Register Exception/Flag/Trap/Enable Bits

 

Each of the five IEEE Standard 754 exceptions (V, Z, O, U, I) is associated with a 
trap under user control, and is enabled by setting one of the five 

 

Enable

 

 bits.  When 
an exception occurs, the corresponding 

 

Cause 

 

bit is set.  If the corresponding 

 

Enable

 

 
bit is not set, the 

 

Flag

 

 bit is also set.  If the corresponding 

 

Enable 

 

bit is set, the 

 

Flag

 

 
bit is not set and the FPU generates an interrupt to the CPU.  Subsequent exception 
processing allows a trap to be taken.

 

Exception Trap Processing

 

When a floating-point exception trap is taken, the 

 

Cause

 

 register indicates the 
floating-point coprocessor is the cause of the exception trap.  The Floating-Point 
Exception (FPE) code is used, and the 

 

Cause

 

 bits of the floating-point 

 

Control/Status 

 

register indicate the reason for the floating-point exception.  These bits are, in 
effect, an extension of the system coprocessor 

 

Cause

 

 register.

 

Flags

 

A 

 

Flag

 

 bit is provided for each IEEE exception.  This 

 

Flag

 

 bit is set to a 1 on the 
assertion of its corresponding exception, with no corresponding exception trap 
signaled.

The 

 

Flag

 

 bit is reset by writing a new value into the 

 

Status

 

 register; flags can be 
saved and restored by software either individually or as a group.

When no exception trap is signaled, floating-point coprocessor takes a default 
action, providing a substitute value for the exception-causing result of the floating-
point operation.  The particular default action taken depends upon the type of 
exception.  Table 7.1 lists the default action taken by the FPU for each of the IEEE 
exceptions. 

E Z O U IV

17 16 15 14 13 12

Unimplemented Operation

Invalid Operation
Division by Zero

Inexact Operation

Overflow
Underflow

Bit #

Z O U IV

11 10 9 8 7Bit #

Z O U IV

6 5 4 3 2Bit #

Cause
Bits

Flag
Bits

Enable
Bits
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Table 7.1    Default FPU Exception Actions

 

Table 7.2 lists the exception-causing situations and contrasts the behavior of the 
FPU with the requirements of the IEEE Standard 754.

 

Table 7.2    FPU Exception-Causing Conditions

 

a. The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow
trap is disabled.

 

Field Description
Rounding

Mode
Default action

 

 I
Inexact 
exception

Any Supply a rounded result

U
Underflow 
exception

RN
Modify underflow values to 0 with the sign of the 
intermediate result

RZ
Modify underflow values to 0 with the sign of the 
intermediate result

RP
Modify positive underflows to the format’s smallest 
positive finite number; modify negative underflows to -0

RM
Modify negative underflows to the format’s smallest 
negative finite number; modify positive underflows to 0

O
Overflow 
exception

RN
Modify overflow values to 

 

∞

 

 

 

with the sign of the 
intermediate result

RZ
Modify overflow values to the format’s largest finite 
number with the sign of the intermediate result

RP
Modify negative overflows to the format’s most negative 
finite number; modify positive overflows to + 

 

∞

 

RM
Modify positive overflows to the format’s largest finite 
number; modify negative overflows to – 

 

∞

 

Z
Division by 
zero

Any Supply a properly signed 

 

∞

 

V
Invalid 
operation

Any Supply a quiet Not a Number (NaN)

 

FPA Internal
Result 

IEEE
Standard

754

Trap
Enable

Trap
Disable

Notes

 

Inexact result I I I Loss of accuracy

Exponent overflow O,I

 

a

 

O,I O,I Normalized exponent > E

 

max

 

Division by zero Z Z Z Zero is (exponent = E

 

min

 

-1, 
mantissa = 0)

Overflow on convert V E E Source out of integer range

Signaling NaN 
source V V V

Invalid operation V V V 0/0, etc.

Exponent underflow U E E Normalized exponent < E

 

min

 

Denormalized or 
QNaN None E E Denormalized is (exponent = 

E

 

min

 

-1 and mantissa <> 0)
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FPU Exceptions

 

The following sections describe the conditions that cause the FPU to generate 
each of its exceptions, and details the FPU response to each exception-causing 
condition.

 

Inexact Exception (I)

 

The FPU generates the Inexact exception if one of the following occurs:

• the rounded result of an operation is not exact, or

• the rounded result of an operation overflows, or

• the rounded result of an operation underflows and 
both the Underflow and Inexact 

 

Enable

 

 bits are not set 
and the 

 

FS

 

 bit is set.

The FPU usually examines the operands of floating-point operations before 
execution actually begins, to determine (based on the exponent values of the 
operands) if the operation can 

 

possibly 

 

cause an exception.  If there is a possibility 
of an instruction causing an exception trap, the FPU uses a coprocessor stall to 
execute the instruction.

It is impossible, however, for the FPU to predetermine if an instruction will 
produce an inexact result.  If Inexact exception traps are enabled, the FPU uses the 
coprocessor stall mechanism to execute all

 

 

 

floating-point operations that require 
more than one cycle.  Since this mode of execution can impact performance, 
Inexact exception traps should be enabled only when necessary. 

 

Trap Enabled Results: 

 

If Inexact exception traps are enabled, the result register 
is not modified and the source registers are preserved.

 

Trap Disabled Results: 

 

The rounded or overflowed result is delivered to the 
destination register if no other software trap occurs. 

 

Invalid Operation Exception (V)

 

The Invalid Operation exception is signaled if one or both of the operands are 
invalid for an implemented operation.  When the exception occurs without a trap, 
the MIPS ISA defines the result as a quiet Not a Number (NaN). The invalid 
operations are:

• Addition or subtraction: magnitude subtraction of 
infinities, such as: ( + 

 

∞ 

 

 ) + ( – 

 

∞

 

 ) or ( – 

 

∞ 

 

 ) – ( – 

 

∞

 

 )

• Multiplication: 0 times

 

 ∞

 

, with any signs

• Division: 0/0, or 

 

∞

 

/

 

∞

 

, with any signs

• Comparison of predicates involving 

 

< 

 

or 

 

> 

 

without

 

?

 

, 
when the operands are unordered

• Comparison or a Convert From Floating-point 
Operation on a signaling NaN.

• Any arithmetic operation on a signaling NaN.  A move 
(MOV) operation is not considered to be an arithmetic 
operation, but absolute value (ABS) and negate (NEG) 
are considered to be arithmetic operations and cause 
this exception if one or both operands is a signaling 
NaN.

• Square root:

 

 √

 

x, where x is less than zero

Software can simulate the Invalid Operation exception for other operations that 
are invalid for the given source operands.  Examples of these operations include 
IEEE Standard 754-specified functions implemented in software, such as 
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Remainder: 

 

x

 

 REM 

 

y

 

, where 

 

y

 

 is 0 or 

 

x

 

 is infinite; conversion of a floating-point 
number to a decimal format whose value causes an overflow, is infinity, or is NaN; 
and transcendental functions, such as ln (–5) or cos–1(3).  

 

Trap Enabled Results: 

 

The original operand values are undisturbed.

 

Trap Disabled Results: 

 

A quiet NaN is delivered to the destination register if no 
other software trap occurs. 

 

Division-by-Zero Exception (Z)

 

The Division-by-Zero exception is signaled on an implemented divide 
operation if the divisor is zero and the dividend is a finite nonzero number.  
Software can simulate this exception for other operations that produce a signed 
infinity, such as ln(0), sec(

 

π

 

/2), csc(0), or 0

 

–1.

 

Trap Enabled Results: 

 

The result register is not modified, and the source 
registers are preserved.

 

Trap Disabled Results: 

 

The result, when no trap occurs, is a correctly signed 
infinity.

 

Overflow Exception (O)

 

The Overflow exception is signaled when the magnitude of the rounded 
floating-point result, with an unbounded exponent range, is larger than the largest 
finite number of the destination format.  (This exception also sets the Inexact 
exception and 

 

Flag

 

 bits.) 

 

Trap Enabled Results: 

 

The result register is not modified, and the source 
registers are preserved.

 

Trap Disabled Results: 

 

The result, when no trap occurs, is determined by the 
rounding mode and the sign of the intermediate result (as listed in Table 50).

 

Underflow Exception (U)

 

Two related events contribute to the Underflow exception:

• creation of a tiny nonzero result between 

 

±

 

2

 

Emin

 

 which 
can cause some later exception because it is so tiny

• extraordinary loss of accuracy during the 
approximation of such tiny numbers by denormalized 
numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but requires 
they be detected the same way for all operations.

Tininess can be detected by one of the following methods:

• after rounding (when a nonzero result, computed as 
though the exponent range were unbounded, would lie 
strictly between 

 

±

 

2

 

Emin

 

)

• before rounding (when a nonzero result, computed as 
though the exponent range and the precision were 
unbounded, would lie strictly between 

 

±

 

2

 

Emin

 

).

The MIPS architecture requires that tininess be detected after rounding.
Loss of accuracy can be detected by one of the following methods:

• denormalization loss (when the delivered result differs 
from what would have been computed if the exponent 
range were unbounded)

• inexact result (when the delivered result differs from 
what would have been computed if the exponent range 
and precision were both unbounded).
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The MIPS architecture requires that loss of accuracy be detected as an inexact 
result.

 

Trap Enabled Results: 

 

If Underflow or Inexact traps are enabled, or if the 

 

FS

 

 bit 
is not set, then an Unimplemented exception (E) is generated, and the result 
register is not modified.

 

Trap Disabled Results: 

 

If Underflow and Inexact traps are not enabled and the 

 

FS

 

 bit is set, the result is determined by the rounding mode and the sign of the 
intermediate result (as listed in Table 7.1).

 

Unimplemented Instruction Exception (E)

 

Any attempt to execute an instruction with an operation code or format code 
that has been reserved for future definition sets the 

 

Unimplemented

 

 bit in the 

 

Cause

 

 
field in the FPU 

 

Control/Status

 

 register and traps.  The operand and destination 
registers remain undisturbed and the instruction is emulated in software.  Any of 
the IEEE Standard 754 exceptions can arise from the emulated operation, and these 
exceptions in turn are simulated.

The Unimplemented Instruction exception can also be signaled when unusual 
operands or result conditions are detected that the implemented hardware cannot 
handle properly.  These include:

• Denormalized operand, except for Compare instruction

• Quiet Not a Number operand, except for Compare 
instruction

• Denormalized result or Underflow, when either 
Underflow or Inexact 

 

Enable

 

 bits are set or the 

 

FS

 

 bit is 
not set.

• Reserved opcodes

• Unimplemented formats

• Operations which are invalid for their format (for 
instance, CVT.S.S)

NOTE:  Denormalized and NaN operands are only trapped if 
the instruction is a convert or computational operation. 
Moves do not trap if their operands are either denormalized 
or NaNs.

The use of this exception for such conditions is optional; most of these 
conditions are newly developed and are not expected to be widely used in early 
implementations.  Loopholes are provided in the architecture so that these 
conditions can be implemented with assistance provided by software, maintaining 
full compatibility with the IEEE Standard 754.

 

Trap Enabled Results: 

 

The original operand values are undisturbed.

 

Trap Disabled Results: 

 

This trap cannot be disabled.

 

Saving and Restoring State

 

Sixteen or thirty-two doubleword coprocessor load or store operations save or 
restore the coprocessor floating-point register state in memory.  The remainder of 
control and status information can be saved or restored through Move To/From 
Coprocessor Control Register instructions, and saving and restoring the processor 
registers.  Normally, the 

 

Control

 

/

 

Status

 

 register is saved first and restored last.
When the coprocessor 

 

Control/Status

 

 register (

 

FCR31

 

) is read, and the 
coprocessor is executing one or more floating-point instructions, the instruction(s) 
in progress are either completed or reported as exceptions. The architecture 
requires that no more than one of these pending instructions can cause an 
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exception.  If the pending instruction cannot be completed, this instruction is 
placed in the 

 

Exception

 

 register, if present.  Information indicating the type of 
exception is placed in the 

 

Control/Status

 

 register.  When state is restored, state 
information in the status word indicates that exceptions are pending.

Writing a zero value to the 

 

Cause

 

 field of 

 

Control/Status

 

 register clears all 
pending exceptions, permitting normal processing to restart after the floating-
point register state is restored.

The 

 

Cause field of the Control/Status register holds the results of only one 
instruction; the FPU examines source operands before an operation is initiated to 
determine if this instruction can possibly cause an exception. If an exception is 
possible, the FPU executes the instruction in stall mode to ensure that no more than 
one instruction (that might cause an exception) is executed at a time.

Trap Handlers for IEEE Standard 754 Exceptions
The IEEE Standard 754 strongly recommends that users be allowed to specify a 

trap handler for any of the five standard exceptions that can compute; the trap 
handler can either compute or specify a substitute result to be placed in the 
destination register of the operation.

By retrieving an instruction using the processor Exception Program Counter (EPC) 
register, the trap handler determines:

• exceptions occurring during the operation

• the operation being performed 

• the destination format

On Overflow or Underflow exceptions (except for conversions), and on Inexact 
exceptions, the trap handler gains access to the correctly rounded result by 
examining source registers and simulating the operation in software.

On Overflow or Underflow exceptions encountered on floating-point 
conversions, and on Invalid Operation and Divide-by-Zero exceptions, the trap 
handler gains access to the operand values by examining the source registers of the 
instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and 
underflow traps take precedence over a separate inexact trap. This prioritization is 
accomplished in software; hardware sets the bits for both 
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