e
H

Integrated Device Technology, Inc.

IDT R5000™ RISC Microprocessor

Instruction Set Reference Manual

Version 1.0
February 1996

2975 Stender Way, Santa Clara, California 95054
Telephone: (800) 345-7015 « TWX: 910-338-2070 < FAX: (408) 492-8674
Printed in U.S.A.
©1995 Integrated Device Technology, Inc.

Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications
at any time, without notice, in order to improve design or performance and to supply the best possible
product. IDT does not assume any responsibility for use of any circuitry described other than the
circuitry embodied in an IDT product. The Company makes no representations that circuitry de-
scribed herein is free from patent infringement or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent, patent rights or other
rights, of Integrated Device Technology, Inc.

LIFE SUPPORT POLICY

Integrated Device Technology's products are not authorized for use as critical components in life sup-
port devices or systems unless a specific written agreement pertaining to such intended use is exe-
cuted between the manufacturer and an officer of IDT.

1. Life support devices or systems are devices or systems which (a) are intended for surgical implant
into the body or (b) support or sustain life and whose failure to perform, when properly used in ac-
cordance with instructions for use provided in the labeling, can be reasonably expected to result in a
significant injury to the user.

2. Acritical component is any components of a life support device or system whose failure to perform
can be reasonably expected to cause the failure of the life support device or system, or to affect its
safety or effectiveness.

The IDT logo is a registered trademark, and BiCameral, BurstRAM, BUSMUX, CacheRAM, DECnet, Double-Density, FASTX, Four-Port,
FLEXI-CACHE, Flexi-PAK, Flow-thruEDC, IDT/c, IDTenvY, IDT/sae, IDT/sim, IDT/ux, MacStation, MICROSLICE, PalatteDAC, REALS,
R3041, R3051, R3052, R3071, R3081, R36100, R3721, R4600, R4650, R4700, R5000, RISController, RISCore, RISC Subsystem, RISC
Windows, SARAM, SmartLogic, SyncFIFO, SyncBiFIFO, SPC, TargetSystem and WideBus are trademarks of Integrated Device Technology,
Inc.

MIPS is a registered trademark, and RISCompiler, RISComponent, RISComputer, RISCware, RISC/0s, R3000, and R3010 are trademarks
of MIPS Computer Systems, Inc. Postscript is a registered trademark of Adobe Systems, Inc. AppleTalk, LocalTalk, and Macintosh are
registered trademarks of Apple Computer, Inc. Centronics is a registered trademark of Genicom, Inc. Ethernet is a registered trademark
of Digital Equipment Corp. PS2 is a registered trademark of IBM Corp.

Integrated Device Technology, Inc.

CPU Instruction Set Chapter 1
Summary

Introduction

The R5000 processor executes the MIPS IV instruction set, which is a
superset of the MIPS Il instruction set and is backward compatible. Each
CPU instruction consists of a single 32-bit word, aligned on a word
boundary. There are three instruction formats—immediate (I-type), jump
(J-type), and register (R-type). The use of a small number of instruction
formats simplifies instruction decoding, allowing the compiler to synthe-
size more complicated (and less frequently used) operations and
addressing modes from these three formats as needed.

A summary of the MIPS IV instruction set additions is listed along with
a brief explanation of each instruction. For more information on the MIPS
IV instruction set, refer to the MIPS IV instruction set manual.

Types of Instruction Sets
There are three types of instruction types as shown in Figure 1.1.

[-Type (Immediate)
31 26 25 2120 16 15 0
0 rs rt immediate

J-Type (Jump)
31 26 25 0

OE target .

R-Type (Register)

31 26 25 21 20 16 15 1110 6 5 0
0 rs rt rd sa | funct
op 6-bit operation code
rs 5-bit source register specifier

5-bit target (source/destination) register or branch

t condition

immediate 16-bit immediate value, branch displacement or
address displacement

target 26-bit jump target address

rd 5-bit destination register specifier
sa 5-bit shift amount

funct 6-bit function field

Figure 1.1 CPU Instruction Formats

In the MIPS architecture, coprocessor instructions are implementation-
dependent.

CPU Instruction Set Summary Chapter 1

Load and Store Instructions

Load and store are immediate (I-type) instructions that move data
between memory and the general registers. The only addressing mode
that load and store instructions directly support is base register plus 16-
bit signed immediate offset.

Scheduling a Load Delay Slot
A load instruction that does not allow its result to be used by the

instruction immediately following is called a delayed load instruction. The
instruction slot immediately following this delayed load instruction is
referred to as the load delay slot.

In the R5000 processor, the instruction immediately following a load
instruction can use the contents of the loaded register, however in such
cases hardware interlocks insert additional real cycles. Consequently,
scheduling load delay slots can be desirable, both for performance and R-
Series processor compatibility. However, the scheduling of load delay
slots is not absolutely required.

Defining Access Types
Access type indicates the size of a R5000 processor data item to be

loaded or stored, set by the load or store instruction opcode.

Regardless of access type or byte ordering (endianness), the address
given specifies the low-order byte in the addressed field. For a big-endian
configuration, the low-order byte is the most-significant byte; for a little-
endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address,
define the bytes accessed within the addressed doubleword (shown in
Table 1.1). Only the combinations shown in Table 1.1 are permissible;
other combinations cause address error exceptions.

CPU Instruction Set Summary Chapter 1

Table 1.1 Byte Access within a Doubleword

Low Order Bytes Accessed
Access Type | Address - - - -
Mnemonic Bits Big endian Little endian
(Value) (63 31 0) | (63 31 0)
211]0 Byte Byte
Doubleword (7) | 0 | 0 | O 3 3
Septibyte (6) 01010 3 3
eptibyte
PHbY 0|01 3 3
Sextibyte (5) 0|00 3 3
extibyte
4 0|10 3 3
Quintibyte (4) 01010 3 3
uintibyte
y 0|11 3 3
0|00 3 3
Word (3)
oo 4]5[6]77[6]5]4
0|00
0|01 3 3121
Triplebyte (2)
tfo]o 4[5 o [o5 4]
ol 5 [6]7]7]6]5]
0|00
0|10
Halfword (1)
110|0
1110
0|00
0|01
0|10
Byte (0) e
e
y 110|0
1101
11110
1111

Computational Instructions

Computational instructions can be either in register (R-type) format, in
which both operands are registers, or in immediate (I-type) format, in
which one operand is a 16-bit immediate.

Computational instructions perform the following operations on
register values:

= arithmetic
< logical
= shift
= multiply
« divide
These operations fit in the following four categories of computational
instructions:

CPU Instruction Set Summary Chapter 1

= ALU Immediate instructions

= three-Operand Register-Type instructions
= shift instructions

= multiply and divide instructions

64-bit Operations
When operating in 64-bit mode, 32-bit operands must be sign

extended. Thirty-two bit operand opcodes include all non-doubleword
operations, such as: ADD, ADDU, SUB, SUBU, ADDI, SLL, SRA, SLLV,
etc. The result of operations that use incorrect sign-extended 32-bit
values is unpredictable.

Cycle Timing for Multiply and Divide Instructions
MFHI and MFLO instructions are interlocked so that any attempt to

read them before prior instructions complete delays the execution of these
instructions until the prior instructions finish.

Table 1.2 gives the number of processor cycles (PCycles) required to
resolve an interlock or stall between various multiply or divide instruc-
tions, and a subsequent MFHI or MFLO instruction.

Table 1.2 Multiply/Divide Instruction Latency and Repeat Rates

Instruction Latency Repeat Rate
MULT 5 4
MULTU 5 4
DIV 36 36
DIVU 36 36
DMULT
DMULTU
DDIV 68 68
DDIVU 68 68

Jump and Branch Instructions
Jump and branch instructions change the control flow of a program.

All jump and branch instructions occur with a delay of one instruction:
that is, the instruction immediately following the jump or branch (this is
known as the instruction in the delay slot) always executes while the
target instruction is being fetched from storage.

Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with
Jump or Jump and Link instructions, both of which are J-type instruc-
tions. In J-type format, the 26-bit target address shifts left 2 bits and
combines with the high-order 4 bits of the current program counter to
form an absolute address.

Returns, dispatches, and large cross-page jumps are usually imple-
mented with the Jump Register or Jump and Link Register instructions.
Both are R-type instructions that take the 32-bit or 64-bit byte address
contained in one of the general purpose registers.

Overview of Branch Instructions

All branch instruction target addresses are computed by adding the
address of the instruction in the delay slot to the 16-bit offset (shifts left
2 bits and is sign-extended to 32 bits). All branches occur with a delay of
one instruction.

CPU Instruction Set Summary Chapter 1

If a conditional branch is not taken, the instruction in the delay slot is
nullified.

Special Instructions
Special instructions allow the software to initiate traps; they are always

R-type. Exception instructions are extensions to the MIPS ISA.

Coprocessor Instructions o _ _
oprocessor instructions perform operations Iin their respective copro-

cessors. Coprocessor loads and stores are I-type, and coprocessor
computational instructions have coprocessor-dependent formats.
Individual coprocessor instructions are described in Appendices A (for
CPO) and B (for the FPU, CP1).
CPO instructions perform operations specifically on the System Control
Coprocessor registers to manipulate the memory management and excep-
tion handling facilities of the processor.

MIPS IV Instruction Set Additions

The R5000 Microprocessor runs the MIPS 1V instruction set, which is a
superset of the MIPS Ill instruction set and is backward compatible. The
additions of these new instructions enables the MIPS architecture to
compete in the high-end numeric processing market which has tradition-
ally been dominated by vector architectures.

A set of compound multiply-add instructions has been added, taking
advantage of the fact that the majority of floating point computations use
the chained multiply-add paradigm. The immediate multiply result is
rounded before the addition is performed.

A register + register addressing mode for floating point loads and stores
has been added which eliminates the extra integer add required in many
array accesses. However, issuing of a Register + Register load causes a
one cycle stall in the pipeline. Register + register addressing for integer
memory operations is not supported.

A set of four conditional move operators allows floating point arithmetic
‘IF’ statements to be represented without branches. ‘THEN’ and ‘ELSE’
clauses are computed unconditionally and the results placed in a tempo-
rary register. Conditional move operators then transfer the temporary
results to their true register. Conditional moves must be able to test both
integer and floating point conditions in order to supply the full range of IF
statements. Integer tests are performed by comparing a general register
against a zero value. Floating point tests are performed by examining the
floating point condition codes. Since floating point conditional moves test
the floating point condition code, the R5000 microprocessor provides an
8-bit condition code field to give the compiler increased flexibility in
scheduling the comparison and the conditional moves. Table 1.3 lists in
alphabetical order the new instructions which comprise the MIPS IV
instruction set.

Instruction Definition
BC1F Branch on FP Condition Code False
BC1T Branch on FP Condition Code True
BC1FL Branch on FP Condition Code False Likely

Table 1.3 MIPS IV Instruction Set Additions and Extensions

CPU Instruction Set Summary

Chapter 1

Instruction

Definition

BC1TL

Branch on FP Condition Code True Likely

C.cond.fmt (cc)

Floating Point Compare

LDXC1

Load Double Word indexed to COP1

LWXC1

Load Word indexed to COP1

MADD.sd

Floating PointMultiply-Add

MOVF

Move conditional on FP Condition Code False

MOVN

Move on Register Not Equal to Zero

MOVT

Move conditional on FP Condition Code True

MOVZ

Move on Register Equal to Zero

MOVFE.fmt

FP Move conditional on Condition Code False

MOVN.fmt

FP Move on Register Not Equal to Zero

MOVT.fmt

FP Move conditional on Condition Code True

MOVZ.fmt

FP Move conditional on Register Equal to Zero

MSUB.sd

Floating Point Multiply-Subtract

NMADD.sd

Floating Point Negative Multiply-Add

NMSUB.sd

Floating Point Negative Multiply-Subtract

PREFX?

Prefetch Indexed --- Register + Register

PREF?

Prefetch --- Register + Offset

RECIP.fmt

Reciprocal Approximation

RSQRT.fmt

Reciprocal Square Root Approximation

SDXC1

Store Double Word indexed to COP1

SWXC1

Store Word indexed to COP1

Table 1.3 MIPS IV Instruction Set Additions and Extensions (Continued)
a. Prefetch is not implemented in the R5000 microprocessor and these instructions

are no-ops.

Table 1.4 lists the COPO instructions for the R5000 processor. COPO
instructions are those which are not architecturally visible and are used

by the kernel.

COPO Instruction Definition
ERET Return from Exception
TLBP Probe for TLB Entry
TLBR Read TLB Entry
TLBW Write TLB Entry
DCTR Data Cache Tag Read
DCTW Data Cache Tag Write

Table 1.4 R5000 COPO Instructions

CPU Instruction Set Summary Chapter 1

Summary of Instruction Set Additions
The following is a brief description of the additions to the MIPS llI
instruction set. These additions comprise the MIPS 1V instruction set.

Indexed Floating Point Load

LWXC1 - Load word indexed to Coprocessor 1.
LDXC1 - Load doubleword indexed to Coprocessor 1.

The two Index Floating Point Load instructions are exclusive to the
MIPS IV instruction set and transfer floating-point data types from
memory to the floating point registers using register + register addressing
mode. There are no indexed loads to general registers. The contents of the
general register specified by the base is added to the contents of the
general register specified by the index to form a virtual address. The
contents of the word or doubleword specified by the effective address are
loaded into the floating point register specified in the instruction.

The region bits (63:62) of the effective address must be supplied by the
base. If the addition alters these bits an address exception occurs. Also, if
the address is not aligned, an address exception occurs.

Indexed Floating Point Store

SWXC1 - Store word indexed to Coprocessor 1.
SDXC1 - Store doubleword indexed to Coprocessor 1.

The two Index Floating Point Store instructions are exclusive to the
MIPS 1V instruction set and transfer floating-point data types from the
floating point registers to memory using register + register addressing
mode. There are no indexed loads to general registers. The contents of the
general register specified by the base is added to the contents of the
general register specified by the index to form a virtual address. The
contents of the floating point register specified in the instruction is stored
to the memory location specified by the effective address.

The region bits (63:62) of the effective address must be supplied by the
base. If the addition alters these bits an address exception occurs. Also, if
the address is not aligned, an address exception occurs.

Prefetch

PREF - Register + offset format
PREFX - Register + register format

The two prefetch instructions are exclusive to the MIPS IV instruction
set and allow the compiler to issue instructions early so the corre-
sponding data can be fetched and placed as close as possible to the CPU.
Each instruction contains a 5-bit ‘hint’ field which gives the coherency
status of the line being prefetched. The line can be either shared, exclu-
sive clean, or exclusive dirty. The contents of the general register specified
by the base is added either to the 16 bit sign-extended offset or to the
contents of the general register specified by the index to form a virtual
address. This address together with the ‘hint’ field is sent to the cache
controller and a memory access is initiated.

CPU Instruction Set Summary Chapter 1

The region bits (63:62) of the effective address must be supplied by the
base. If the addition alters these bits an address exception occurs. The
prefetch instruction never generates TLB-related exceptions. The PREF
instruction is considered a standard processor instruction while the
PFETCH instruction is considered a standard Coprocessor 1 instruction.
The R5000 microprocessor does not implement prefetch and these
instruction are executed as no-ops.

Branch on Floating Point Coprocessor

BCL1T - Branch on FP condition True
BC1F - Branch on FP condition False
BCL1TL - Branch on FP condition True Likely
BC1FL - Branch on FP condition False Likely

The four branch instructions are upward compatible extensions of the
Branch on Floating point Coprocessor instructions of the MIPS instruc-
tion set. The BC1T and BCI1F instructions are extensions of MIPS I.
BC1TL and BC1FL are extensions of MIPS Ill. These instructions test one
of eight floating point condition codes. If no condition code is specified
then condition code bit zero is selected. This encoding is downward
compatible with previous MIPS architectures.

The branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended to 64 bits. If the contents of the floating point condi-
tion code specified in the instruction are equal to the test value, the target
address is branched to with a delay of one instruction. If the conditional
branch is not taken and the nullify delay bit in the instruction is set, the
instruction in the branch delay slot is nullified.

Integer Conditional Moves

MOVT - Move conditional on condition code true
MOVF - Move conditional on condition code false
MOVN - Move conditional on register not equal to zero
MOVZ - Move conditional on register equal to zero

The four integer move instructions are exclusive to the MIPS 1V instruc-
tion set and are used to test a condition code or a general register and
then conditionally perform an integer move. The value of the floating
point condition code specified in the instruction by the 3-bit condition
code specifier, or the value of the register indicated by the 5-bit general
register specifier, is compared to zero. If the result indicates that the move
should be performed, the contents of the specified source register is
copied into the specified destination register.

Floating Point Multiply-Add

MADD - Floating Point Multiply-Add

MSUB - Floating Point Multiply-Subtract

NMADD - Floating Point Negative Multiply-Add
NMSUB - Floating Point Negative Multiply-Subtract

These four instructions are exclusive to the MIPS 1V instruction set and
accomplish two floating point operations with one instruction. Each of
these four instructions performs intermediate rounding.

Floating Point Compare

C.cond - Compare
C.cond - Implies cc=0

CPU Instruction Set Summary Chapter 1

The two compare instructions are upward compatible extensions of the
floating point compare instructions of the MIPS | instruction set and
produce a boolean result which is stored in one of the condition codes.

The contents of the two FP source registers specified in the instruction
are interpreted and arithmetically compared. A result is determined
based on the comparison and the conditions specified in the instruction.
If one of the values is not a number and the high order bit of the condition
field is set, an invalid operations trap occurs. Comparisons are exact and
neither overflow or underflow.

The implications for compiler code scheduling is that a compare
instruction may be immediately followed by a dependent floating point
conditional move instruction, but may not be immediately followed by a
dependent branch on floating point coprocessor condition instruction or a
dependent integer conditional move instruction. Note that this restriction
applies only to the condition code specified in the 3-bit condition code
specifier of the instruction. All other condition codes are unaffected.

Floating Point Conditional Moves

MOVT.fmt - Floating Point Conditional Move on condition code true

MOVF.fmt - Floating Point Conditional Move on condition code false

MOVN.fmt - Floating Point Conditional Move on register not equal to
zero

MOVZ.fmt - Floating Point Conditional Move on register equal to zero

The four floating point conditional move instructions are exclusive to
the MIPS 1V instruction set and are used to test a condition code or a
general register and then conditionally perform a floating point move. The
value of the floating point condition code specified by the 3-bit condition
code specifier, or the value of the register indicated by the 5-bit general
register specifier, is compared to zero. If the result indicates that the move
should be performed, the contents of the specified source register is
copied into the specified destination register. All of these conditional
floating point move operations are non-arithmetic. Consequently, no
IEEE 754 exceptions occur as a result of these instructions.

Reciprocal’s

RECIP.fmt - Reciprocal Approximation
RSQRT.fmt - Reciprocal Square Root Approximation

The reciprocal instruction performs a reciprocal approximation on a
floating point value. The reciprocal of the value in the floating point
source register is approximated and placed in a destination register. The
numerical accuracy of this operation is implementation dependent based
on the rounding mode used.

The reciprocal square root instruction performs a reciprocal square
root approximation on a floating point value. The reciprocal of the positive
square root of a value in the floating point source register is approximated
and placed in a destination register. The numerical accuracy of this oper-
ation is implementation dependent based on the rounding mode used.

CPU Instruction Set Summary Chapter 1

The approximation is due to the fact that neither of these instruction
meets IEEE accuracy requirements. In both cases a small amount of
precision has been sacrificed, thereby significantly reducing execution
time. For example, in the case of a RECIP instruction, X/Y is computed by
taking the reciprocal of Y and multiplying that result by X. The reduced
execution time of the reciprocal operation allows a RECIP followed by a
MUL (multiply) instruction to be executed faster than a single DIV (divide)
instruction. The performance difference between a RSQRT instruction
and a SQRT followed by a DIV instruction is implementation dependent.

On the R5000 microprocessor, the RECIP instruction has the same
latency as a DIV instruction, but a RSQRT is faster than a SQRT followed

by a RECIP.
Table 1.5 shows the integer instruction latencies in the R5000 Micro-
processor.
Instruction Group Latency Repeat
Arithmetic and Logical 1 1
Shift 1 1
Load 2 1
Store N/A 1
Multiply (32-hbit) 5 4
Multiply (64-bit) 9 8
Divide (32-bit) 36 36
Divide (64-bit) 68 68

Table 1.5 R5000 Integer Instruction Latencies

Table 1.6 shows the floating point instruction latencies in the R5000

CPU.
Instruction Group Latency Repeat
Load 2 1
Load Indexed 3 2
Store N/A 1
Store Indexed N/A 2
Prefetch N/A 1
Prefetch Indexed N/A 2
Compare 1 1
Absolute 1 1
Negative 1 1
Move 1 1
Conditional Moves 1 1
Add 4 1
Subtract 4 1
MUL.s 4 1
MuUL.d 5 2

Table 1.6 R5000 Floating Point Instruction Latencies

CPU Instruction Set Summary

Chapter 1

Instruction Group

Latency

Repeat

MADD.s

MADD.d

DIV.s

=
©

DIV.d

g

SQRT.s

[y
©

SQRT.d

g

RECIPs

=
©

RECIPd

®

RSQRT.s

W
o

RSQRT.d

(o2}
(o2}

mtcl, dmtcl

mfcl, dmfcl

CTC1

CFC1

ROUND.w

ROUND.I2

TRUNC.w

TRUNC.I

CEIL.w

CEIL.I

FLOOR.w

FLOOR.I

CVT.sd

CVT.sw

cvTslP

CVTds

CVT.dw

cvT.dlP

CVT.w.s

CvVT.wd

CVTls

CVTIld

D DD DD DO DD DD DNDOIDNDN

RlRr| R R R[RP| PO W|R[RP|RP| P[RR PP RP| | L]

Table 1.6 R5000 Floating Point Instruction Latencies

a. Trap on greater than 53 bits of significance.
b. Trap on greater than 52 hits of significance.

N R5000 Processor Chapter 2
Pipeline

dt

Integrated Device Technology, Inc.

<t
g

Introduction

The R5000 processor has a five-stage instruction pipeline. Each stage
takes one PCycle (one cycle of PClock, which runs at a multiple of the
frequency of SysClock). Thus, the execution of each instruction takes at
least five PCycles. An instruction can take longer—for example, if the
required data is not in the cache, the data must be retrieved from main
memory.

Once the pipeline has been filled, five instructions can be executed
simultaneously. Figure 2.1 shows the five stages of the instruction pipe-
line.

|11] 21 |[1R]|2R[1A[2A]1D 2D [1W|2w]|

L41] 21 [1R[2R|1A]2A[1D]2D [1w|2w/|

1A[2A]1D 2D [1w|2w]

1R[2R[1A[2A|1D[2D [1wW/|2W]

One ‘
Cycle

Figure 2.1 Instruction Pipeline Stages

Instruction Pipeline Stages
e 11 - Instruction Fetch, Phase One
e 2l - Instruction Fetch, Phase Two
= 1R - Register Fetch, Phase One
* 2R - Register Fetch, Phase Two
< 1A - Execution, Phase One
= 2A - Execution, Phase Two
= 1D - Data Fetch, Phase One
e 2D - Data Fetch, Phase Two
< 1W - Write Back, Phase One
= 2W - Write Back, Phase Two

R5000 Processor Pipeline Chapter 2

Il - Instruction Fetch, Phase One

During the 11 phase, the following occurs:

= Branch logic selects an instruction address and the instruction
cache fetch begins.

= The instruction translation lookaside buffer (ITLB) begins the
virtual-to-physical address translation.

21 - Instruction Fetch, Phase Two

The instruction cache fetch and the virtual-to-physical address transla-
tion continues.

1R - Register Fetch, Phase One

During the 1R phase, the following occurs:
« The instruction cache fetch is completed.

= The instruction cache tag is checked against the page frame number
obtained from the ITLB

2R - Register Fetch, Phase Two

During the 2R phase, one of the following occurs:
= The instruction decoder decodes the instruction.
< Any required operands are fetched from the register file.

= Determine whether instruction is issued or delayed depending on
interlock conditions.

e Calculate branch address (if applicable).

1A - Execution - Phase One

During the 1A phase, one of the following occurs:
< Any result from th A or D stages are bypassed
< The ALU starts an integer operation.

e The ALU calculates the data virtual address for load and store
instructions.

e The ALU determines whether the branch condition is true.
2A - Execution - Phase Two

During the 2A phase, one of the following occurs:
= The integer operation begun in the 1A phase completes.

Data cache access begins.

Store data is shifted to the specified byte positions.

The JTLB virtual to physical address translation begins.

The DTLB begins the data virtual to physical address translation.

1D - Data Fetch - Phase One

During the 1D phase, one of the following occurs:

The DTLB data address translation completes.

R5000 Processor Pipeline Chapter 2

2D - Data Fetch - Phase Two
= The data cache access completes. Data is shifted down and
extended.

= The JTLB address translation completes. The data cache tag is
checked against the PFN from the DTLB or JTLB for any data cache
access.

1W - Write Back, Phase One

= This phase is used internally by the processor to resolve all
exceptions in preparation for the register write.

2W - Write Back, Phase Two

= For register-to-register and load instructions, the result is written
back to the register file.

WB - Write Back

For register-to-register instructions, the instruction result is written
back to the register file during the WB stage. Branch instructions
perform no operation during this stage.

Figure 2.2 shows the activities occurring during each ALU pipeline
stage, for load, store, and branch instructions.

N S N S e W N e

Phase 7 [21 [IR [2r [1A [2A | 10 [2D [IW [2w |
ICD ICA
IFetch [TLBM [ITLBR [ITC
and RF
Decode IDEC
[ALU EX1 EX2 [WB |
Load/Store DVA | DCAD | DCAA | DCLA
JTLB1 | JTLB2
DTLBM|DTLBR| DTC [wB
SA DCW
[Branch [BAC
ICD Instruction cache address decode ICD Instruction cache array access
ITLBM Instruction address translation match ITLBR Instruction address translation read
ITC Instruction tag check RF Register operand fetch
IDEC Instruction address translation stage 2 EX1 Execute operation - phase 1
EX2 Execute operation - phase two WB Write back to register file
DVA Data virtual address calculation DCAD Data cache address decode
DCAA Data cache array access DCLA Data cache load align
JTLB1 JTLB address translation - phase 1 JTLB2 JTLB address translation - phase 2
DTLBM Data address translation match DTLBR Data address translation read
DTC Data tag check SA Store align
DCW Data cache write BAC Branch address calculation

Figure 2.2 CPU Pipeline Activities

R5000 Processor Pipeline

Chapter 2

Branch Delay

The CPU pipeline has a branch delay of one cycle and a load delay of
one cycles. The one-cycle branch delay is a result of the branch compar-
ison logic operating during the 1A pipeline stage of the branch. This
allows the branch target address calculated in the previous stage to be
used for the instruction access in the following 11 phase.

Figure 2.3 illustrates the branch delay.

| One | One | One | One | One |

Cycle | Cycle | Cycle | Cycle | Cycle
| 1|21 [1R|2R[1A[2A[1D[2D [1W]2W]|
* *%*

11| 21 [1R|| 2R [1A[2A|1D[2D [1W[2W]|

y

1] 21 [1R|2rR[1A[2A]1D[2D [1W[2W]|

11] 21 [1R|2R|1A[2A]1D[2D [1W[2W]|

|Branch
Delay

* Branch and fall-through address calculated
** - Address selection made

Figure 2.3 CPU Pipeline Branch Delay

Load Delay

The completion of a load at the end of the DS pipeline stage produces
an operand that is available for the 1A pipeline phase of the subsequent
instruction following the load delay slot.

Figure 2.4 shows the load delay of two pipeline stages.

One One | One One | One
| Cycle | Cycle | Cycle | Cycle | Cycle |

| 11| 21 [1R|2R[1A[2A]1D | 2D [1W[2W]|

| 1] 21 [1R|2R[1A[2A[1D[2D [1W]2W]|

| 1] 21 [1R|2R[1A[2A 1D [2D |1W]2W]|
Load
| Delay|

Figure 2.4 CPU Pipeline Load Delay

Interlock and Exception Handling

Smooth pipeline flow is interrupted when cache misses or exceptions
occur, or when data dependencies are detected. Interruptions handled
using hardware, such as cache misses, are referred to as interlocks, while
those that are handled using software are called exceptions.

R5000 Processor Pipeline Chapter 2

There are two types of interlocks:
= Stalls, which are resolved by halting the pipeline.

= Slips, which require one part of the pipeline to advance while
another part of the pipeline is held static.

At each cycle, exception and interlock conditions are checked for all
active instructions.

Because each exception or interlock condition corresponds to a partic-
ular pipeline stage, a condition can be traced back to the particular
instruction in the exception/interlock stage. For instance, a Reserved
Instruction (RI) exception is raised in the execution (A) stage.

Table 2.1 Relationship of Pipeline Stage to Interlock Condition

Pipeline Stage
State
I R A D W
Stall IT™M ICM DCM
CPE
Sip LDl
MDSt
FCBusy
Exceptions ITLB IBE RI DBE
| PErT CUn NMI
BP Reset
SC DPErr
DTLB OVF
DTMod | Trap
Intr
Table 1.
Table 2.2 Pipeline Exceptions
Exception Description
ITLB Instruc_tion Translation or Address
Exception
Intr External Interrupt
IBE IBus Error
RI Reserved Instruction
BP Breakpoint
SC System Call
CUn Coprocessor Unusable
IPErr Instruction Parity Error
OVF Integer Overflow

R5000 Processor Pipeline

Chapter 2

Exception Description

FPE FP Interrupt

ExTrap EX Stage Traps

DTLB E;é;)‘l;irg;slation or Address

TLBMod TLB Modified

DBE Data Bus Error

DPErr Data Parity Error
NMI Non-maskable Interrupt
Reset Reset

Table 2.3 Pipeline Interlocks

Interlock Description
I™ Instruction TLB Miss
ICM Instruction Cache Miss
CPBE Coprocessor Possible Exception
DCM Data Cache Miss
LDI Load Interlock
MDSt Multiply/Divide Start
FCBsy FP Busy

Exceé)tlon Conditions _ _

When an exception condition occurs, the relevant instruction and all
those that follow it in the pipeline are cancelled. Accordingly, any stall
conditions and any later exception conditions that may have referenced
this instruction are inhibited; there is no benefit in servicing stalls for a
cancelled instruction.

When an exception condition is detected, the R5000 processor aborts
the instruction which caused the exception, as well as all subsequent
instructions. When this instruction reaches the W stage, three events
occur;

= The exception flag causes the instruction to write various CP0
registers with the exception state,

= The current PC is changed to the appropriate exception vector
address,

= The exception bits of earlier pipeline stages are cleared.

This implementation allows all instructions which occurred before the
exception to complete, and all instructions which occurred after the
instruction to be aborted. Hence the value of the EPC is such that execu-
tion can be restarted. In addition, all exceptions are guaranteed to be
taken in order. Figure 2.5 illustrates the exception detection mechanism
for a Reserved Instruction (RI) exception.

R5000 Processor Pipeline Chapter 2

| One | One | One | One | One |
Cycle | Cycle | Cycle | Cycle | Cycle

Exception [1121 [1R[2R[1A[2A]1D[2D[1W[2W]

| 11 | 1R |2R|1A|2A]1D[2D [1W[2w]|

| 11| 21 [1R|2R[1A[2A]1D | 2D [1W[2W]|

Instruction
Aborted

| 1] 21 [1R|2R[1A[2A[1D[2D [1W]2W]|

/ | 11| 21 [1R|2R[1A[2A 1D [2D |[1W[2W]|

Exception
Vector Address

Figure 2.5 Exception Detection Mechanism

Stall Conditions

A stall condition is used to suspend the pipeline for conditions
detected after the R pipeline stage. When a stall occurs, the processor
resolves the condition and then restarts the pipeline. Once the interlock is
removed, the restart sequence begins two cycles before the pipeline
resumes execution. The restart sequence reverses the pipeline overrun
by inserting the correct information into the pipeline. Figure 2.6 shows a
data cache miss stall.

®® @@
vy Yy

LIr[A[D[w]w] << [w]w]w]
L1 IR]A[D|D] 2 [D]|D[D]|W]
LLIR[AJA] S [AlAa]A[D|wW]
LLIR[R] 22 [RIR|R|A[D]|W]

- Detect cache miss

- Start moving dirty cache line data to write buffer

- Fetch first doubleword into cache and restart pipeline
- Load remainder of cache line into cache

~OWN

Figure 2.6 Servicing a Data Cache Miss

R5000 Processor Pipeline

Chapter 2

The data cache miss is detected in the D stage of the pipeline. If the
cache line to be replaced is dirty, the W bit is set and data is moved to the
internal write buffer in the next cycle. The squiggly line in Figure 7 indi-
cates the memory access. Once the memory is accessed and the first
doubleword of data is returned, the pipeline is restarted. The remainder of
the cache line is returned in subsequent cycles. The dirty data in the
write buffer is written out to memory after the cache line fill operations is
completed.

Slip Conditions

During the 2R and 1A pipeline stages, internal logic determines
whether it is possible to start the current instruction in this cycle. If all
required source operands are available, as well as all hardware resources
needed to complete the operation, then the instruction is issued. Other-
wise, the instruction “slips”. Slipped cycles are retried on subsequent
cycles until they are issued. Pipeline stages D and W advance normally
during slips in an attempt to resolve the conflict. NOP’s are inserted into
the bubbles which are created in the pipeline. Instructions caused by
“branch likely” instructions, ERET, or exceptions do not cause clips.

Figure 8 shows how instruction can slip during an instruction cache
miss.

Issue

Issue

Slip

Slip
[RIA[D[w]
Slip
nop | I [RIA[D[W]
Slip
NoP [[r]A[D[w]
Slip
NoP [[R]A[D]|W]
Issue
NoP L1 [R]A[D]|W]

Issue

[IR[R[R|R|R[A[D|W]

©) @6 .

L1 IR][A[D|wW]

1 - Detect cache miss

2 - Start moving dirty cache line data to write buffer

3 - Fetch first doubleword into cache and restart pipeline
4 - Load remainder of cache line into cache

Figure 2.7 Slips During and Instruction Cache Miss

R5000 Processor Pipeline

Chapter 2

Instruction cache misses are detected in the R-stage of the pipeline.
Slips are detected in the A stage. Instruction cache misses never require a
writeback operation as writes are not allowed to the instruction cache.
Unlike the data cache, early restart, where the pipeline is restarted after
only a portion of the cache line fill has occurred, is not implemented for
the instruction cache. The requested cache line is loaded into the instruc-
tion cache in its entirety before the pipeline is restarted.

Write Buffer

The R5000 processor contains a write buffer which improves the
performance of write operations to external memory. All write cycles use
the write buffer. The write buffer holds up to four 64-bit address and data
pairs.

On a cache miss requiring a write-back, the entire buffer is used for the
write-back data and allows the processor to proceed in parallel with the
memory update. For uncached and write-through stores, the write buffer
decouples the CPU from the write to memory. If the write buffer is full,
additional stores are stalled until there is room for them in the write
buffer.

Y OIS Superscalar Issue Chapter 3
Mechanism
Edt
Integrated De\;ice Technology, Inc.
Introduction

The R5000 processor incorporates a simple dual-issue mechanism
which allows two instructions to be dispatched per cycle under certain
conditions. A FPU ALU operation can be dispatched along with any other
type of instruction, as long as the other instruction is not another FP ALU

operation.

Figure 3.1 shows a simplified diagram of the dual issue mechanism.

2-deep Read Integer
buffer :Register File
Instr
Cache | j
Instr »-Read FP
B Register File
| Stage R Stage
Integer Reg < Integer Integer ALU
File Write Load/Store] Execution -
FP Register < FP FP ALU <
File Write Load/Store] Execution
W Stage D Stage A Stage

Figure 3.1 Dual Issue Mechanism

| - Stage

Two instructions are fetched from the instruction cache and
placed in a 2-deep instruction buffer. Issue logic determines the
type of instruction and which pipeline the instruction is routed to.
Also, the instruction cache tag is checked against the page frame
number (PFN) obtained from the ITLB.

R - Stage

Any required operands are fetched from the appropriate register
file, and the decision is made to either proceed or slip the
instruction based on any interlock conditions. For branch
instruction, the branch address is calculated.

A - Stage

The appropriate ALU begins the arithmetic, logical, or shift
operation. The data virtual address is calculated for any load or
store instructions. The appropriate ALU determines whether the
branch condition is true. The data cache access is started.

Superscalar Issue Mechanism

Chapter 3

D - Stage

The data cache access is completed. Data is shifted down and
extended. Data address translation in the DTLB completes. The
virtual to physical address translation in the JTLB is performed.
The data cache tag is checked against the PFN from the DTLB or
JTLB for any data cache access.

W - Stage

The processor resolves all exceptions. For register-to-register and
load instructions, the result is written back to the appropriate
register file.

R Memory Management Chapter 4
uUnit

HH

L de

Integrated Device Technology, Inc.

Introduction

The IDT R5000 processor provides a full-featured memory management
unit (MMU) which uses an on-chip translation lookaside buffer (TLB) to
translate virtual addresses into physical addresses.

This chapter describes the processor virtual and physical address
spaces, the virtual-to-physical address translation, the operation of the
TLB in making these translations, and those System Control Coprocessor
(CPO) registers that provide the software interface to the TLB.

Translation Lookaside Buffer (TLB)

Mapped virtual addresses are translated into physical addresses using
an on-chip TLB.! The TLBis a fully associative memory that holds 48
entries, which provide mapping to 48 odd/even page pairs (96 pages).
When address mapping is indicated, each TLB entry is checked simulta-
neously for a match with the virtual address that is extended with an
ASID stored in the EntryHi register.

The address mapped to a page ranges in size from 4 Kbytes to 16
Mbytes, in multiples of 4—that is, 4K, 16K, 64K, 256K, 1M, 4M, 16M.

Hits and Misses

If there is a virtual address match, or hit, in the TLB, the physical page
number is extracted from the TLB and concatenated with the offset to
form the physical address.

If no match occurs (TLB miss), an exception is taken and software
refills the TLB from the page table resident in memory. Software can
write over a selected TLB entry or use a hardware mechanism to write
into a random entry.

Multiple Matches

The R5000 processor does not provide any detection of shutdown
mechanism for multiple matches in the TLB. The result of this condition
is undefined, and software is expected to never allow this to occur.

Address Spaces

This section describes the virtual and physical address spaces and the
manner in which virtual addresses are converted or “translated” into
physical addresses in the TLB.

Virtual Address Space
The processor virtual address can be either 32 or 64 bits wide,
depending on whether the processor is operating in 32-bit or 64-bit mode.

= In 32-bit mode (extended address bit = 0), addresses
are 32 bits wide. The maximum user process size is 2
gigabytes (231).

= In 64-bit mode (extended address bit = 1), addresses
are 64 bits wide. The maximum user process size is 1
terabyte (2%9).

L There are virtual-to-physical address translations that occur outside of the TLB.
For example, addresses in the kseg0 and ksegl spaces are unmapped translations.
In these spaces the physical address is 0x000 0000 0 11 VA[28:0].

4-1

Memory Management Unit Chapter 4

Figure 4.1 shows the translation of a virtual address into a physical
address.

Virtual address
1. Virtual address (VA) represented by the

virtual page number (VPN) is compared G ASID VPN Offset
with tag in TLB.

2. If there is a match, the page frame G ASID VPN
number (PFN) representing the upper
bits of the physical address (PA) is >. TLB
output from the TLB. Entry
PFN
TLB \

3. The Offset, which does not pass through

the TLB, is then concatenated to the PFN. PFN | Offset I

Physical address

Figure 4.1 Overview of a Virtual-to-Physical Address Translation

As shown in Figures 11 and 12, the virtual address is extended with an
8-bit address space identifier (ASID), which reduces the frequency of TLB
flushing when switching contexts. This 8-bit ASID is in the CPO EntryHi
register. The Global bit (G) is in the EntryLoO and EntryLol registers.

Physical Address Space

Using a 36-bit address, the processor physical address space encom-
passes 64 gigabytes. The section following describes the translation of a
virtual address to a physical address.

Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing
the virtual address from the processor with the virtual addresses in the
TLB; there is a match when the virtual page number (VPN) of the address
is the same as the VPN field of the entry, and either:

= the Global (G) bit of the TLB entry is set, or

= the ASID field of the virtual address is the same as the
ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss
exception is taken by the processor and software is allowed to refill the
TLB from a page table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is
output from the TLB and concatenated with the Offset, which represents
an address within the page frame space. The Offset does not pass
through the TLB.

Virtual-to-physical translation is described in greater detail throughout
the remainder of this chapter.

The next two sections describe the 32-bit and 64-bit address transla-
tions.

Memory Management Unit Chapter 4

32-bit Mode Virtual Address Translation
Figure 4.2 shows the virtual-to-physical-address translation of a 32-bit

mode address.
= The top portion of Figure 4.2 shows a virtual address
with a 12-bit, or 4-Kbyte, page size, labelled Offset. The
remaining 20 bits of the address represent the VPN,
and index the 1M-entry page table.

e The bottom portion of Figure 4.2 shows a virtual
address with a 24-bit, or 16-Mbyte, page size, labelled
Offset. The remaining 8 bits of the address represent
the VPN, and index the 256-entry page table.

Virtual Address with 1M (229) 4-Kbyte pages

39 3231 29 28 20 bits = 1M pages 12 11

20

Bits 31, 30 and 29 of the virtual

8
/ N
N
Virtual-to-physical Offset passed
translation in TLB unchanged to
physical

address select user, supervisor, 36-bit Physical Address memory
or kernel address spaces.
35 0
| PFN Offset I
Virtual-to-physical
translation in TLB S;fcsr?;n%aesdsig
TLB physical
A A memory
N\ N ™
39 3231 2928 24 23 0
ASID VPN Offset
8 8 24

8 bits = 256 pages
Virtual Address with 256 (28)16—Mbyte pages

Figure 4.2 32-bit Mode Virtual Address Translation

64-bit Mode Virtual Address Translation
Figure 4.3 shows the virtual-to-physical-address translation of a 64-bit

mode address. This figure illustrates the two extremes in the range of
possible page sizes: a 4-Kbyte page (12 bits) and a 16-Mbyte page (24
bits).
= The top portion of Figure 4.3 shows a virtual address
with a
12-bit, or 4-Kbyte, page size, labelled Offset. The
remaining 28 bits of the address represent the VPN,
and index the 256M-entry page table.

Memory Management Unit Chapter 4

= The bottom portion of Figure 4.3 shows a virtual
address with a 24-bit, or 16-Mbyte, page size, labelled
Offset. The remaining 16 bits of the address represent
the VPN, and index the 64K-entry page table.

Virtual Address with 256M (228) 4-Kbyte pages
71 64 636261 40 39 28 bits = 256M pages 12 11 0
VPN

12

24

I\ J
Virtualto-nnvsical Y Offset passed
irtual-to-physical unchanged to
translation in TLB l physicalg
Bits 62 and 63 of the virtual 36-bit Physical Address memory
address select user, supervisor, 35 0
or kernel address spaces.
| PFN Offset
.) Offset passed
Virtual-to-physical unchanged to
translation in TLB physical
memory
A
A A
71 64 6362 61 4039 24 23 0
ASID Oor-1 VPN Offset
8 24 16 24

16 bits = 64K pages
Virtual Address with 64K (216)16-Mbyte pages

Figure 4.3 64-bit Mode Virtual Address Translation

Operating Modes
The processor has three operating modes that function in both 32- and

64-bit operations:
< User mode

e Supervisor mode
e Kernel mode
These modes are described in the next three sections.

User Mode Operations
In User mode, a single, uniform virtual address space—Ilabelled User

segment—is available; its size is:
- 2 Gbytes (221 bytes) in 32-bit mode. UX = 0 (useg)
e 1 Thyte (2%° bytes) in 64-bit mode. UX = 1 (xuseg)

Figure 4.4 shows User mode virtual address space.

Memory Management Unit Chapter 4

32-bit* 64-bit
Ox FFFF FAF Ox FF FHF FF FEF
Address Address
Error Error
Ox 8000 0000 Ox 0000 0100 0CDO 0000
2GB 1TB
useg xuseg
Mapped Mapped
Ox 0000 0000 0Ox 0000 0000 0000 0000

Figure 4.4 User Mode Virtual Address Space

The User segment starts at address O and the current active user
process resides in either useg (in 32-bit mode) or xuseg (in 64-bit mode).
The TLB identically maps all references to useg/xuseg from all modes,
and controls cache accessibility.

The processor operates in User mode when the Status register contains
the following bit-values:

- KSU bits = 10,
- EXL=0
- ERL=0

In conjunction with these bits, the UX bit in the Status register selects
between 32- or 64-bit User mode addressing as follows:

< when UX =0, 32-bit useg space is selected.
< when UX =1, 64-bit xuseg space is selected.
Table 4.1 lists the characteristics of the two user mode segments, useg
and xuseg.

Table 4.1 32-bit and 64-bit User Mode Segments

) Status Register
Address Bit Bit Values Segment Address Range Segment Size
Values Name
KSU|EXL|ERL| UX
_hi 0x0000 0000
32 bf 10, | O 0 0 | useg through 231G byte
A(BD) =0 OX7FFF FFFF (2 bytes)
_hi 0x0000 0000 0000 0000
A 6634 4%“_ 0 10, | O 0 1 | Xxuseg through 2%1(]— tl:))yte
(63:40) = 0x0000 00FF FFFF FFFF | (27 bytes)

32-bit User Mode (useg) . .
In User mode, when UX = 0 in the Status register, User mode

addressing is compatible with the 32-bit addressing model shown in
Figure 4.4, and a 2-Gbyte user address space is available, labelled useg.

All valid User mode virtual addresses have their most-significant bit
cleared to 0; any attempt to reference an address with the most-signifi-
cant bit set while in User mode causes an Address Error exception.

The system maps all references to useg through the TLB, and bit
settings within the TLB entry for the page determine the cacheability of a
reference.

Memory Management Unit Chapter 4

64-bit User Mode (xuseg)))
In User mode, when UX =1 in the Status register, User mode addressing

is extended to 64-bits. In 64-bit User mode, the processor provides a
single, uniform address space of 240 bytes, labelled xuseg.

All valid User mode virtual addresses have bits 63:40 equal to O; an
attempt to reference an address with bits 63:40 not equal to O causes an
Address Error exception.

Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a
true kernel runs in Kernel mode, and the rest of the operating system
runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register
contains the following bit-values:

- KSU=01,
- EXL=0
- ERL=0

In conjunction with these bits, the SX bit in the Status register selects
between 32- or 64-bit Supervisor mode addressing:

= when SX =0, 32-bit supervisor space is selected and
TLB misses are handled by the 32-bit TLB refill
exception handler

< when SX = 1, 64-bit supervisor space is selected and
TLB misses are handled by the 64-bit XTLB refill
exception handler. Figure 4.5 shows Supervisor mode
address mapping. Table 4.2 lists the characteristics of
the supervisor mode segments; descriptions of the
address spaces follow.

32-bit* 64-bit
O P R Address I Ox FH- A A A Address
0Ox EDOD 0000 Oe5rr(osrB O FFFE FFFE EDO0 000 error
. 0.5GB
Ox @00 0000 Mapped I sseg Mapped csseg
Address Ox HHH A @00 0000
Ox 000 0000 error 'A\(EelcrlrrgrS S
Address Ox 4000 0100 0000 0000 _—
Ox 8000 0000 error I Mapped xsseg
Ox 4000 0000 0000 0000
Address
error
2 GB suseg O 000D O10D 000D 00
Mapped 1TB
Mapped XSU.S‘eg
Ox 0000 0000 Ox 0000 0000 0000 0000

Figure 4.5 Supervisor Mode Address Space

Memory Management Unit Chapter 4

Table 4.2 32-bit and 64-bit Supervisor Mode Segments

) Status Register
Address Bit Bit VValues Segment Address Range Seg_ment
Values Name Size
KSU|EXL |ERL|SX
. 0x0000 0000
32-bit 0L,| 0 | 0 |0 |suseg through 2 Gbytes
ABD =0 OX7FFF FFFF (27" bytes)
. 0xC000 0000
32-bit 512 Mbytes
01 0 0 | O | ssse through
A(3L:29) = 110, | ° 2 g OXDEEE gFFFF (2% bytes)
. 0x0000 0000 0000 0000
A(ngg_zt))'i 00, | 02| O | O | 1 |xsuseg through (2%1(]— E;I'::s)
' 2 0x0000 00FF FFFF FFFF
. 0x4000 0000 0000 0000
A(ee?-g-zgli or, | 012] 0 | 0 |1 xsseg through (2140T Eyttss)
00) =55 0x4000 00FF FFFF FFFF y
S4.bit OXFFFF FFFF C000 0000 | gpp 1 ioc
A(63:62) = 11 01, | O 0 | 1 |csseg through (229 bytes)
' 2 OXFFFF FFFF DFFF FFFF

32-bit Supervisor Mode, User Space (suseg))
In Supervisor mode, when SX = 0 in the Status register and the most-

significant bit of the 32-bit virtual address is set to O, the suseg virtual
address space is selected; it covers the full 231 bytes (2 Gbytes) of the
current user address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs
through Ox7FFF FFFF.

32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when SX = 0 in the Status register and the three
most-significant bits of the 32-bit virtual address are 110,, the sseg
virtual address space is selected; it covers 22°-bytes (512 Mbytes) of the
current supervisor address space. The virtual address is extended with
the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address OxC0O00 0000 and runs
through OxDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)))

In Supervisor mode, when SX = 1 in the Status register and bits 63:62
of the virtual address are set to 00,, the xsuseg virtual address space is
selected; it covers the full 240 bytes (1 Tbyte) of the current user address
space. The virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000
and runs through 0x0000 OOFF FFFF FFFF.

64-bit Supervisor Mode, Current Sugervisor Space (xss%gz)_

In Supervisor mode, when SX = 1 in the Status register and bits 63:62
of the virtual address are set to 01,, the xsseg current supervisor virtual
address space is selected. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000
and runs through 0x4000 OOFF FFFF FFFF.

Memory Management Unit Chapter 4

64-bit Supervisor Mode, Separate Supervisor Space (csse%)_
In Supervisor mode, when SX = 1 in the Status register and bits 63:62

of the virtual address are set to 11,, the csseg separate supervisor virtual
address space is selected. Addressing of the csseg is compatible with
addressing sseg in 32-bit mode. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address OxFFFF FFFF CO00 0000
and runs through OxFFFF FFFF DFFF FFFF.

Kernel Mode Operations

The processor operates in Kernel mode when the Status register

contains one of the following values:

- KSU =00,
- EXL=1
- ERL=1

In conjunction with these bits, the KX bit in the Status register selects
between 32- or 64-bit Kernel mode addressing:

= when KX = 0, 32-bit kernel space is selected.
< when KX =1, 64-bit kernel space is selected.

The processor enters Kernel mode whenever an exception is detected
and it remains in Kernel mode until an Exception Return (ERET) instruc-
tion is executed. The ERET instruction restores the processor to the
mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated
by the high-order bits of the virtual address, as shown in Figure 4.6.
Table 4.3 lists the characteristics of the 32-bit kernel mode segments,
and Table 4.4 lists the characteristics of the 64-bit kernel mode
segments.

Memory Management Unit Chapter 4

32-bit* 64-bit
Ox FEE Ox FFFF FFFF FRFF FRFF 05GB
M d ckseg3
05GB Ox FFFF FFRF EDOO 0000 appe
Mapped [*969% 0.5GB
Ox EDOO 0000 cksseg
Ox FFFF FFFF Q000 000 | Mapped
0.5GB 05 GB
Mapped ksseg Unmapped cksegl
Ox (D00 0000 Ox FFFF FFFF 2000 o000 Uncached
0.5GB
0-5GB Unmapped ckseg0
Unmapped | kseg1 Ox FFFF FFFF 8000 0000| Cached
Ox A000 0opp| __ Yncached Address
0.5GB Ox D00 OOFF 8000 0000 error
Unmapped kseg0 Mapped xkseg
Ox 8000 0000 Cached Ox (D00 0000 0000 0000
Unmapped xkphys
Ox 8000 0000 0000 0000
Address
Ox 4000 0100 0000 0000 error
2GB 178 xksseg
kuseg Mapped
Mapped Ox 4000 0000 0000 0000
Address
Ox 0000 0100 0000 0000 error
1TB
Mapped xkuseg
Ox 0000 0000 Ox 0000 0000 0000 0000
Figure 4.6 Kernel Mode Address Space
Table 4.3 32-bit Kernel Mode Segments
Status Register
Address Bit Is One Of These | Segment Segment
Values Values Name Address Range Size
KSU|EXL|ERL| KX
0x0000 0000
A@BLH=0 0 | kuseg through 53???5
OX7FFF FFFF (2° bytes)
0x8000 0000
A(31:29) = 100, 0 | kseg0 through 5;39'\/tl)b)t/tes
KSU =00, O0X9FFF FFFF (2 bytes)
or 0xA000 0000
A(31:29)=101, | EXL=1 | O |ksegl through Sgglvtl)b)t/tes
or OXBFFF FFFF (27 bytes)
ERL =1 0xC000 0000
A(31:29) = 110, 0 | ksseg through 5;§9Ntl)bytes
OXDFFF FFFF (2 bytes)
0xEO000 0000
A(3129) = 1112 0 kseg3 through 5;§9Nt|)b)t/tes
OXFFFF FFFF (27 bytes)

Memory Management Unit Chapter 4

32-bit Kernel Mode, User Space (kuseg))
In Kernel mode, when KX = 0 in the Status register, and the most-

significant bit of the virtual address, A31, is cleared, the 32-bit kuseg
virtual address space is selected; it covers the full 231 bytes (2 Gbytes) of
the current user address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space O (ksegO)

In Kernel mode, when KX = 0 in the Status register and the most-signif-
icant three bits of the virtual address are 100,, 32-bit ksegO virtual
address space is selected; it is the 229—byte (512-Mbyte) kernel physical
space. References to ksegO are not mapped through the TLB; the physical
address selected is defined by subtracting 0x8000 0000 from the virtual
address. The KO field of the Config register, described in this chapter,
controls cacheability and coherency.

32-bit Kernel Mode, Kernel Space 1 (ksegl)

In Kernel mode, when KX = 0 in the Status register and the most-signif-
icant three bits of the 32-bit virtual address are 101,, 32-bit kseg1l virtual
address space is selected; it is the 229—byte (512-Mbyte) kernel physical
space.

References to ksegl are not mapped through the TLB; the physical
address selected is defined by subtracting OXA000 0000 from the virtual
address.

Caches are disabled for accesses to these addresses, and physical
memory (or memory-mapped 1/0 device registers) are accessed directly.

32-bit Kernel Mode, Sl;Pervisor Space (ksseQ) o

In Kernel mode, when KX = 0 in the Status register and the most-signif-
icant three bits of the 32-bit virtual address are 1105, the ksseg virtual
address space is selected; it is the current 229—byte (512-Mbyte) super-
visor virtual space. The virtual address is extended with the contents of
the 8-bit ASID field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the most-signif-
icant three bits of the 32-bit virtual address are 111,, the kseg3 virtual
address space is selected; it is the current 229—byte (512-Mbyte) kernel
virtual space. The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.

Memory Management Unit

Chapter 4

Table 4.4 64-bit Kernel Mode Segments

Status Register
Address Bit Is One Of These | Segment Segment
Values Values Name Address Range Size
KSU|EXL|[ERL| KX
0x0000 0000 0000 0000
A(63:62) = 00, 1 | xksuseg through 2%“;- E yte
0x0000 00FF FFFF FFFF | (27 bytes)
0x4000 0000 0000 0000
A(63:62) = 01, 1 | xksseg through ZﬁoT Eyte
0x4000 00FF FFFF FFFF | (27 bytes)
0x8000 0000 0000 0000 3.
A(63:62) = 10, 1 | xkphys through 8 27-byte
OXBFFF FFFF FFFF FFFF | SPaces
_ 0xC000 0000 0000 0000 40_31
AGB362) =11, | KUZ002 |1 1 e through (2b 27)
EXEV_ . 0xC000 00FF 7FFF FFFF ytes
A(63:62) = 11, or 1 | cksego OXFFFF t';'?gﬁ gsrc])oo 0000 512 Mbytes
A(61:31) = -1 ERL =1 OXFFFF FFFF OFFF FFFF | (27 bytes)
A(61:31) = -1 1 | cksegl through 29 |,
(61:31) =- OXFFFF FFFF BFFF FRFF | (27 bytes)
A(61:31) = -1 1 | cksseg through 29 |,
(61:31) =- OXFFFF FFFF DFFF FRFF | (27 bytes)
A(61:31) = -1 1 | ckseg3 through 29 |,
(61:31) =- OXFFFF FFFF FFFF FRFF | (27 bytes)

64-bit Kernel Mode, User Space (xkusegQ)))
In Kernel mode, when KX = 1 in the Status register and bits 63:62 of

the 64-bit virtual address are 005, the xkuseg virtual address space is
selected; it covers the current user address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual
address.

When ERL = 1 in the Status register, the user address region becomes a
231—byte unmapped (that is, mapped directly to physical addresses)
uncached address space.

64-bit Kernel Mode, Current Supervisor Space (xkss%g{)_

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of
the 64-bit virtual address are 01,, the xksseg virtual address space is
selected; it is the current supervisor virtual space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual
address.

64-bit Kernel Mode, Physical Spaces (xkphys))

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of
the 64-bit virtual address are 10,, the xkphys virtual address space is
selected; it is a set of eight 236—byte kernel physical spaces. Accesses with
address bits 58:36 not equal to O cause an address error.

References to this space are not mapped; the physical address selected
is taken from bits 35:0 of the virtual address. Bits 61:59 of the virtual
address specify the cacheability and coherency attributes, as shown in
Table 4.5.

Memory Management Unit Chapter 4

Table 4.5 Cacheability and Coherency Attributes

Value (61:59)| Cacheability and Coherency Attributes Starting Address
0 Cachegble, noncoherent, write-through, 0x8000 0000 0000 0000
no write allocate
1 Cagheable, noncoherent, write-through, 0x8800 0000 0000 0000
write allocate
2 Uncached 0x9000 0000 0000 0000
3 Cacheable, noncoherent 0x9800 0000 0000 0000
4-7 Reserved 0xA000 0000 0000 0000

64-bit Kernel Mode, Kernel Space (xkseg)))
In Kernel mode, when KX = 1 in the Status register and bits 63:62 of

the 64-bit virtual address are 11,, the address space selected is one of the
following:

= kernel virtual space, xkseg, the current kernel virtual
space; the virtual address is extended with the contents
of the 8-bit ASID field to form a unique virtual address

= one of the four 32-bit kernel compatibility spaces, as
described in the next section.
64-bit Kernel Mode, Compatibility Spaces
In Kernel mode, when KX = 1 in the Status register, bits 63:62 of the
64-bit virtual address are 11,, and bits 61:31 of the virtual address
equal -1. The lower two bytes of address, as shown in figure 15, select
one of the following 512-Mbyte compatibility spaces.

e ckseg0. This 64-bit virtual address space is an
unmapped region, compatible with the 32-bit address
model kseg0. The KO field of the Config register controls
cacheability and coherency.

= cksegl. This 64-bit virtual address space is an
unmapped and uncached region, compatible with the
32-bit address model ksegl.

e cksseg. This 64-bit virtual address space is the current
supervisor virtual space, compatible with the 32-bit
address model ksseg.

= ckseg3. This 64-bit virtual address space is kernel
virtual space, compatible with the 32-bit address model
kseg3.

System Control Coprocessor

The System Control Coprocessor (CPO) is implemented as an integral
part of the CPU, and supports memory management, address translation,
exception handling, and other privileged operations. CPO contains the
registers shown in Figure 4.7 plus a 48-entry TLB. The sections that
follow describe how the processor uses the memory management-related
registers.

Each CPO register has a unique number that identifies it; this number
is referred to as the register number. For instance, the Page Mask register
is register number 5.

Memory Management Unit Chapter 4
Entf)iLOO In%e*x Context BadVAddr
EntryHi 2 4* 8*
10* EntryLol
3* Random Count Compare
1* o* 11*
47
Page Mask Status Cause
o 12* 13*
TLB Wired EPC Reserved
6* 14* 18*
PRId Reserved] | XContext
15* 19* 20*
(“Safe” entries)
(See Random Register, .
contents of TLB Wired) Config ECE CacheErr
o 127 0 16* 26 27*
LLAddr TaglLo TagHi ErrorEPC
17* 28* 29* 30*
) Used with exception
Used with memory processing. See
management system. Chapter 5 for details.
*Register number
Figure 4.7 CPO Registers and the TLB
Format of a TLB Entry

Figure 4.8 shows the TLB entry formats for both 32- and 64-bit modes.
Each field of an entry has a corresponding field in the EntryHi, EntryLoO,
EntryLol, or PageMask registers.

Memory Management Unit

Chapter 4
32-bit Mode
127 121 120 109 108 96
0 MASK 0 I
7 12 13
95 77 76 75 7271 64
VPN2 G O ASID
128-bit TLB
entry in 32- 19 1 4 8
bit mode of 63 62 61 38 37 35 3433 32
R4000
processor 0 PFEN C |D|V|0
2 24 3 111
3130 29 6 5 3210
0 PFN C [D|V OI
2 24 3 111
64-bit Mode
255 217 216 205 204 192
0 MASK 0 I
39 12 13
191 190189 168 167 141 140139136 135 128
256-bit TLB R 0 VPN2 G|l O ASID I
entry in 64-
bit mode of 2 22 21 1 4 8
R4000 127 94 93 70 69 67666564
processor
0 PEN C |D|V|0
34 24 3 111
63 30 29 6 5 321 0
0 PEN C |D|V|0
34 24 3 111

Figure 4.8 Format of a TLB Entry

The format of the EntryHi, EntryLoO, EntryLol, and PageMask registers
are nearly the same as the TLB entry. The one exception is the Global
field (G bit), which is used in the TLB, but is reserved in the EntryHi
register. Figure 4.9 and Figure 4.10 describe the TLB entry fields shown

in Figure 4.8.

Memory Managemen

t Unit Chapter 4

PageMask Register
31 25 24 13 12 0

0 MASK 0 |
7 12 13

Mask Page comparison mask.
0........... Reserved. Must be written as zeroes, and returns zeroes when read.

32-bit
Mode

64-bit
Mode

EntryHi Register

31 13 12 8 7 0
| VPN2 0 ASID I
I 5 5
63 62 61 40 39 13 12 8 7 0
R FILL VPN2 0 ASID |
2 22 27 5 8

VPNZ ... Virtual page number divided by two (maps to two pages).
ASID Address space ID field. An 8-bit field that lets multiple processes share the TLB;

each process has a distinct mapping of otherwise identical virtual page numbers.

R Region. (00 — user, 01 — supervisor, 11 — kernel) used to match vAddrgs ¢»
Fill........ Reserved. 0 on read; ignored on write.
0....... Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 4.9 Fields of the PageMask and EntryHi Registers

31 30 29 EntryLoO and EntryLol Registers 6 5 3210
32-bit
Mode 0 PFN C |D|V|G I
2 24 3 111
31 30 29 6 5 321 0
32-bit
Mode 0 PEN C |D|V|G I
2 24 3 111
63 30 29 6 5 3210
64-bit
Mode 0 PFN C |D| V|G I
34 24 3 111
63 30 29 6 5 3210
64-bit
Mode 0 PEN C |D|V|G I
34 24 3 111
PFN...... Page frame number; the upper bits of the physical address.
Covere Specifies the TLB page coherency attribute; see Table 4.6.
D........... Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is
actually a write-protect bit that software can use to prevent alteration of data.
| V2 Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS
miss occurs.
(I Global. If this bit is set in both LoO and Lo1, then the processor ignores the ASID during
TLB lookup.
0.oee. Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 4.10 Fields of the EntryLo0 and EntryLol Registers

Memory Management Unit Chapter 4

The TLB page coherency attribute (C) bits specify whether references to
the page should be cached; if cached, the algorithm selects between
several coherency attributes. Table 4.6 shows the coherency attributes
selected by the C bits.

Table 4.6 TLB Page Coherency (C) Bit Values

C(5:3) Value | Page Coherency Attribute

Cacheable, noncoherent, write-through, no write allocate

Cacheable, noncoherent, write-through, write allocate

Uncached

W(N|F|O

Cacheable, noncoherent, write-back
4-7 Reserved

CPO Registers
The following sections describe the CPO registers that are assigned

specifically as a software interface with memory management (each
register is followed by its register number in parentheses).

= Index register (CPO register number 0)
< Random register (1)

= EntryLoO (2) and EntryLol (3) registers
= PageMask register (5)

< Wired register (6)

= EntryHi register (10)

< PRId register (15)

= Config register (16)

= LLAddr register (17)

= TaglLo (28) and TagHi (29) registers

Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to
index an entry in the TLB. The high-order bit of the register shows the
success or failure of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read
(TLBR) or TLB Write Index (TLBWI) instructions.

Figure 4.11 shows the format of the Index register; Table 4.7 describes
the Index register fields.

Index Register

31 30 6 5 0
p 0 Index I
1 25 6

Figure 4.11 Index Register

Memory Management Unit Chapter 4

Table 4.7 Index Register Field Descriptions

Field Description
p Probe failure. Set to 1 when the previous TLBProbe
(TLBP) instruction was unsuccessful.
Index Index to the TLB entry affected by the TLBRead and
TLBWrite instructions
0 Reserved. Must be written as zeroes, and returns zeroes
when read.

Random Register (1) .] o
The Random register is a read-only register of which six bits index an

entry in the TLB. This register decrements as each instruction executes,
and its values range between an upper and a lower bound, as follows:

= Alower bound is set by the number of TLB entries
reserved for exclusive use by the operating system (the
contents of the Wired register).

< An upper bound is set by the total number of TLB
entries (47 maximum).

The Random register specifies the entry in the TLB that is affected by
the TLB Write Random instruction. The register does not need to be read
for this purpose; however, the register is readable to verify proper opera-
tion of the processor.

To simplify testing, the Random register is set to the value of the upper
bound upon system reset. This register is also set to the upper bound
when the Wired register is written.

Figure 4.12 shows the format of the Random register. Table 4.8
describes the Random register fields.

Random Register
31 6 5 0

0 Random I

26 6

Figure 4.12 Random Register

Table 4.8 Random Register Field Descriptions

Field Description

Random TLB Random index

Reserved. Must be written as zeroes, and returns zeroes
when read.

0

EntryLoO (2), and EntryLol (3) Registers_))
The EntryLo register consists of two registers that have identical

formats:
< EntryLoO is used for even virtual pages.
= EntryLol is used for odd virtual pages.

Memory Management Unit Chapter 4

The EntryLoO and EntryLol registers are read/write registers. They
hold the physical page frame number (PFN) of the TLB entry for even and
odd pages, respectively, when performing TLB read and write operations.
Figure 4.10 shows the format of these registers.

PageMask Register (5)

The PageMask register is a read/write register used for reading from or
writing to the TLB; it holds a comparison mask that sets the variable page
size for each TLB entry.

TLB read and write operations use this register as either a source or a
destination; when virtual addresses are presented for translation into
physical address, the corresponding bits in the TLB identify which virtual
address bits among bits 24:13 are used in the comparison. When the
Mask field is not one of the values shown in Table 4.9, the operation of
the TLB is undefined.

Table 4.9 Mask Field Values for Page Sizes

Page Size Bit

24 | 23 | 22 | 21 |20 | 19 | 18 | 17 | 16 | 15 | 14 | 13
4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0
16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1
64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1
256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1
1 Mbyte 0 0 0 0 1 1 1 1 1 1 1 1
4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1
16 Mbytes 1 1 1 1 1 1 1 1 1 1 1 1

Wired Register (6)

The Wired register is a read/write register that specifies the boundary
between the wired and random entries of the TLB as shown in Figure
4.13. Wired entries are fixed, nonreplaceable entries, which cannot be
overwritten by a TLB write operation. Random entries can be overwritten.

!

Range of Random entries

o

TLB
47

< Wir(-?d
Register

Range of Wired entries

Figure 4.13 Wired Register Boundary

The Wired register is set to O upon system reset. Writing this register
also sets the Random register to the value of its upper bound (see Random
register, above). Figure 4.14 shows the format of the Wired register;
Table 4.10 describes the register fields.

Memory Management Unit

Chapter 4

Wired Register
31 65 0

0 Wired I
26 6

Figure 4.14 Wired Register

Table 4.10 Wired Register Field Descriptions

Field Description
Wired TLB Wired boundary

Reserved. Must be written as zeroes, and returns
zeroes when read.

EntryHi Register (CPO Register 10) .
The EntryHi register holds the high-order bits of a TLB entry for TLB

read and write operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random,
TLB Write Indexed, and TLB Read Indexed instructions.

When either a TLB refill, TLB invalid, or TLB modified exception occurs,
the EntryHi register is loaded with the virtual page number (VPN2) and
the ASID of the virtual address that did not have a matching TLB entry.

Processor Revision Identifier (PRId) Register (1_5f)]

The 32-bit, read-only Processor Revision ldentifier (PRId) register
contains information identifying the implementation and revision level of
the CPU and CPO. Figure 4.15 shows the format of the PRId register;
Table 4.11 describes the PRId register fields.

PRId Register

31 16 15 87 0
0 Imp Rev

16 8 8

Figure 4.15 Processor Revision Identifier Register Format

Table 4.11 PRId Register Fields

Field Description
Im Implementation number
P Imp=0x23
Rev Revision number
0 Reserved. Must be written as zeroes, and returns zeroes
when read.

The low-order byte (bits 7:0) of the PRId register is interpreted as a revi-
sion number, and the high-order byte (bits 15:8) is interpreted as an
implementation number. The implementation number of the R5000
processor is 0x23. The content of the high-order halfword (bits 31:16) of
the register are reserved.

Memory Management

Unit

Chapter 4

31

30

The revision number is stored as a value in the form y.x, where y is a
major revision number in bits 7:4 and x is a minor revision number in
bits 3:0.

The revision number can distinguish some chip revisions, however
there is no guarantee that changes to the chip will necessarily be reflected
in the PRI register, or that changes to the revision number necessarily
reflect real chip changes. For this reason, these values are not listed and
software should not rely on the revision number in the PRId register to
characterize the chip.

Config Register (16)

The Config register specifies various configuration options which can be
selected.

Some configuration options, as defined by Config bits 31:6, are set by
the hardware during reset and are included in the Config register as read-
only status bits for the software to access. Other configuration options
are read/write (as indicated by Config register bits 5:0) and controlled by
software; on reset these fields are undefined.

Certain configurations have restrictions. The Config register should be
initialized by software before caches are used. Caches should be written
back to memory before line sizes are changed, and caches should be rein-
itialized after any change is made.

Figure 4.16 shows the format of the Config register; Table 4.12
describes the Config register fields.

Config Register

28 27 24 2322 212019 18 17 16 1514 13 1211 9 8 6 5 4 3 2 0

EC

3

EP 0 SS 0 0|0 |BE|1|1]|SE| IC DC |IB|DB| 0 KO

4 2 11 2 111111 3 3 111 3

Figure 4.16 Config Register Format

Table 4.12 Config Register Fields

Field Description

EC

System clock ratio:

0 — processor clock frequency divided by 2
1 - processor clock frequency divided by 3
2 — processor clock frequency divided by 4
3 — processor clock frequency divided by 5
4 _ processor clock frequency divided by 6
5 — processor clock frequency divided by 7
6 — processor clock frequency divided by 8
7 — Reserved

Memory Management Unit Chapter 4
Field Description
Transmit data pattern (pattern for write-back data):
0-D Doubleword every cycle
1 . DDxDDx 2 Doublewords every 3 cycles
2 - DDxxDDxx 2 Doublewords every 4 cycles
Ep 3 - DxDxDxDx 2 Doublewords every 4 cycles
4 - DDxxxDDxxx 2 Doublewords every 5 cycles
5 - DDxxxxDDxxxx 2 Doublewords every 6 cycles
6 — DxxDxxDxxDxx 2 Doublewords every 6 cycles
7 — DDxxxxxxDDxxxxxx 2 Doublewords every 8 cycles
8 - DxxxDxxxDxxxDxxx 2 Doublewords every 8 cycles
Secondary Cache Size
00 - 512 KByte
SS 01 - 1 MByte
10 -~ 2 MByte
11 - None
Big Endian Mode:
BE 0 — Little Endian
1 - Big Endian
Secondary Cache Enable
SE 0 - Disabled
1 - Enabled
Primary I-cache Size (I-cache size = 212*!C pytes). In the R5000 processor,
IC this is set to 32 Kbytes.
Primary D-cache Size (D-cache size = 212*DC pytes). In the R5000 processor,
DC this is set to 32 Kbytes.
Primary I-cache line size. In the R5000 processor, this is set to 32 bytes.
IB 0 - 16 bytes
1 - 32 bytes
Primary D-cache line size. In the R5000 processor, this is set to 32 bytes.
DB 0 - 16 bytes
1 - 32 bytes
KO kseg0 coherency algorithm (see EntryLo0 and EntryLol registers and the C
field of Table 4.6)

Load Linked Address (LLAddr) Register (17)] .
The read/write Load Linked Address (LLAddr) register contains the

physical address read by the most recent Load Linked instruction.

This register is for diagnostic purposes only, and serves no function
during normal operation.

Figure 4.17 shows the format of the LLAddr register; PAddr represents
bits of the physical address, PA(35:4).

LLAddr Register

31 0
PAddr(35:4) I
32

Figure 4.17 LLAddr Register Format

Memory Management Unit Chapter 4

Cache Tag Regrister_s [TagLo (28) and TagHi (29)])
The TagLo and TagHi registers are 32-bit read/write registers that hold

either the primary cache tag and parity, or the secondary cache tag and
ECC during cache initialization, cache diagnostics, or cache error
processing. The Tag registers are written by the CACHE and MTCO
instructions.

The P and ECC fields of these registers are ignored on Index Store Tag
operations. Parity and ECC are computed by the store operation.

Figure 4.18 shows the format of these registers for primary cache oper-
ations. Figure 4.19 shows the format of these registers for secondary
cache operations.

Table 4.13 lists the field definitions of the TagLo and TagHi registers.

31 8 7 6 5 3 2 1 0
TagLo PTagLo PState | RWNT | F| 0| P
24 2 3 1 1 1
31 0
TagHi 0
32
Figure 4.18 TaglLo and TagHi Register (P-cache) Formats
31 1514 13 12 11 10 9 76 0
TagLo STaglLo 0 [SV| 0 0 0
17 2 1 2 3 7
31 0
TagHi 0 I

32
Figure 4.19 TagLo and TagHi Register (S-cache) Formats

Table 4.13 Cache Tag Register Fields

Field Description
PTagLo Specifies the physical address bits 35:12
PState Specifies the primary cache state
P Specifies the primary tag even parity bit
STagLo Specifies the physical address bits 35:19
SV Specifies the Valid bit for secondary cache
0 Reserved. Must be written as zeroes, and returns zeroes when read.

Memory Management Unit Chapter 4

Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the
8-bit ASID (if the Global bit, G, is not set) of the virtual address to the
ASID of the TLB entry to see if there is a match. One of the following
comparisons are also made:

= In 32-bit mode, the highest 7-to-19 bits (depending
upon the page size) of the virtual address are
compared to the contents of the TLB virtual page
number.

= In 64-bit mode, the highest 15-to-27 bits (depending
upon the page size) of the virtual address are
compared to the contents of the TLB virtual page
number.

If a TLB entry matches, the physical address and access control bits (C,
D, and V) are retrieved from the matching TLB entry. While the V bit of
the entry must be set for a valid translation to take place, it is not
involved in the determination of a matching TLB entry.

Memory Management Unit Chapter 4

Figure 4.20 illustrates the TLB address translation process.

Virtual Address (Input)

For valid VPN
address space, see and
the section describing \ ASID /.

Operating Modes
in this chapter.

Address
. Error :

Address
. Error .

Exception Exception
Yes Yes
~~ Valid
Address?
¢Yes
\
No =
G No _ ~ ASID \ No o
1?2 - Match? =
J Y
Yes
32-b|t No
address?,
Yes

Yes

Y Y \

Y
on-
TLB acheable / TLB } - TLB) XTLB
Mod Invalid Refill Refill

Exception Exception
\
Access
Main / Access \
Memory Cache
Physical Address (Output)
Figure 4.20 TLB Address Translation

TLB Misses

If there is no TLB entry that matches the virtual address, a TLB miss
exception occurs. If the access control bits (D and V) indicate that the
access is not valid, a TLB modification or TLB invalid exception occurs. If
the C bits equal 010,, the physical address that is retrieved accesses
main memory, bypassing the cache.

Memory Management Unit

Chapter 4

TLB Instructions
Table 4.14 lists the instructions that the CPU provides for working with
the TLB.

Table 4.14 TLB Instructions

Op Code Description of Instruction
TLBP Translation Lookaside Buffer Probe
TLBR Translation Lookaside Buffer Read
TLBWI Translation Lookaside Buffer Write Index
TLBWR Translation Lookaside Buffer Write Random

Secondary Cache Operations

The CACHE instruction defines two operations for the secondary cache:
index load tag and index store tag. The following orientation of the index
bits determine the type of operation:

Index Bits [17:16] equal to 11b (3h) specifies the secondary cache.

Index bits [20:18] equal to 001b (1h) specifies the index load tag. The
index load tag reads the secondary cache for the specified index and
places it into the TagLo CPO register.

Index bits [20:18] equal to 010b (2h) specify the index store tag. The
index store tag writes the secondary cache for the specified index from the
physical address generated by the CACHE instruction.

Index bits [20:18] equal to 000b (Oh) generates a valid clear sequence to
flush the entire cache in one operation.

Index bits [20:18] equal to 101b (5h) generates a cache page invalidate
instruction to flush 128 lines of the cache in one operation with the tag
value from the TagLo CPO register. The index for the cache page invalidate
must be page aligned.

Interrupts are deferred until a cache page invalidate instruction
completes (up to 512 processor clocks for a SysClock ratio of 4).

TagLo[12] is the valid bit and TagLo[31:15] is the tag for all secondary
cache operations.

Secondary Cache Software Enable

The secondary cache may be enabled or disabled by software control
via CPO config register bit 12 (SE). When the SE bit is set (1) the
secondary cache is enabled. When the SE bit is cleared (0) the secondary
cache is disabled. The SE bit is cleared at reset. When the secondary
cache is enabled by setting the SE bit, the state of the cache is undefined
and software must explicitly invalidate the entire secondary cache before
using it.

Integrated Device Technology, Inc.

CPU Exception Processing Chapter 5

Introduction

This section describes the CPU exception processing, including an
explanation of exception processing, followed by the format and use of
each CPU exception register.

Overview of Exception Processing

The processor receives exceptions from a number of sources, including
translation lookaside buffer (TLB) misses, arithmetic overflows, 170 inter-
rupts, and system calls. When the CPU detects one of these exceptions,
the normal sequence of instruction execution is suspended and the
processor enters Kernel mode.

The processor then disables interrupts and forces execution of a soft-
ware exception processor (called a handler) located at a fixed address.
The handler saves the context of the processor, including the contents of
the program counter, the current operating mode (User or Supervisor),
and the status of the interrupts (enabled or disabled). This context is
saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program
Counter (EPC) register with a location where execution can restart after
the exception has been serviced. The restart location in the EPC register
is the address of the instruction that caused the exception or, if the
instruction was executing in a branch delay slot, the address of the
branch instruction immediately preceding the delay slot.

The registers described later in the section assist in this exception
processing by retaining address, cause and status information.

Exception Processing Registers

This section describes the CPO registers that are used in exception
processing. Table 5.1 lists these registers, along with their number—each
register has a unique identification number that is referred to as its
register number. For instance, the ECC register is register number 26.
The remaining CPO registers are used in memory management.

Software examines the CPO registers during exception processing to
determine the cause of the exception and the state of the CPU at the time
the exception occurred. The registers in Table 5.1 are used in exception
processing, and are described in the sections that follow.

Table 5.1 CPO Exception Processing Registers

Register Name Reg. No.
Context
BadVAddr (Bad Virtual Address)
Count
Compare register 11
Status 12
Cause 13
EPC (Exception Program Counter) 14
WatchLo (Memory Reference Trap Address Low) 18

CPU Exception Processing

Chapter 5

Register Name Reg. No.
WatchHi (Memory Reference Trap Address High) 19
XContext 20
ECC 26
CacheErr (Cache Error and Status) 27
ErrorEPC (Error Exception Program Counter) 30

CPU general registers are interlocked and the result of an instruction
can normally be used by the next instruction; if the result is not available
right away, the processor stalls until it is available. CPO registers and the
TLB are not interlocked, however; there may be some delay before a value
written by one instruction is available to following instructions.

Context Register (4)

The Context register is a read/write register containing the pointer to
an entry in the page table entry (PTE) array; this array is an operating
system data structure that stores virtual-to-physical address transla-
tions. When there is a TLB miss, the CPU loads the TLB with the missing
translation from the PTE array. Normally, the operating system uses the
Context register to address the current page map which resides in the
kernel-mapped segment, kseg3. The Context register duplicates some of
the information provided in the BadVAddr register, but the information is
arranged in a form that is more useful for a software TLB exception
handler. Figure 5.1 shows the format of the Context register; Table 5.2
describes the Context register fields.

Context Register

31 23 22 4 3 0
32-bit PTEBase BadVPN2 0
Mode
9 19 4
63 23 22 4 3 0
64-bit PTEBase BadVPN2 0
Mode
41 19 4
Figure 5.1 Context Register Format
Table 5.2 Context Register Fields
Field Description

This field is written by hardware on a miss. It contains
BadVPN2 the virtual page number (VPN) of the most recent
virtual address that did not have a valid translation.

This field is a read/write field for use by the operating
system. It is normally written with a value that allows
the operating system to use the Context register as a
pointer into the current PTE array in memory.

PTEBase

CPU Exception Processing Chapter 5

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address
that caused the TLB miss; bit 12 is excluded because a single TLB entry
maps to an even-odd page pair. For a 4-Kbyte page size, this format can
directly address the pair-table of 8-byte PTEs. For other page and PTE
sizes, shifting and masking this value produces the appropriate address.

Bad Virtual Address Register (BadVAddr) (8)

The Bad Virtual Address register (BadVAddr) is a read-only register
that displays the most recent virtual address that caused one of the
following exceptions: TLB Invalid, TLB Modified, TLB Refill, Virtual Coher-
ency Data Access, or Virtual Coherency Instruction Fetch.

Figure 5.2 shows the format of the BadVAddr register.

BadVAddr Register

31 0
32-bit Bad Virtual Address I
Mode
63 32 0
64-bit Bad Virtual Address
Mode
64

Figure 5.2 BadVAddr Register Format

Note: The BadVAddr register does not save any information for bus
errors, since bus errors are not addressing errors.

Count Register (9)

The Count register acts as a timer, incrementing at a constant rate—
half the maximum instruction issue rate—whether or not an instruction
is executed, retired, or any forward progress is made through the pipeline.

This register can be read or written. It can be written for diagnostic
purposes or system initialization; for example, to synchronize processors.

Figure 5.3 shows the format of the Count register.

Count Register

31 0
Count I
32

Figure 5.3 Count Register Format

Compare Register (11)

The Compare register acts as a timer (see also the Count register); it
maintains a stable value that does not change on its own.

When the value of the Count register equals the value of the Compare
register, interrupt bit IP(7) in the Cause register is set. This causes an
interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer

interrupt.
For diagnostic purposes, the Compare register is a read/write
register. In normal use however, the Compare register is write-only.

Figure 5.4 shows the format of the Compare register.

CPU Exception Processing Chapter 5

Compare Register
31 0

Compare I

32
Figure 5.4 Compare Register Format

Status Register (12)

The Status register (SR) is a read/write register that contains the oper-
ating mode, interrupt enabling, and the diagnostic states of the processor.
The following list describes the more important Status register fields;
Figures 34 and 35 show the format of the entire register, including
descriptions of the fields. Some of the important fields include:

e The 8-bit Interrupt Mask (IM) field controls the enabling
of eight interrupt conditions. Interrupts must be
enabled before they can be asserted, and the
corresponding bits are set in both the Interrupt Mask
field of the Status register and the Interrupt Pending
field of the Cause register. IM[1:0] are soft3ware
interrupt masks, while IM[7:2] correspond to Int[5:0].

= The 4-bit Coprocessor Usability (CU) field controls the
usability of 4 possible coprocessors. Regardless of the
CUO bit setting, CPO is always usable in Kernel mode.
For all other cases, an access to an unusable
Coprocessor causes an exception.

= The 9-bit Diagnostic Status (DS) field is used for self-
testing, and checks the cache and virtual memory
system.

= The Reverse-Endian (RE) bit, bit 25, reverses the
endianness of the machine. The processor can be
configured as either little-endian or big-endian at
system reset; reverse-endian selection is used in Kernel
and Supervisor modes, and in the User mode when the
RE bit is 0. Setting the RE bit to 1 inverts the User
mode endianness.

Status Register Format

Figure 5.5 shows the format of the Status register. Table 5.3 describes
the Status register fields. Figure 5.6 and Table 5.4 provide additional
information on the Diagnostic Status (DS) field. All bits in the DS field
except TS are readable and writable.

Status Register

31 28 2726 25 24 16 15 87 6 543 2 1 0

Cu i : I
(Cu3:.Cu0) 0 |FR|RE DS IM7 - IMO KX|SX] UX|KSU |ERL EXL| IE
4 11 1 9 8 1 11 2 1 1 1

Figure 5.5 Status Register

CPU Exception Processing Chapter 5

Table 5.3 Status Register Fields

Field Description

Controls the usability of each of the four coprocessor unit
numbers. CPO0 is always usable when in Kernel mode,
regardless of the setting of the CU bit. Setting CU; enables

cu the MIPS IV instruction set,

1 - usable

0 - unusable
0 Reserved. Set to 0.

Enables additional floating-point registers
FR 0 - 16 registers

1 - 32registers

RE Reverse-Endian bit, valid in User mode.

DS Diagnostic Status field (see Figure 5.6).

Interrupt Mask: controls the enabling of each of the external,
internal, and software interrupts. An interrupt is taken if
interrupts are enabled, and the corresponding bits are set in
IM both the Interrupt Mask field of the Status register and the
Interrupt Pending field of the Cause register.

0 - disabled

1- enabled

Enables 64-bit addressing in Kernel mode. The extended-
addressing TLB refill exception is used for TLB misses on
KX kernel addresses.

0 - 32-hbit

1 - 64-bit

Enables 64-bit addressing and operations in Supervisor
mode. The extended-addressing TLB refill exception is used
SX for TLB misses on supervisor addresses.

0 - 32-bit

Enables 64-bit addressing and operations in User mode. The
extended-addressing TLB refill exception is used for TLB
UX misses on user addresses.

0 - 32-hit

1 - 64-bit
Mode bits

10, — User

01, — Supervisor

00, — Kernel

KSU

Error Level; set by the processor when Reset, Soft Reset,
NMI, or Cache Error exception are taken.

0 - normal

1 - error

ERL

Exception Level; set by the processor when any exception
other than Reset, Soft Reset, NMI, or Cache Error exception
EXL are taken.

0 - normal

1 - exception

Interrupt Enable
IE 0 - disable interrupts
1 - enables interrupts

5-5

CPU Exception Processing

Chapter 5

Diagnostic Status Field

24 23 22 21 20 19 18 17 16
0 BEV TS SR 0 CH CE DE
2 1 1 1 1 1 1 1

Figure 5.6 Status Register DS Field

Table 5.4 Status Register Diagnostic Status Bits

Bit Description
Controls the location of TLB refill and general exception
BEV vectors.
0 - normal
1- bootstrap
0 Reserved. Must be written as zeroes. Returns zeroes when

read.

SR 1 - Indicates that a soft reset or NMI has occurred.

Hit (tag match and valid state) or miss indication for last
CACHE Hit Invalidate, Hit Write Back Invalidate, Hit Write
Back, Hit Set Virtual, or Create Dirty Exclusive for a
secondary cache.

0 — miss

1 - hit

Contents of the ECC register set or modify the check bits of
the caches when CE = 1; see description of the ECC register.

CH

CE

Specifies that cache parity or ECC errors cannot cause
exceptions.

0 - parity/ECC remain enabled

1 - disables parity/ECC

Reserved. Must be written as zeroes, and returns zeroes
when read.

DE

Status Register Modes and Access States

Fields of the Status register set the modes and access states described
in the sections that follow.

Interrupt Enable: Interrupts are enabled when all of the following
conditions are true:

- IE=1
e EXL=0
e ERL=0
If these conditions are met, the settings of the IM bits enable the inter-

rupt.
Operating Modes: The following CPU Status register bit settings are
required for User, Kernel, and Supervisor modes.

= The processor is in User mode when KSU = 10,, EXL =
0, and ERL = 0.

= The processor is in Supervisor mode when KSU = 01,,
EXL =0, and ERL = 0.

CPU Exception Processing Chapter 5

= The processor is in Kernel mode when KSU = 00,, or
EXL=1,or ERL=1

32- and 64-bit Modes: The following CPU Status register bit settings
select 32- or 64-bit operation for User, Kernel, and Supervisor operating
modes. Enabling 64-bit operation permits the execution of 64-bit
opcodes and translation of 64-bit addresses. 64-bit operation for User,
Kernel and Supervisor modes can be set independently.

e 64-bit addressing for Kernel mode is enabled when KX
=1 64-bit operations are always valid in Kernel
mode.

= 64-bit addressing and operations are enabled for
Supervisor mode when SX = 1.

= 64-bit addressing and operations are enabled for User
mode when UX = 1.

Kernel Address Space Accesses: Access to the kernel address space is
allowed when the processor is in Kernel mode.

Supervisor Address Space Accesses: Access to the supervisor address
space is allowed when the processor is in Kernel or Supervisor mode, as
described above in the section above titled, Operating Modes.

User Address Space Accesses: Access to the user address space is
allowed in any of the three operating modes.

Status Register Reset

The contents of the Status register are undefined at reset, except for the
following bits in the Diagnostic Status field:

e ERLandBEV =1

The SR bit distinguishes between the Reset exception and the Soft
Reset exception (caused either by Reset* or Nonmaskable Interrupt
[NMI]).

Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most
recent exception.

Figure 5.7 shows the fields of this register. Table 5.5 describes the
Cause register fields.

All bits in the Cause register, with the exception of the IP(1:0) bits, are
read-only; IP(1:0) are used for software interrupts.

Table 5.5 Cause Register Fields

Field Description
Indicates whether the last exception taken occurred in a branch delay slot.
BD 1 - delay slot
0 - normal

Coprocessor unit number referenced when a Coprocessor Unusable

CE exception is taken.

Indicates an interrupt is pending.
IP 1 - interrupt pending
0 - nointerrupt

ExcCode Exception code field (see Table 5.6)

0 Reserved. Must be written as zeroes, and returns zeroes when read.

CPU Exception Processing

Chapter 5

31 30 29 28 27

Cause Register

16 15 8 76 21 0

BD| 0| CE OE IP7 IPO |0 chXé:e 0

1 1 2 12 8 1 5 2
Figure 5.7 Cause Register Format
Table 5.6 Cause Register ExcCode Field
Exception . -
Code Value Mnemonic Description

0 Int Interrupt
1 Mod TLB modification exception
2 TLBL TLB exception (load or instruction fetch)
3 TLBS TLB exception (store)
4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data reference: load or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception
13 Tr Trap exception
14 Reserved
15 FPE Floating-Point exception

16-31 — Reserved

Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that
contains the address at which processing resumes after an exception has
been serviced.

For synchronous exceptions, the EPC register contains either:

« the virtual address of the instruction that was the direct
cause of the exception, or

= the virtual address of the immediately preceding
branch or jump instruction (when the instruction is in a
branch delay slot, and the Branch Delay bit in the Cause
register is set).

The processor does not write to the EPC register when the EXL bit in
the Status register is set to a 1.
Figure 5.8 shows the format of the EPC register.

CPU Exception Processing

Chapter 5

EPC Register

31 0
32-bit
Mode EPC
32
63 0
Mode
64

Figure 5.8 EPC Register Format

XContext Register (20)

The read/write XContext register contains a pointer to an entry in the
page table entry (PTE) array, an operating system data structure that
stores virtual-to-physical address translations. When there is a TLB
miss, the operating system software loads the TLB with the missing trans-
lation from the PTE array. The XContext register duplicates some of the
information provided in the BadVAddr register, and puts it in a form
useful for a software TLB exception handler. The XContext register is for
use with the XTLB refill handler, which loads TLB entries for references to
a 64-bit address space, and is included solely for operating system use.
The operating system sets the PTE base field in the register, as needed.
Normally, the operating system uses the Context register to address the
current page map, which resides in the kernel-mapped segment kseg3.
Figure 5.9 shows the format of the XContext register; Table 5.7 describes
the XContext register fields.

XContext Register

63 33 32 3130 4 3 0
PTEBase R BadVPN2 0
31 2 27 4

Figure 5.9 XContext Register Format

The 27-bit BadVPN2 field has bits 39:13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry maps
to an even-odd page pair. For a 4-Kbyte page size, this format may be
used directly to address the pair-table of 8-byte PTEs. For other page and
PTE sizes, shifting and masking this value produces the appropriate
address.

CPU Exception Processing

Chapter 5

Table 5.7 XContext Register Fields

Field Description

BadVPN2

The Bad Virtual Page Number/2 field is written by hardware on a miss. It
contains the VPN of the most recent invalidly translated virtual address.

The Region field contains bits 63:62 of the virtual address.
00, = user
01, = supervisor
11, =kernel.

PTEBase | that allows the operating system to use the Context register as a pointer into

The Page Table Entry Base read/write field is normally written with a value

the current PTE array in memory.

Error Checking and Correcting (ECC) Register (26)

The 8-bit Error Checking and Correcting (ECC) register reads or writes
primary-cache data parity bits for cache initialization, cache diagnostics,
or cache error processing. (Tag ECC and parity are loaded from and
stored to the TaglLo register.)

The ECC register is loaded by the Index Load Tag CACHE operation.
Content of the ECC register is:

= written into the primary data cache on store
instructions (instead of the computed parity) when the
CE bit of the Status register is set.

= substituted for the computed instruction parity for the
CACHE operation Fill.

Figure 5.10 shows the format of the ECC register; Table 5.8 describes
the register fields.

ECC Register
31 8 7 0

0 ‘ ECC

24 8
Figure 5.10 ECC Register Format

Table 5.8 ECC Register Fields

Field Description

An 8-bit field specifying the parity bits read from or

ECC written to a primary cache.

Reserved. Must be written as zeroes, and returns zeroes
when read.

Cache Error (CacheErr) Register (27)

The 32-bit read-only CacheErr register processes ECC errors in the
secondary cache and parity errors in the primary cache. Parity errors
cannot be corrected.

The CacheErr register holds cache index and status bits that indicate
the source and nature of the error; it is loaded when a Cache Error excep-
tion is asserted.

Figure 5.11 shows the format of the CacheErr register and Table 5.9
describes the CacheErr register fields.

CPU Exception Processing Chapter 5

CacheErr Register

31 30 29 28 27 26 25 24 23 22 21 2 0
ER|EC|ED|ET|ES|EE|EB| 0| 0| O 0 ‘ 0
1111111111 19 3

Figure 5.11 CacheErr Register Format

Table 5.9 CacheErr Register Fields

Field Description
Type of reference
ER 0 - instruction
1 - data
Cache level of the error
EC 0 - primary

1 - reserved

Indicates if a data field error occurred

ED 0 - noerror
1 - error
Indicates if a tag field error occurred
ET 0 - noerror
1 - error

Indicates that a parity error occurred in the first
doubleword of the read response data.

ES . -
0 — no cache miss parity error
1 - cache miss parity error
EE This bit is set if the error occurred on the SysAD

bus.

This bitis set if a data error occurred in addition
to the instruction error (indicated by the

EB remainder of the bits). If so, this requires
flushing the data cache after fixing the
instruction error.

Reserved. Must be written as zeroes, and
returns zeroes when read.

Error Exception Program Counter (Error EPC) Register (30)

The ErrorEPC register is similar to the EPC register, except that
ErrorEPC is used on parity error exceptions. It is also used to store the
program counter (PC) on Reset, Soft Reset, and nonmaskable interrupt
(NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address
can be:

CPU Exception Processing

Chapter 5

= the virtual address of the instruction that caused the
exception

= the virtual address of the immediately preceding
branch or jump instruction, when this address is in a
branch delay slot.

There is no branch delay slot indication for the ErrorEPC register.
Figure 5.12 shows the format of the ErrorEPC register.

ErrorEPC Register

31 0
32-hit I
Mode ErrorEPC
32
63 0
64-bit ErrorEPC
Mode
64

Figure 5.12 ErrorEPC Register Format

Processor Exceptions

This section describes the processor exceptions—it describes the cause
of each exception, its processing by the hardware, and servicing by a
handler (software). The types of exception, with exception processing
operations, are described in the next section.

Exception Types
This section gives sample exception handler operations for the following
exception types:

* reset

= soft reset

< nonmaskable interrupt (NMI)
= cache error

= remaining processor exceptions

When the EXL bit in the Status register is 0, either User, Supervisor, or
Kernel operating mode is specified by the KSU bits in the Status register.
When the EXL bit is a 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, which
means the system is in Kernel mode. After saving the appropriate state,
the exception handler typically changes KSU to Kernel mode and resets
the EXL bit back to 0. When restoring the state and restarting, the
handler restores the previous value of the KSU field and sets the EXL bit
back to 1.

Returning from an exception, also resets the EXL bit to 0.

In the following sections, sample hardware processes for various excep-
tions are shown, together with the servicing required by the handler (soft-
ware).

Reset Exception Process

CPU Exception Processing Chapter 5

Figure 5.13 shows the Reset exception process.

T: undefined
Random — TLBENTRIES-1
Wired ~ 0
Config — 0 || EC || EP || 00000000 || BE || 110 || 010 || 1 || 1 || O || undefined
|| DC || undefined®
ErrorEPC ~ PC
SR « SR31:23 | 1101l Ol SR1g:3 Il 11l SR1:0
PC —~ OxFFFF FFFF BFCO 0000

Figure 5.13 Reset Exception Processing

Cache Error Exception Process
Figure 5.14 shows the Cache Error exception process.

T: ErrorEPC ~ PC
CacheErr — ER||EC ||ED || ET || ES || EE || ED || 0%°
SR « SR31:3 1 1[ISR10
if SRy, = 1then /*What is the BEV bit setting*/
PC ~ OxFFFF FFFF BFCO 0200 + 0x100 /*Access boot-PROM area*/
else
PC ~ OxFFFF FFFF A000 0000 + 0x100 /*Access main memory area*/
endif

Figure 5.14 Cache Error Exception Processing

Soft Reset and NMI Exception Process
Figure 5.15 shows the Soft Reset and NMI exception process.

T: ErrorEPC ~ PC
SR « SR31.3 || 11| O] 1] SR1g:3 Il L[| SRy
PC ~ OxFFFF FFFF BFCO 0000

Figure 5.15 Soft Reset and NMI Exception Processing

General Exception Process
Figure 5.16 shows the process used for exceptions other than Reset,
Soft Reset, NMI, and Cache Error.

T: Cause — BD||O|| CE || (e || Cause;s.g || ExcCode || 02
if SR, = 0 then/* System is in User or Supervisor mode with no current exception */
EPC ~ PC
endif
SR « SR31:5 || 1] SRy
if SR22 =1 then
PC ~ OxFFFF FFFF BFCO 0200 + vector /*access to uncached space*/
else
PC ~ OxFFFF FFFF 8000 0000 + vector /*access to cached space*/
endif

Figure 5.16 General Exception Processing

CPU Exception Processing

Chapter 5

Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to loca-
tion OXFFFF FFFF BFCO 0000. Addresses for all other exceptions are a
combination of a vector offset and a base address.

The base address is determined by the BEV bit of the Status register.

Table 5.10 shows the 64-bit-mode vector base address for all excep-
tions; the 32-bit mode address is the low-order 32 bits (for instance, the
base address for NMI in 32-bit mode is OXxBFCO 0000).

Table 5.11 shows the vector offset added to the base address to create
the exception address.

Table 5.10 Exception Vector Base Addresses

BEV Bit R5000 Processor Vector Base Address
0 O0xFFFF FFFF 8000 0000
1 OxFFFF FFFF BFCO0 0200

Table 5.11 Exception Vector Offsets

Exception R5000 Processor Vector Offset
TLB refill, EXL =0 0x000
PR
Cache Error 0x100
Others 0x180
Reset, Soft Reset, NMI none

When BEV = 0, the vector base address for the cache error exception
changes from ksegO (OxFFFF FFFF 8000 0000) to ksegl (OXFFFF FFFF
AO000 0000). This change indicates that the caches are initialized and that
the vector can be cached. When BEV = 1, the vector base for the cache
error exception is OxFFFF FFFF BFCO 0200. This is an uncached and
unmapped space, allowing the exception to bypass the cache and the
TLB.

Priority of Exceptions

Table 5.12 describes exceptions in the order of highest to lowest
priority. While more than one exception can occur for a single instruc-
tion, only the exception with the highest priority is reported.

Table 5.12 Exception Priority Order

Reset (highest priority)
Soft Reset
Nonmaskable Interrupt (NMI)

Address error — Instruction fetch
TLB refill — Instruction fetch
TLB invalid — Instruction fetch

Cache error — Instruction fetch

Bus error — Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved
Instruction, Coprocessor Unusable, or Floating-Point Exception

Address error — Data access

CPU Exception Processing

Chapter 5

TLB refill — Data access

TLB invalid — Data access
TLB modified — Data write
Cache error — Data access

Bus error — Data access

Interrupt (lowest priority)

Generally speaking, the exceptions described in the following sections
are handled (“processed”) by hardware; these exceptions are then serviced
by software.

Reset Exception

Cause

The Reset exception occurs when the ColdReset* signal is asserted and
then deasserted. This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception:
< location OxFFFF FFFF BFCO 0000 in 64-bit mode

The Reset vector resides in unmapped and uncached CPU address
space, so the hardware need not initialize the TLB or the cache to process
this exception. It also means the processor can fetch and execute
instructions while the caches and virtual memory are in an undefined
state.

The contents of all registers in the CPU are undefined when this excep-
tion occurs, except for the following register fields:

= In the Status register, SR is cleared to 0, and ERL and
BEV are set to 1. All other bits are undefined.

= Some Config register are initialized from the boot-time
mode stream.

= The Random register is initialized to the value of its
upper bound.

= The Wired register is initialized to 0.

Servicing

The Reset exception is serviced by:

< initializing all processor registers, coprocessor
registers, caches, and the memory system

« performing diagnostic tests
= bootstrapping the operating system

Soft Reset Exception

Cause

CPU Exception Processing

Chapter 5

The Soft Reset exception occurs in response to assertion of the Reset*
input Execution begins at the Reset vector when the Reset* signal is
negated.

The Soft Reset exception is not maskable.

Processing

The Reset vector is used for this exception. The Reset vector is located
within uncached and unmapped address space. Hence the cache and TLB
need not be initialized in order to process the exception. Regardless of the
cause, when this exception occurs the SR bit of the Status register is set,
distinguishing this exception from a Reset exception.

The primary purpose of the Soft Reset exception is to reinitialize the
processor after a fatal error during normal operation. Unlike an NMI, all
cache and bus state machines are reset by this exception.

When the Soft Reset exception occurs, all register contents are
preserved with the following exceptions:

= ErrorEPC register, which contains the restart PC.

e ERL, BEV, and SR bits of the Status Register, each of
which is set to 1.

Because the Soft Reset can abort cache and bus operations, the cache
and memory states are undefined when the Soft Reset exception occurs.

Servicing

The Soft Reset exception is serviced by saving the current processor
state for diagnostic purposes, and reinitializing for the Reset exception.

Non Maskable Interrupt (NMI) Exception

Cause

The Non Maskable Interrupt exception occurs in response to falling
edge of the NMI signal, or an external write to the Int*[6] bit of the Inter-
rupt Register. The NMI interrupt is not maskable and occurs regardless of
the settings of the EXL, ERL, and IE bits in the Status Register.

Processing

The Reset vector is used for this exception. The Reset vector is located
within uncached and unmapped address space. Hence the cache and TLB
need not be initialized in order to process the exception. Regardless of the
cause, when this exception occurs the SR bit of the Status register is set,
distinguishing this exception from a Reset exception.

Because the NMI can occur in the midst of another exception, it is typi-
cally not possible to continue program execution after servicing an NMI.
An NMI exception is taken only at instruction boundaries. The state of the
caches and memory system are preserved.

When the NMI exception occurs, all register contents are preserved
with the following exceptions:

= ErrorEPC register, which contains the restart PC.

CPU Exception Processing Chapter 5

< ERL, BEV, and SR bits of the Status Register, each of
which is set to 1.

Servicing

The NMI exception is serviced by saving the current processor state for
diagnostic purposes, and reinitializing for the Reset exception.

Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to
execute one of the following:

< load or store a doubleword that is not aligned on a
doubleword boundary

= load, fetch, or store a word that is not aligned on a
word boundary

< load or store a halfword that is not aligned on a
halfword boundary

= reference the kernel address space from User or
Supervisor mode

= reference the supervisor address space from User mode
This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or
AdES code in the Cause register is set, indicating whether the instruction
caused the exception with an instruction reference, load operation, or
store operation shown by the EPC register and BD bit in the Cause
register.

When this exception occurs, the BadVAddr register retains the virtual
address that was not properly aligned or that referenced protected
address space. The contents of the VPN field of the Context and EntryHi
registers are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused
the exception, unless this instruction is in a branch delay slot. Ifitisin a
branch delay slot, the EPC register contains the address of the preceding
branch instruction and the BD bit of the Cause register is set as indica-
tion.

Servicing

The process executing at the time is handed a segmentation violation
signal. This error is usually fatal to the process incurring the exception.

TLB Exceptions

Three types of TLB exceptions can occur:

= TLB Refill occurs when there is no TLB entry that
matches an attempted reference to a mapped address
space.

CPU Exception Processing

Chapter 5

e TLB Invalid occurs when a virtual address reference
matches a TLB entry that is marked invalid.

= TLB Modified occurs when a store operation virtual
address reference to memory matches a TLB entry
which is marked valid but is not dirty (the entry is not
writable).

The following three sections describe these TLB exceptions.

TLB Refill Exception

Cause

The TLB refill exception occurs when there is no TLB entry to match a
reference to a mapped address space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for refer-
ences to 32-bit address spaces, and one for references to 64-bit address
spaces. The UX, SX, and KX bits of the Status register determine whether
the user, supervisor or kernel address spaces referenced are 32-bit or 64-
bit spaces. All references use these vectors when the EXL bitis setto O in
the Status register. This exception sets the TLBL or TLBS code in the
ExcCode field of the Cause register. This code indicates whether the
instruction, as shown by the EPC register and the BD bit in the Cause
register, caused the miss by an instruction reference, load operation, or
store operation.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers hold the virtual address that failed address translation.
The EntryHi register also contains the ASID from which the translation
fault occurred. The Random register normally contains a valid location in
which to place the replacement TLB entry. The contents of the EntrylLo
register are undefined. The EPC register contains the address of the
instruction that caused the exception, unless this instruction is in a
branch delay slot, in which case the EPC register contains the address of
the preceding branch instruction and the BD bit of the Cause register is
set.

Servicing

To service this exception, the contents of the Context or XContext
register are used as a virtual address to fetch memory locations
containing the physical page frame and access control bits for a pair of
TLB entries. The two entries are placed into the EntryLoO/EntrylLol
register; the EntryHi and EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical
address and access control information is on a page that is not resident in
the TLB. This condition is processed by allowing a TLB refill exception in
the TLB refill handler. This second exception goes to the common excep-
tion vector because the EXL bit of the Status register is set.

TLB Invalid Exception

Cause

CPU Exception Processing Chapter 5

The TLB invalid exception occurs when a virtual address reference
matches a TLB entry that is marked invalid (TLB valid bit cleared). This
exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or
TLBS code in the ExcCode field of the Cause register is set. This indicates
whether the instruction, as shown by the EPC register and BD bit in the
Cause register, caused the miss by an instruction reference, load opera-
tion, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers contain the virtual address that failed address transla-
tion. The EntryHi register also contains the ASID from which the transla-
tion fault occurred. The Random register normally contains a valid
location in which to put the replacement TLB entry. The contents of the
EntryLo register is undefined.

The EPC register contains the address of the instruction that caused
the exception unless this instruction is in a branch delay slot, in which
case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing

A TLB entry is typically marked invalid when one of the following is
true:

e a virtual address does not exist

= the virtual address exists, but is not in main memory (a
page fault)

= atrap is desired on any reference to the page (for
example, to maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is
located with TLBP (TLB Probe), and replaced by an entry with that entry’s
Valid bit set.

TLB Modified Exception

Cause

The TLB modified exception occurs when a store operation virtual
address reference to memory matches a TLB entry that is marked valid
but is not dirty and therefore is not writable. This exception is not
maskable.

Processing

The common exception vector is used for this exception, and the Mod
code in the Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers contain the virtual address that failed address transla-
tion. The EntryHi register also contains the ASID from which the transla-
tion fault occurred. The contents of the EntryLo register is undefined.

CPU Exception Processing Chapter 5

The EPC register contains the address of the instruction that caused
the exception unless that instruction is in a branch delay slot, in which
case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing

The kernel uses the failed virtual address or virtual page number to
identify the corresponding access control information. The page identi-
fied may or may not permit write accesses; if writes are not permitted, a
write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable
by the kernel in its own data structures. The TLBP instruction places the
index of the TLB entry that must be altered into the Index register. The
EntryLo register is loaded with a word containing the physical page frame
and access control bits (with the D bit set), and the EntryHi and EntryLo
registers are written into the TLB.

Cache Error Exception

Cause

The Cache Error exception occurs when either a primary or secondary
cache parity error is detected. This exception is maskable by the DE bit in
the Status Register.

Processing

The processor sets the ERL bit in the Status register, saves the excep-
tion restart address in the ErrorEPC register, and then transfers the infor-
mation to a special vector in uncached space;

If BEV = 0, the vector is OxFFFF FFFF AOOO 0100.
If BEV = 0, the vector is OxFFFF FFFF BFCO 0300.

Servicing

All errors should be logged. To correct parity errors the system uses
the CACHE instruction to invalidate the cache block, overwrite the old
data through a cache miss, and resumes execution with an ERET. Other
errors are not correctable and are likely to be fatal to the current process.

Bus Error Exception

Cause

A Bus Error exception is raised by board-level circuitry for events such
as bus time-out, backplane bus parity errors, and invalid physical
memory addresses or access types. This exception is not maskable.

A Bus Error exception occurs when a cache miss refill, uncached refer-
ence, or an unbuffered write occurs synchronously; a Bus Error exception
resulting from a buffered write transaction must be reported using the
general interrupt mechanism.

Processing

CPU Exception Processing Chapter 5

The common interrupt vector is used for a Bus Error exception. The
IBE or DBE code in the ExcCode field of the Cause register is set, signi-
fying whether the instruction (as indicated by the EPC register and BD bit
in the Cause register) caused the exception by an instruction reference,
load operation, or store operation.

The EPC register contains the address of the instruction that caused
the exception, unless it is in a branch delay slot, in which case the EPC
register contains the address of the preceding branch instruction and the
BD bit of the Cause register is set.

Servicing

The physical address at which the fault occurred can be computed
from information available in the CPO registers.

= If the IBE code in the Cause register is set (indicating an
instruction fetch reference), the virtual address is
contained in the EPC register.

- |f the DBE code is set (indicating a load or store
reference), the instruction that caused the exception is
located at the virtual address contained in the EPC
register (or 4+ the contents of the EPC register if the BD
bit of the Cause register is set).

The virtual address of the load and store reference can then be
obtained by interpreting the instruction. The physical address can be
obtained by using the TLBP instruction and reading the EntryLo register
to compute the physical page number. The process executing at the time
of this exception is handed a bus error signal, which is usually fatal.

Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB,
DADD, DADDI or DSUB instruction results in a 2's complement overflow.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the OV
code in the Cause register is set.

The EPC register contains the address of the instruction that caused
the exception unless the instruction is in a branch delay slot, in which
case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of the exception is handed a floating-
point exception/integer overflow signal. This error is usually fatal to the
current process.

Trap Exception

Cause

CPU Exception Processing Chapter 5

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE,
TGEI, TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction results in a TRUE
condition. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr
code in the Cause register is set.

The EPC register contains the address of the instruction causing the
exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Servicing

The process executing at the time of a Trap exception is handed a
floating-point exception/integer overflow signal. This error is usually
fatal.

System Call Exception

Cause

A System Call exception occurs during an attempt to execute the
SYSCALL instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys
code in the Cause register is set.

The EPC register contains the address of the SYSCALL instruction
unless it is in a branch delay slot, in which case the EPC register contains
the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the
Status register is set; otherwise this bit is cleared.

Servicing

When this exception occurs, control is transferred to the applicable
system routine.

To resume execution, the EPC register must be altered so that the
SYSCALL instruction does not re-execute; this is accomplished by adding
a value of 4 to the EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated
algorithm, beyond the scope of this description, may be required.

Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the
BREAK instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP
code in the Cause register is set.

CPU Exception Processing Chapter 5

The EPC register contains the address of the BREAK instruction unless
it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the
Status register is set, otherwise the bit is cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the
applicable system routine. Additional distinctions can be made by
analyzing the unused bits of the BREAK instruction (bits 25:6), and
loading the contents of the instruction whose address the EPC register
contains. A value of 4 must be added to the contents of the EPC register
(EPC register + 4) to locate the instruction if it resides in a branch delay
slot.

To resume execution, the EPC register must be altered so that the
BREAK instruction does not re-execute; this is accomplished by adding a
value of 4 to the EPC register (EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the
branch instruction is required to resume execution.

Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following
conditions occurs:

= an attempt is made to execute an instruction with an
undefined major opcode (bits 31:26)

< an attempt is made to execute a SPECIAL instruction
with an undefined minor opcode (bits 5:0)

« an attempt is made to execute a REGIMM instruction
with an undefined minor opcode (bits 20:16)

« an attempt is made to execute 64-bit operations in 32-
bit mode when in User or Supervisor modes

64-bit operations are always valid in Kernel mode regardless of the
value of the KX bit in the Status register.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI
code in the Cause register is set.

The EPC register contains the address of the reserved instruction
unless it is in a branch delay slot, in which case the EPC register contains
the address of the preceding branch instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process
executing at the time of this exception is handed an illegal instruction/
reserved operand fault signal. This error is usually fatal.

CPU Exception Processing Chapter 5

Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made
to execute a coprocessor instruction for either:

= acorresponding coprocessor unit that has not been
marked usable, or

= CPO instructions, when the unit has not been marked
usable and the process executes in either User or
Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU
code in the Cause register is set. The contents of the Coprocessor Usage
Error field of the coprocessor Control register indicate which of the four
coprocessors was referenced. The EPC register contains the address of
the unusable coprocessor instruction unless it is in a branch delay slot,
in which case the EPC register contains the address of the preceding
branch instruction.

Servicing

The coprocessor unit to which an attempted reference was made is
identified by the Coprocessor Usage Error field, which results in one of
the following situations:

= If the process is entitled access to the coprocessor, the
coprocessor is marked usable and the corresponding
user state is restored to the coprocessor.

= |f the process is entitled access to the coprocessor, but
the coprocessor does not exist or has failed,
interpretation of the coprocessor instruction is possible.

- |f the BD bit is set in the Cause register, the branch
instruction must be interpreted; then the coprocessor
instruction can be emulated and execution resumed
with the EPC register advanced past the coprocessor
instruction.

= |f the process is not entitled access to the coprocessor,
the process executing at the time is handed an illegal
instruction/privileged instruction fault signal. This
error is usually fatal.

Floating-Point Exception

Cause

The Floating-Point exception is used by the floating-point coprocessor.
This exception is not maskable.

Processing

CPU Exception Processing Chapter 5

The common exception vector is used for this exception, and the FPE
code in the Cause register is set.

The contents of the Floating-Point Control/Status register indicate the
cause of this exception.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-
Point Control/Status register.

For an unimplemented instruction exception, the kernel should
emulate the instruction; for other exceptions, the kernel should pass the
exception to the user program that caused the exception.

Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt condi-
tions is asserted. The significance of these interrupts is dependent upon
the specific system implementation.

Each of the eight interrupts can be masked by clearing the corre-
sponding bit in the Int-Mask field of the Status register, and all of the eight
interrupts can be masked at once by clearing the IE bit of the Status
register.

Processing

The common exception vector is used for this exception, and the Int
code in the Cause register is set.

The IP field of the Cause register indicates current interrupt requests.
It is possible that more than one of the bits can be simultaneously set (or
even no bits may be set) if the interrupt is asserted and then deasserted
before this register is read.

Servicing

If the interrupt is caused by one of the two software-generated excep-
tions (SW1 or SWO0), the interrupt condition is cleared by setting the corre-
sponding Cause register bit to 0.

If the interrupt is hardware-generated, the interrupt condition is
cleared by correcting the condition causing the interrupt pin to be
asserted.

Due to the on-chip write buffer, a store to an external device may not
occur until after other instructions in the pipeline finish. Hence, the user
must ensure that the store will occur before the return from exception
instruction (ERET) is executed. Otherwise the interrupt may be serviced
again even though there is no actual interrupt pending.

Exception Handling and Servicing Flowcharts
The remainder of this section contains flowcharts for the following
exceptions and guidelines for their handlers:

= general exceptions and their exception handler
= TLB/XTLB miss exception and their exception handler
= cache error exception and its handler

= reset, soft reset and NMI exceptions, and a guideline to
their handler.

CPU Exception Processing Chapter 5

Generally speaking, the exceptions are handled by hardware (HW); the
exceptions are then serviced by software (SW).

Exceptions other than Reset, Soft Reset, NMI, CacheError or first-level TLB miss
Note: Interrupts can be masked by IE or IMs

Comments

Set FP Control Status Register| “FP Control Status Register _
EnHi <- VPN2 ASID is only set if the respective exception

occurs.

Context <- VPN2 EnHi, X/Context are set only for
Set Cause Register *TLB- Invalid, Modified,
EXCCode, CE & Refill exceptions

Yes Instr. in No
J Br.Dly. Slot? —¢
Cause 31 (BD) <- 1 Cause 31 (BD) <-0
EXL =1 =1 EXL
(SR1) > (SR1)
=0 =0
Set Bad VA Set Bad VA
EPC <-- (PC - 4) EPC <-- PC
-

Processor forced to kernel mode
EXL<-1 and interrupts disabled

=0 (normal) =1 (bootstrap)

PC <- OxFFFF FFFF 8000 0000 + 180 PC <- OXFFFF FFFF BFCO 0200 + 180
(unmapped, cached) (unmapped, uncached)

I - I
Y

To General Exception Servicing Guidelines

Figure 5.17 General Exception Handler (HW)

CPU Exception Processing Chapter 5
Comments
MFCO - * Unmapped vector so TLBMod, TLBInv,
X/Context TLB Refill exceptions not possible
EPC
Status * EXL=1 so Interrupt exceptions disabled
Cause
* OS/System to avoid all other exceptions
*Only CacheError, Reset, Soft Reset, NMI
 / exceptions possible.
MTCO -
(Set Status Bits:)
KSU<- 00
EXL<-0 (optional - only to enable Interrupts while keeping Kernel Mode)
IE=1

¢ * After EXL=0, all exceptions allowed.
Check CAUSE REG. & Jump to (except interrupt if masked by IE or IM
appropriate Service Code and CachekError if masked by DE)

Y

Service Code

'

EXL=1
MTCO -
EPC
STATUS
y * ERET is not allowed in the branch delay slot of
another Jump Instruction
* Processor does not execute the instruction which is

ERET

in the ERET’s branch delay slot
*PC<-EPC; EXL<-0
* LLbit<-0

Figure 5.18 General Exception Servicing Guidelines (SW)

CPU Exception Processing

Chapter 5

Yes

A

EnHi <- VPN2, ASID

Context <- VPN2

Set Cause Reg.
EXCCode, CE and
Cause bit 31 (BD) <- 1

Br.Dly. Slot?

Instr. in

EnHi <- VPN2, ASID

Context <- VPN2

Set Cause Reg.
EXCCode, CE and
Cause bit 31 (BD) <- 0

Check if exception within
another exception

=0
Set BadVA Set BadVA
EPC <-- (PC -4) EPC <--PC

Y
Vec. Off. = 0x080

|)

XTLB
Instruction?

Y

\

Vec. Off. = 0x000

Vec. Off. = 0x180

|4

Points to Refill Exception '¢‘

Points to General Exception

EXL<-1

Processor forced to Kerne
interrupt disabled

=0 (normal)

Y

PC <- OxFFFF FFFF 8000 0000 + Vec.Off.
(unmapped, cached)

BEV
(SR bit 22)

=1 (bootstrap)

\

| Mode &

PC <- OXFFFF FFFF BFCO 0200 + Vec.Off.

(unmapped, uncached)

-l
? i 3

To TLB/XTLB Exception Servicing Guidelines

Figure 5.19 TLB/XTLB Miss Exception Handler (HW)

CPU Exception Processing Chapter 5

Comments

* Unmapped vector so TLBMod, TLBInv,
TLB Refill or VCEP exceptions

not possible

MFCO -

* EXL=1 so Interrupt exceptions disabled
CONTEXT _ _
* OS/System to avoid all other exceptions

*Only CacheError, Reset, Soft Reset, NMI
exceptions possible.

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

. * There could be a TLB miss again during the mapping
Service Code of the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general
exception handler or ERET to the original instruction
and take the exception again)

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
ERET in the ERET’s branch delay slot

*PC <-EPC; EXL<-0

* LLbit <- 0

Figure 5.20 TLB/XTLB Exception Servicing Guidelines (SW)

CPU Exception Processing

Chapter 5

Cache Error Exception Handling (HW)

Servicing Guidelines (SW)

Note: Can be masked/disabled by DE (SR16) bit =1

Set CacheErr Reg.

Y

Instr. in
Br. Dly. Slot?

Yes

Y
ErrfEPC <- (PC - 4) ErrEPC <- PC

Y

=0 (normal)

Y

=1 (bootstrap)

Y

PC <- OxFFFF FFFF A000 0000 + 100
(unmapped, uncached)

PC <- OXxFFFF FFFF BFCO 0200 + 100
(unmapped, uncached)

Y
A

Comments

* Unmapped Uncached vector so

TLB related & Cache Error Exception not possible
* ERL=1 so Interrupt exceptions disabled
Service Code * OS/System to avoid all other exceptions

*Only Reset, Soft Reset, NMI
exceptions possible.

another Jump Instruction

l * ERET is not allowed in the branch delay slot of

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

* PC <- ErrorEPC; ERL <-0

ERET

* LLbit <- 0

Figure 5.21 Cache Error Exception Handling (HW) and Servicing

Guidelines

CPU Exception Processing Chapter 5

Soft Reset or NMI Exception Reset Exception
Status: Random <- TLBENTRIES - 1

BEV <-1 Wired <- 0

SR<- 1 Config <- Update(31:6)|| Undef(5:0)

ERL <- 1 Status:
BEV <-1
SR<-0
ERL <-1

-
'

A

Y
ErrorEPC <- PC

A

PC <- OXxFFFF FFFF BFCO 0000

Reset, Soft Reset & NMI Exception Handling (HW)

Yes

)
§ ; Note: There is no indication from the
= 0 processor to differentiate between

%) NMI & Soft Reset; o
3 there must be a system level indication.
B <
¢S
x 5 -
%' o NMI Service Code Stat;JSSR?)it 20

o
e
D0 =1
62
T

Soft Reset Service Code Reset Service Code

(Optional) ERET

Figure 5.22 Reset, Soft Reset & NMI Exception Handling

\ Floating Point Unit Chapter 6

HH

L de

Integrated Device Technology, Inc.

Introduction

This section describes the floating-point unit (FPU) of the IDT R5000
processor, including the programming model, instruction set and
formats, and the pipeline.

The FPU, with associated system software, fully conforms to the
requirements of ANSI/IEEE Standard 754-1985, IEEE Standard for
Binary Floating-Point Arithmetic. In addition, the MIPS architecture fully
supports the recommendations of the standard and precise exceptions.

Overview

The FPU operates as a coprocessor for the CPU (it is assigned copro-
cessor label CP1), and extends the CPU instruction set to perform arith-
metic operations on floating-point values.

Figure 6.1 illustrates the functional organization of the FPU.

Data Cache
FCU
v 64 Control
4 64
FP Bypass
Pipeline Chain
Y Y Y
FP Add/ FP

Sub/Cvt || FP Mul Div/Sqrt

64 64 64

FP Reg File '

Figure 6.1 FPU Functional Block Diagram

FPU Features

This section briefly describes the operating model, the load/store instruction
set, and the coprocessor interface in the FPU. A more detailed description is given
in the sections that follow.

Floating Point Unit

Chapter 6

Full 64-bit Operation. When the FR bit in the CPU
Status register equals 0, the FPU is in 32-bit mode and
contains thirty-two 32-bit registers that hold single- or,
when used in pairs, double-precision values. When the
FR bit in the CPU Status register equals 1, the FPU is in
64-bit mode and the registers are expanded to 64 bits
wide. Each register can hold single- or double-
precision values. The FPU also includes a 32-bit
Control/Status register that provides access to all IEEE-
Standard exception handling capabilities.

Load and Store Instruction Set. Like the CPU, the FPU
uses a load- and store-oriented instruction set, with
single-cycle load and store operations.

Tightly Coupled Coprocessor Interface. The FPU
resides on-chip to form a tightly coupled unit with a
seamless integration of floating-point and fixed-point
instruction sets. Since each unit receives and executes
instructions in parallel, some floating-point
instructions can execute at the same single-cycle-per-
instruction rate as fixed-point instructions.

FPU Programming Model

This section describes the set of FPU registers and their data organiza-
tion. The FPU registers include Floating-Point General Purpose registers
(FGRs) and two control registers: Control/Status and Implementation/

Revision.

Floating-Point General Registers (FGRSs)
The FPU has a set of Floating-Point General Purpose registers (FGRS)
that can be accessed in the following ways:

As 32 general purpose registers (32 FGRs), each of
which is 32 bits wide when the FR bit in the CPU Status
register equals 0; or as 32 general purpose registers (32
FGRs), each of which is 64-bits wide when FR equals 1.
The CPU accesses these registers through move, load,
and store instructions.

As 16 floating-point registers (see the next section for a
description of FPRs), each of which is 64-bits wide,
when the FR bit in the CPU Status register equals 0.
The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds
to adjacently numbered FGRs as shown in Figure 53.

As 32 floating-point registers (see the next section for a
description of FPRs), each of which is 64-bits wide,
when the FR bit in the CPU Status register equals 1.
The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds
to an FGR as shown in Figure 6.2.

Floating Point Unit Chapter 6

Floating-Point Floating-Point Floating-Point Floating-Point
Registers (FPR) General Purpose Registers Registers (FPR) General Purpose Registers
(FR=0) 31 (FGR) 0 (FR=1) 63 (FGR) 0
FPRO FGRO
FPRO (least) FGRO
(most) FGR1 FPR1 FGR1

(least) FGR2 FPR2 FGR2
(most) FGR3 FPR3 FGR3

FPR2

—N

: (least) FPR28 FGR28
FPR28 most) PR FGR29
orao J (eas) FPR30 FGR30

(most) FPR31 FGR31

Floating-Point
Control Registers

FCR
Control/Status Register () Implementation/Revision Register

31 FCR31 0 31 FCRO 0

Figure 6.2 FPU Registers

Floating-Point Registers
The FPU provides:

= 16 Floating-Point registers (FPRs) when the FR bit in the
Status register equals 0, or

= 32 Floating-Point registers (FPRs) when the FR bit in the
Status register equals 1.

These 64-bit registers hold floating-point values during floating-point
operations and are physically formed from the General Purpose registers
(FGRs). When the FR bit in the Status register equals 1, the FPR refer-
ences a single 64-bit FGR.

The FPRs hold values in either single- or double-precision floating-
point format. If the FR bit equals 0, only even numbers (the least register,
as shown in Figure 6.2) can be used to address FPRs. When the FR bit is
set to a 1, all FPR register numbers are valid.

If the FR bit equals O during a double-precision floating-point opera-
tion, the general registers are accessed in double pairs. Thus, in a
double-precision operation, selecting Floating-Point Register O (FPRO)
actually addresses adjacent Floating-Point General Purpose registers FGRO
and FGR1.

Floating-Point Control Registers
The FPU has 32 control registers (FCRs) that can only be accessed by
move operations. The FCRs are described below:

= The Implementation/Revision register (FCRO) holds
revision information about the FPU.

Floating Point Unit

Chapter 6

< The Control/Status register (FCR31) controls and
monitors exceptions, holds the result of compare
operations, and establishes rounding modes.

e FCR1 to FCR30 are reserved.
Table 6.1 lists the assignments of the FCRs.

Table 6.1 Floating-Point Control Register Assignments

FCR Number Use
FCRO Coprocessor implementation and revision register
FCR1to FCR30 | Reserved
FCR31 Rounding mode, cause, trap enables, and flags

Implementation and Revision Register, (FCRO)

The read-only Implementation and Revision register (FCRO) specifies the
implementation and revision number of the FPU. This information can
determine the coprocessor revision and performance level, and can also
be used by diagnostic software.

Figure 6.3 shows the layout of the register; Table 6.2 describes the
Implementation and Revision register (FCRO) fields.

Implementation/Revision Register (FCRO)
31 16 15 87 0

0 Imp ‘ Rev
16 8 8

Figure 6.3 Implementation/Revision Register

Table 6.2 FCRO Fields

Field Description
Imp Implementation number (0x23)
Rev Revision number in the form of y.x

Reserved. Must be written as zeroes, and returns zeroes
when read.

The revision number is a value of the form y.x, where:
= yis amajor revision number held in bits 7:4.
= X is aminor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, MIPS
does not guarantee that changes to its chips are necessarily reflected by
the revision number, or that changes to the revision number necessarily
reflect real chip changes. For this reason revision number values are not
listed, and software should not rely on the revision number to charac-
terize the chip.

Floating Point Unit

Chapter 6

Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status infor-
mation that can be accessed by instructions in either Kernel or User
mode. FCR31 also controls the arithmetic rounding mode and enables
User mode traps, as well as identifying any exceptions that may have
occurred in the most recently executed instruction, along with any excep-
tions that may have occurred without being trapped.

Figure 6.4 shows the format of the Control/Status register, and Table
6.3 describes the Control/Status register fields. Figure 6.5 shows the
Control/Status register Cause, Flag, and Enable fields.

Control/Status Register (FCR31)

31 25 24 23 22 18 17 12 11 7 6 21 0
Cause Enables Flags RM
ccC FS| C 0 EVZOUI| VZOUI | VZOUI
7 1 1 5 6 5 5 2
Legend:)
E = Unimplemented Operation 7 = Division by zero U = Underflow
V = Invalid Operation O = Overflow | = Inexact Operation
Figure 6.4 FP Control/Status Register Bit Assignments
Table 6.3 Control/Status Register Fields
Field Description
CcC Condition code.
Fs When set, denormalized results are flushed to 0 instead of causing an
unimplemented operation exception.
C Condition bit. See description of Control/Status register Condition bit.
Cause Cause bits. See description of Control/Status register Cause, Flag, and Enable
bits.
Enable bits. See description of Control/Status register Cause, Flag, and
Enables .
Enable bits.
Flags Flag bits. See description of Control/Status register Cause, Flag, and Enable
g bits.
Rounding mode bits. See description of Control/Status register Rounding
RM .
Mode Control bits.

Accessing the Control/Status Register

When the Control/Status register is read by a Move Control From
Coprocessor 1 (CFC1) instruction, all unfinished instructions in the pipe-
line are completed before the contents of the register are moved to the
main processor. If a floating-point exception occurs as the pipeline
empties, the FP exception is taken and the CFC1 instruction is re-
executed after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing
to the register using a Move Control To Coprocessor 1 (CTC1) instruction.
FCR31 must only be written to when the FPU is not actively executing
floating-point operations; this can be ensured by reading the contents of
the register to empty the pipeline.

Floating Point Unit

Chapter 6

IEEE Standard 754

IEEE Standard 754 specifies that floating-point operations detect
certain exceptional cases, raise flags, and can invoke an exception
handler when an exception occurs. These features are implemented in
the MIPS architecture with the Cause, Enable, and Flag fields of the
Control/Status register. The Flag bits implement IEEE 754 exception
status flags, and the Cause and Enable bits implement exception
handling.

Control/Status Register FS Bit

When the FS bit is set, denormalized results are flushed to O instead of
causing an unimplemented operation exception.

Control/Status Register Condition Bit

When a floating-point Compare operation takes place, the result is
stored at bit 23, the Condition bit, to save or restore the state of the condi-
tion line. The C bit is set to 1 if the condition is true; the bit is cleared to
0 if the condition is false. Bit 23 is affected only by compare and Move
Control To FPU instructions.

Bit# 17 16 15 14 13 12

Cause
E \ Z O U | Bits
[I I I I
Bit # 11 10 9 8 7
| Enable
\ Z O U | Bits
I I I I I
Bit # 6 5 4 3 2
Flag
Z @) U I Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation

Unimplemented Operation

Figure 6.5 Control/Status Register Cause, Flag, and Enable Fields

Control/Status Register Cause, Flag, and Enable Fields
Figure 6.5 illustrates the Cause, Flag, and Enable fields of the Control/
Status register.

Cause Bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown
in Figure 6.5, which reflect the results of the most recently executed
instruction. The Cause bits are a logical extension of the CPO Cause
register; they identify the exceptions raised by the last floating-point oper-
ation and raise an interrupt or exception if the corresponding enable bit is
set. If more than one exception occurs on a single instruction, each
appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by
load, store, or move operations). The Unimplemented Operation (E) bit is
set to a 1 if software emulation is required, otherwise it remains 0. The
other bits are set to O or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception.

Floating Point Unit

Chapter 6

When a floating-point exception is taken, no results are stored, and the
only state affected is the Cause bit.

Enable Bits

A floating-point exception is generated any time a Cause bit and the
corresponding Enable bit are set. A floating-point operation that sets an
enabled Cause bit forces an immediate exception, as does setting both
Cause and Enable bits with CTC1.

There is no enable for Unimplemented Operation (E). Setting Unimple-
mented Operation always generates a floating-point exception.

Before returning from a floating-point exception, software must first
clear the enabled Cause bits with a CTC1 instruction to prevent a repeat
of the interrupt. Thus, User mode programs can never observe enabled
Cause bits set; if this information is required in a User mode handler, it
must be passed somewhere other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no
exception occurs and the default result defined by IEEE 754 is stored. In
this case, the exceptions that were caused by the immediately previous
floating-point operation can be determined by reading the Cause field.

Flag Bits

The Flag bits are cumulative and indicate that an exception was raised
by an operation that was executed since they were explicitly reset. Flag
bits are set to 1 if an IEEE 754 exception is raised, otherwise they remain
unchanged. The Flag bits are never cleared as a side effect of floating-
point operations; however, they can be set or cleared by writing a new
value into the Status register, using a Move To Coprocessor Control
instruction.

When a floating-point exception is taken, the flag bits are not set by the
hardware; floating-point exception software is responsible for setting
these bits before invoking a user handler.

Control/Status Register Rounding Mode Control Bits

Bits 1 and O in the Control/Status register constitute the Rounding
Mode (RM) field.

As shown in Table 6.4, these bits specify the rounding mode that the
FPU uses for all floating-point operations.

Table 6.4 Rounding Mode Bit Decoding

Rounding
Mode Mnemonic Description
RM(1:0)
Round result to nearest representable
0 RN value; round to value with least-

significant bit 0 when the two nearest
representable values are equally near.

Round toward 0: round to value closest to
1 RZ and not greater in magnitude than the
infinitely precise result.

Round toward +co: round to value closest
2 RP to and not less than the infinitely precise
result.

Round toward — c: round to value closest
3 RM to and not greater than the infinitely
precise result.

Floating Point Unit

Chapter 6

Floating-Point Formats

The FPU performs both 32-bit (single-precision) and 64-bit (double-
precision) IEEE standard floating-point operations. The 32-bit single-
precision format has a 24-bit signed-magnitude fraction field (f+s) and an
8-bit exponent (e), as shown in Figure 6.6.

31 30 23 22 0
S e f

Sign Exponent Fraction
1 8 23

Figure 6.6 Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude frac-
tion field (f+s) and an 11-bit exponent, as shown in Figure 6.7.

63 62 52 51 0
S e f
Sign Exponent Fraction
1 11 52

Figure 6.7 Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are
composed of three fields:

= sign field, s
= Dbiased exponent, e = E + bias
< fraction, f = .bby...0p 4
The range of the unbiased exponent E includes every integer between

the two values E,i, and E, 5« inclusive, together with two other reserved
values:

Emin -1 (to encode +0 and denormalized numbers)
* Epmax 1 (to encode +* and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero
numerical value has just one encoding.

For single- and double-precision formats, the value of a number, v, is
determined by the equations shown in Table 6.5.

Table 6.5 Calculating Values in Single and Double-Precision Formats

No. Equation

(1) |ifE=Enat1land fz0, then vis NaN, regardless of s

(2) |IfE=Empatlandf=0,then v=(-1)%w

(3) | if Emin < E < Epay, then v= (=1)52E(1.5

(4) | ifE=Emppn—1andf#0, then v=(=1)52E™"(0.1)

(5) | ifE=Enpp,~1andf=0,then v=(-1)%0

Floating Point Unit

Chapter 6

For all floating-point formats, if v is NaN, the most-significant bit of f
determines whether the value is a signaling or quiet NaN: v is a signhaling
NaN if the most-significant bit of f is set, otherwise, v is a quiet NaN.

Table 6.6 defines the values for the format parameters; minimum and
maximum floating-point values are given in Table 6.7.

Table 6.6 Floating-Point Format Parameter Values

Parameter - Format
Single Double

Emax +127 +1023
Emin -126 -1022
Exponent bias +127 +1023
Exponent width in bits 8 11
Integer bit hidden hidden
f (Fraction width in bits) 24 53
Format width in bits 32 64

Table 6.7 Minimum and Maximum Floating-Point Values

Type Value
Float Minimum 1.40129846e-45
Float Minimum Norm 1.17549435e-38
Float Maximum 3.40282347e+38

Double Minimum

4.9406564584124654e-324

Double Minimum Norm

2.2250738585072014e-308

Double Maximum

1.7976931348623157e+308

Binary Fixed-Point Format

Binary fixed-point values are held in 2's complement format. Unsigned
fixed-point values are not directly provided by the floating-point instruc-
tion set. Figure 6.8 illustrates binary fixed-point format; Table 6.8 lists

the binary fixed-point format fields.

31 30

0

Sign Integer I

1

31

Figure 6.8 Binary Fixed-Point Format

Field assignments of the binary fixed-point format are:

Table 6.8 Binary Fixed-Point Format Fields

Field Description
sign sign bit
integer integer value

Floating Point Unit

Chapter 6

Floating-Point Instruction Set Overview
All FPU instructions are 32 bits long, aligned on a word boundary.
They can be divided into the following groups:

Load, Store, and Move instructions move data between
memory, the main processor, and the FPU General
Purpose registers.

Conversion instructions perform conversion operations
between the various data formats.

Computational instructions perform arithmetic
operations on floating-point values in the FPU
registers.

Compare instructions perform comparisons of the
contents of registers and set a conditional bit based on
the results.

Branch on FPU Condition instructions perform a
branch to the specified target if the specified
coprocessor condition is met.

In the instruction formats shown in Table 6.9 through Table 6.12, the
fmt appended to the instruction opcode specifies the data format: S speci-
fies single-precision binary floating-point, D specifies double-precision
binary floating-point, W specifies 32-bit binary fixed-point, and L speci-
fies 64-bit (long) binary fixed-point.

Table 6.9 FPU Instruction Summary: Load, Move and Store Instructions

OpCode

Description

LWC1

Load Word to FPU

LWXC1

Load Word Indexed to FPU

SWC1

Store Word from FPU

SWXC1

Store Word Indexed from FPU

LDC1

Load Doubleword to FPU

LDXC1

Load Doubleword Indexed to FPU

SDC1

Store Doubleword From FPU

SDXC1

Store Doubleword Indexed From FPU

MTC1

Move Word To FPU

MFC1

Move Word From FPU

CTC1

Move Control Word To FPU

CFC1

Move Control Word From FPU

DMTC1

Doubleword Move To FPU

DMFC1

Doubleword Move From FPU

PREF

Prefetch - Register + Offset

PREFX

Prefetch Indexed - Register + Register

Table 6.10 FPU Instruction Summary: Conversion Instructions

OpCode

Description

CVT.S.fmt

Floating-point Convert to Single FP

CVT.D.fmt

Floating-point Convert to Double FP

Floating Point Unit Chapter 6
OpCode Description

CVT.W.fimt Floating-point Convert to 32-bit Fixed Point
CVT.L.fmt Floating-point Convert to 64-bit Fixed Point
ROUND.W.fmt Floating-point Round to 32-bit Fixed Point
ROUND.L.fmt Floating-point Round to 64-bit Fixed Point
TRUNC.W.fmt Floating-point Truncate to 32-bit Fixed Point
TRUNC.L.fmt Floating-point Truncate to 64-bit Fixed Point
CEIL.W.fmt Floating-point Ceiling to 32-bit Fixed Point
CEIL.L.fmt Floating-point Ceiling to 64-bit Fixed Point
FLOOR.W.fmt Floating-point Floor to 32-bit Fixed Point
FLOOR.L.fmt Floating-point Floor to 64-bit Fixed Point

Table 6.11 FPU Instruction Summary: Computational Instructions

OpCode Description
ADD.fmt Floating-point Add
SUB.fmt Floating-point Subtract
MUL.fmt Floating-point Multiply
DIV.fmt Floating-point Divide
ABS.fmt Floating-point Absolute Value
MOV.fmt Floating-point Move
NEG.fmt Floating-point Negate
SQRT.fmt Floating-point Square Root
RECIP Floating-point Reciprocal
RSQRT Floating-point Reciprocal Square Root

Table 6.12 FPU Instruction Summary: Compare and Branch Instructions

OpCode Description
C.cond.fmt Floating-point Compare
BC1T Branch on FPU True
BC1F Branch on FPU False
BCL1TL Branch on FPU True Likely
BC1FL Branch on FPU False Likely

Floating-Point Load, Store, and Move Instructions
This section discusses the manner in which the FPU uses the load,
store and move instructions listed in Table 44.

Transfers Between FPU and Memory

All data movement between the FPU and memory is accomplished by
using one of the following instructions:

< Load Word To Coprocessor 1 (LWC1) or Store Word
From Coprocessor 1 (SWC1) instructions, which
reference a single 32-bit word of the FPU general
registers

= Load Doubleword (LDC1) or Store Doubleword (SDC1)
instructions, which reference a 64-bit doubleword.

6-11

Floating Point Unit

Chapter 6

These load and store operations are unformatted; no format conver-
sions are performed and therefore no floating-point exceptions can occur
due to these operations.

Transfers Between FPU and CPU
Data can also be moved directly between the FPU and the CPU by using
one of the following instructions:

< Move To Coprocessor 1 (MTC1)

< Move From Coprocessor 1 (MFC1)

< Doubleword Move To Coprocessor 1 (DMTC1)

= Doubleword Move From Coprocessor 1 (DMFC1)

Like the floating-point load and store operations, these operations
perform no format conversions and never cause floating-point exceptions.

Load Delay and Hardware Interlocks

The instruction immediately following a load can use the contents of
the loaded register. In such cases the hardware interlocks, requiring
additional real cycles; for this reason, scheduling load delay slots is desir-
able, although it is not required for functional code.

Data Alignment
All coprocessor loads and stores reference the following aligned data
items:

< For word loads and stores, the access type is always
WORD, and the low-order 2 bits of the address must
always be 0.

= For doubleword loads and stores, the access type is
always DOUBLEWORD, and the low-order 3 bits of
the address must always be 0.

Endianness

Regardless of byte-numbering order (endianness) of the data, the
address specifies the byte that has the smallest byte address in the
addressed field. For a big-endian system, it is the leftmost byte; for a
little-endian system, it is the rightmost byte.

Floating-Point Conversion Instructions

Conversion instructions perform conversions between the various data
formats such as single- or double-precision, fixed- or floating-point
formats.

Floating-Point Computational Instructions

Computational instructions perform arithmetic operations on floating-
point values, in registers. There are two categories of computational
instructions:

« 3-Operand Register-Type instructions, which perform
floating-point addition, subtraction, multiplication, and
division

= 2-Operand Register-Type instructions, which perform
floating-point absolute value, move, negate, and square
root operations

For a detailed description of each instruction, refer to the MIPS IV
instruction set manual.

Floating Point Unit

Chapter 6

Branch on FPU Condition Instructions
The Branch on FPU (coprocessor unit 1) condition instructions that can
test the result of the FPU compare (C.cond) instructions. For a detailed

description of each instruction, refer to the MIPS IV instruction set
manual.

Floating-Point Compare Operations

The floating-point compare (C.fmt.cond) instructions interpret the
contents of two FPU registers (fs, ft) in the specified format (fmt) and arith-
metically compare them. A result is determined based on the comparison
and conditions (cond) specified in the instruction.

Table 6.13 lists the mnemonics for the compare instruction conditions.

Floating Point Unit

Chapter 6

Table 6.13 Mnemonics and Definitions of Compare Instruction Conditions

Mnemonic Definition Mnemonic Definition
T True F False
OR Ordered UN Unordered
NEQ Not Equal EQ Equal
Ordered or Less Than or
OLG Greater Than UEQ Unordered or Equal
UGE Unordered or Greater Than oLT Ordered Less Than
or Equal
OGE Ordered Greater Than ULT Unordered or Less Than
UGT Unordered or Greater Than OLE Ordered Less Than or Equal
OGT Ordered Greater Than ULE Unordered or Less Than or
Equal
ST Signaling True SF Signaling False
GLE Greater Than, or Less Than NGLE Not Greater Than or Less
or Equal Than or Equal
SNE Signaling Not Equal SEQ Signaling Equal
GL Greater Than or Less Than NGL Not Greater Than or Less
Than
NLT Not Less Than LT Less Than
GE Greater Than or Equal NGE Not Greater Than or Equal
NLE Not Less Than or Equal LE Less Than or Equal
GT Greater Than NGT Not Greater Than

FPU Instruction Pipeline Overview

The FPU provides an instruction pipeline that parallels the CPU
instruction pipeline. It shares the same eight-stage pipeline architecture
with the CPU.

Instruction Execution
Figure 6.9 illustrates the 8-instruction overlap in the FPU pipeline.

|One|

One
Cycle |

One |
Cycle

Cycle

One
Cycle

| One |
Cycle

| 11| 21 [1R|2R[1A[2A]1D [2D [1W]2wW]|

| 11| 21 [1R|2R[1A[2A]1D[2D [1W[2W]|

1] 21 [1R[2R]1A[2A[1D]2D [1W]2W]

| 1] 21 [1R|2R[1A[2A[1D[2D [1W]2W]|

11|21 [1R[2R[1A]2A]1D 2D [1W[2W]

Figure 6.9 FPU Instruction Pipeline

Floating Point Unit

Chapter 6

Figure 6.9 assumes that one instruction is completed every PCycle.
Most FPU instructions, however, require more than one cycle in the EX
stage. This means the FPU must stall the pipeline if an instruction execu-
tion cannot proceed because of register or resource conflicts.

Instruction Execution Cycle Time
Unlike the CPU, which executes almost all instructions in a single

cycle, more time may be required to execute FPU instructions.

Table 6.14 gives the minimum latency, in processor pipeline cycles, of
each floating-point operation for the currently implemented configura-
tions. These latency calculations assume the result of the operation is
immediately used in a succeeding operation.

Table 6.14 Floating-Point Operation Latencies

Pipeline Cycles Pipeline Cycles
Operation Latency/Repeat Operation | Latency/Repeat
S D w L S D
ADD.fmt 4/1 4/1 CVT.[W,L] 4/1 4/1
SUB.fmt 4/1 4/1 C.fmt.cond 1/1 171
MUL.fmt 4/1 5/2 BC1T 1
DIV.fmt 21/19 | 36/34 BC1F 1
SQRT.fmt 21/19 | 36/34 BC1TL 1
RECIP 21/19 | 36/34 BC1FL 1
RSQRT 38/36 | 68/66 LWC1 1
SWC1,
ABS.fmt 1/1 /1 sDC1 1
LDC1,
MOV.fmt 1/1 171 SDCL 2
MTC1,
NEG.fmt 1/1 171 DMTCL 2
ROUND.W MFC1,
/TRUNC.W 41 4/l DMFC1 2
ROUND.L/ - -
TRUNGC.L 4/1 4/1 CTC1 3
CEILW/
FLOOR W 4/1 4/1 CFC1 2
CEIL.L/ ** ok
FLOOR.L 4/1 4/1 MADD 4/1 5/2
CVT.D.fmt 4/1 @) 4/1 | 4/1* MSUB 4/1 5/2
CVT.S.fmt €)] 4/1 6/3 | 6/3* | NMADD 4/1 5/2
NMSUB 4/1 5/2

........ These operations are illegal.
......... Trap on greater than 52 bits of significance.
......... Trap on greater than 53 bits of significance.

Floating Point Unit

Chapter 6

Instruction Scheduling Constraints
The FPU resource scheduler is kept from issuing instructions to the

FPU op units (adder, multiplier, and divider) by the limitations in their
micro-architectures. An FPU ALU instruction can be issued at the same
time as any other non-FP-ALU instructions. This includes all integer
instructions as well as floating-point loads and stores.

N Floating Point Exceptions Chapter 7

HH

L de

Integrated Device Technology, Inc.

Introduction

This section describes FPU floating-point exceptions, including FPU exception
types, exception trap processing, exception flags, saving and restoring state when
handling an exception, and trap handlers for IEEE Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle either the
operands or the results of a floating-point operation in its normal way. The FPU
responds by generating an exception to initiate a software trap or by setting a
status flag.

Exception Types

The FP Control/Status register described in section 6 contains an Enable bit for
each exception type; exception Enable bits determine whether an exception will
cause the FPU to initiate a trap or set a status flag.

= Ifatrap is taken, the FPU remains in the state found at
the beginning of the operation and a software
exception handling routine executes.

= If no trap is taken, an appropriate value is written into
the FPU destination register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:

« Inexact (I)

= Underflow (U)

= Overflow (O)

= Division by Zero (2)
< Invalid Operation (V)

Cause bits, Enables, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E), to use
when the FPU cannot implement the standard MIPS floating-point architecture,
including cases in which the FPU cannot determine the correct exception behavior.
This exception indicates the use of a software implementation. The
Unimplemented Operation exception has no Enable or Flag bit; whenever this
exception occurs, an unimplemented exception trap is taken (if the FPU interrupt
input to the CPU is enabled).

Figure 7.1 illustrates the Control/Status register bits that support exceptions.

Floating Point Exceptions

Chapter 7

Bit#17 16 15 14 13 12

Cause
| E \ Z ®)) | Bits
I I I I I
Bit # 11 10 9 8 7
| Enable
\ Z O U | Bits
I I I I I
Bit# 6 5 4 3 2
Flag
Z 0] 0] | Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation

Unimplemented Operation

Figure 7.1 Control/Status Register Exception/Flag/Trap/Enable Bits

Each of the five IEEE Standard 754 exceptions (V, Z, O, U, I) is associated with a
trap under user control, and is enabled by setting one of the five Enable bits. When
an exception occurs, the corresponding Cause bit is set. If the corresponding Enable
bit is not set, the Flag bit is also set. If the corresponding Enable bit is set, the Flag
bit is not set and the FPU generates an interrupt to the CPU. Subsequent exception
processing allows a trap to be taken.

Exception Trap Processing

When a floating-point exception trap is taken, the Cause register indicates the
floating-point coprocessor is the cause of the exception trap. The Floating-Point
Exception (FPE) code is used, and the Cause bits of the floating-point Control/Status
register indicate the reason for the floating-point exception. These bits are, in
effect, an extension of the system coprocessor Cause register.

Flags

A%Iag bit is provided for each IEEE exception. This Flag bit is set to a 1 on the
assertion of its corresponding exception, with no corresponding exception trap
signaled.

The Flag bit is reset by writing a new value into the Status register; flags can be
saved and restored by software either individually or as a group.

When no exception trap is signaled, floating-point coprocessor takes a default
action, providing a substitute value for the exception-causing result of the floating-
point operation. The particular default action taken depends upon the type of
exception. Table 7.1 lists the default action taken by the FPU for each of the IEEE
exceptions.

Floating Point Exceptions

Chapter 7

Table 7.1 Default FPU Exception Actions

. o Roundin -
Field | Description 9 Default action
Mode
Inexact
| exception Any Supply a rounded result
Modify underflow values to 0 with the sign of the
RN . -
intermediate result
RZ Modify underflow values to 0 with the sign of the
U Underflow intermediate result
exception RP Modify positive underflows to the format’s smallest
positive finite number; modify negative underflows to -0
RM Modify negative underflows to the format’s smallest
negative finite number; modify positive underflows to 0
Modify overflow values to © with the sign of the
RN . .
intermediate result
Modify overflow values to the format’s largest finite
RZ
o Overflow number with the sign of the intermediate result
exception RP Modify negative overflows to the format’s most negative
finite number; modify positive overflows to + ©
Modify positive overflows to the format’s largest finite
RM . :
number; modify negative overflows to — ©
z Division by Any Supply a properly signed
zero
Invalid .
\Y operation Any Supply a quiet Not a Number (NaN)

Table 7.2 lists the exception-causing situations and contrasts the behavior of the
FPU with the requirements of the IEEE Standard 754.

Table 7.2 FPU Exception-Causing Conditions

FPA Internal IEEE Trap Trap
Standard . Notes
Result Enable | Disable
754
Inexact result | | | Loss of accuracy
Exponent overflow 0,12 o, o, Normalized exponent > Ep 4«
Division by zero z z z Zero s (e>iponent = Emin-1,
mantissa = 0)
Overflow on convert \% E E Source out of integer range
Signaling NaN v v v
source
Invalid operation \ \% \Y 070, etc.
Exponent underflow U E E Normalized exponent < Epin
Denormalized or None E E Denormalized is (exponent =
QNaN Emin-1 and mantissa <> 0)

a. The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow

trap is disabled.

Floating Point Exceptions

Chapter 7

FPU Exceptions

The following sections describe the conditions that cause the FPU to generate
each of its exceptions, and details the FPU response to each exception-causing
condition.

Inexact Exception (I)
The FPU generates the Inexact exception if one of the following occurs:

= the rounded result of an operation is not exact, or
= the rounded result of an operation overflows, or

= the rounded result of an operation underflows and
both the Underflow and Inexact Enable bits are not set
and the FS bit is set.

The FPU usually examines the operands of floating-point operations before
execution actually begins, to determine (based on the exponent values of the
operands) if the operation can possibly cause an exception. If there is a possibility
of an instruction causing an exception trap, the FPU uses a coprocessor stall to
execute the instruction.

It is impossible, however, for the FPU to predetermine if an instruction will
produce an inexact result. If Inexact exception traps are enabled, the FPU uses the
coprocessor stall mechanism to execute all floating-point operations that require
more than one cycle. Since this mode of execution can impact performance,
Inexact exception traps should be enabled only when necessary.

Trap Enabled Results: If Inexact exception traps are enabled, the result register
is not modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to the
destination register if no other software trap occurs.

Invalid Operation Exception (V)
The Invalid Operation exception is signaled if one or both of the operands are

invalid for an implemented operation. When the exception occurs without a trap,
the MIPS ISA defines the result as a quiet Not a Number (NaN). The invalid
operations are:

= Addition or subtraction: magnitude subtraction of
infinities, such as: (+ o)+ (—-w)or(—-o)-(-)

= Multiplication: 0 times oo, with any signs

= Division: 0/0, or o/, with any signs

< Comparison of predicates involving < or > without?,
when the operands are unordered

< Comparison or a Convert From Floating-point
Operation on a signaling NaN.

< Any arithmetic operation on a signaling NaN. A move
(MOV) operation is not considered to be an arithmetic
operation, but absolute value (ABS) and negate (NEG)
are considered to be arithmetic operations and cause
this exception if one or both operands is a signaling
NaN.

= Square root: vx, where x is less than zero

Software can simulate the Invalid Operation exception for other operations that
are invalid for the given source operands. Examples of these operations include
IEEE Standard 754-specified functions implemented in software, such as

Floating Point Exceptions

Chapter 7

Remainder: x REM y, where y is 0 or x is infinite; conversion of a floating-point
number to a decimal format whose value causes an overflow, is infinity, or is NaN;
and transcendental functions, such as In (-5) or cos-1(3).

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: Aquiet NaN is delivered to the destination register if no
other software trap occurs.

Division-by-Zero Exception (2)

The Division-by-Zero exception is signaled on an implemented divide
operation if the divisor is zero and the dividend is a finite nonzero number.
Software can simulate this exception for other operations that produce a signed
infinity, such as In(0), sec(t/2), csc(0), or 0%

Trap Enabled Results: The result register is not modified, and the source
registers are preserved.

Trap Disabled Results; The result, when no trap occurs, is a correctly signed
infinity.

Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded
floating-point result, with an unbounded exponent range, is larger than the largest
finite number of the destination format. (This exception also sets the Inexact
exception and Flag bits.)

Trap Enabled Results: The result register is not modified, and the source
registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is determined by the
rounding mode and the sign of the intermediate result (as listed in Table 50).

Underflow Exception (U)
Two related events contribute to the Underflow exception:

- creation of a tiny nonzero result between +2E™N which
can cause some later exception because it is so tiny

« extraordinary loss of accuracy during the
approximation of such tiny numbers by denormalized
numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but requires
they be detected the same way for all operations.
Tininess can be detected by one of the following methods:

= after rounding (when a nonzero result, computed as
though the exponent range were unbounded, would lie
strictly between +2EMin)

= before rounding (when a nonzero result, computed as
though the exponent range and the precision were
unbounded, would lie strictly between +2EMIM),

The MIPS architecture requires that tininess be detected after rounding.
Loss of accuracy can be detected by one of the following methods:

= denormalization loss (when the delivered result differs
from what would have been computed if the exponent
range were unbounded)

= inexact result (when the delivered result differs from
what would have been computed if the exponent range
and precision were both unbounded).

Floating Point Exceptions

Chapter 7

The MIPS architecture requires that loss of accuracy be detected as an inexact
result.

Trap Enabled Results: If Underflow or Inexact traps are enabled, or if the FS bit
is not set, then an Unimplemented exception (E) is generated, and the result
register is not modified.

Trap Disabled Results: If Underflow and Inexact traps are not enabled and the
FS bit is set, the result is determined by the rounding mode and the sign of the
intermediate result (as listed in Table 7.1).

Unimplemented Instruction Exception (E)
Any attempt to execute an instruction with an operation code or format code

that has been reserved for future definition sets the Unimplemented bit in the Cause
field in the FPU Control/Status register and traps. The operand and destination
registers remain undisturbed and the instruction is emulated in software. Any of
the IEEE Standard 754 exceptions can arise from the emulated operation, and these
exceptions in turn are simulated.

The Unimplemented Instruction exception can also be signaled when unusual
operands or result conditions are detected that the implemented hardware cannot
handle properly. These include:

< Denormalized operand, except for Compare instruction

= Quiet Not a Number operand, except for Compare
instruction

e Denormalized result or Underflow, when either
Underflow or Inexact Enable bits are set or the FS bit is
not set.

< Reserved opcodes
< Unimplemented formats

= Operations which are invalid for their format (for
instance, CVT.S.S)

NOTE: Denormalized and NaN operands are only trapped if
the instruction is a convert or computational operation.
Moves do not trap if their operands are either denormalized
or NaNs.

The use of this exception for such conditions is optional; most of these
conditions are newly developed and are not expected to be widely used in early
implementations. Loopholes are provided in the architecture so that these
conditions can be implemented with assistance provided by software, maintaining
full compatibility with the IEEE Standard 754.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: This trap cannot be disabled.

Saving and Restoring State
Sixteen or thirty-two doubleword coprocessor load or store operations save or

restore the coprocessor floating-point register state in memory. The remainder of
control and status information can be saved or restored through Move To/From
Coprocessor Control Register instructions, and saving and restoring the processor
registers. Normally, the Control/Status register is saved first and restored last.
When the coprocessor Control/Status register (FCR31) is read, and the
coprocessor is executing one or more floating-point instructions, the instruction(s)
in progress are either completed or reported as exceptions. The architecture
requires that no more than one of these pending instructions can cause an

Floating Point Exceptions

Chapter 7

exception. If the pending instruction cannot be completed, this instruction is
placed in the Exception register, if present. Information indicating the type of
exception is placed in the Control/Status register. When state is restored, state
information in the status word indicates that exceptions are pending.

Writing a zero value to the Cause field of Control/Status register clears all
pending exceptions, permitting normal processing to restart after the floating-
point register state is restored.

The Cause field of the Control/Status register holds the results of only one
instruction; the FPU examines source operands before an operation is initiated to
determine if this instruction can possibly cause an exception. If an exception is
possible, the FPU executes the instruction in stall mode to ensure that no more than
one instruction (that might cause an exception) is executed at a time.

Trap Handlers for IEEE Standard 754 Exceptions

The IEEE Standard 754 strongly recommends that users be allowed to specify a
trap handler for any of the five standard exceptions that can compute; the trap
handler can either compute or specify a substitute result to be placed in the
destination register of the operation.

By retrieving an instruction using the processor Exception Program Counter (EPC)
register, the trap handler determines:

= exceptions occurring during the operation
= the operation being performed
= the destination format

On Overflow or Underflow exceptions (except for conversions), and on Inexact
exceptions, the trap handler gains access to the correctly rounded result by
examining source registers and simulating the operation in software.

On Overflow or Underflow exceptions encountered on floating-point
conversions, and on Invalid Operation and Divide-by-Zero exceptions, the trap
handler gains access to the operand values by examining the source registers of the
instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and
underflow traps take precedence over a separate inexact trap. This prioritization is
accomplished in software; hardware sets the bits for both

	CPU Instruction Set Summary Chapter 1
	R5000 Processor Pipeline Chapter 2
	Superscalar Issue Mechanism Chapter 3
	Memory Management Unit Chapter 4
	CPU Exception Processing Chapter 5
	Floating Point Unit Chapter 6
	Floating Point Exceptions Chapter 7

