Firefox

Sl

-

Section 5 XZ Graphics (tm)

5.1 VLSI Integration

5.2 Graphics Architecture

5.2.1 The CPU Interface

5.3 XZ Graphics Hardware

5.3.1 Command Engine

5.3.2 Geometry Subsystem

5.3.3 Raster Subsystem

Image Planes

Depth Planes

Stencil Planes

Overlay/Underlay Planes

Window Clipping Planes

5.3.4 Display Subsystem

Video Timing Control

Multimode Graphics Processor

Digital-to-Analog Converters

Live Video I/O Slot

Genlock

Stereo Viewer

5.4 X7 Graphics Features

https://www.employees.org/~drich/SGI/SiliconSurf/product...

MicroPixel(tm) Sub-Pixel Positioning

Blending

5.4.1 Point Anti-Aliasing

5.4.2 Line Anti-Aliasing

10f17

11/25/25, 22:45


https://www.employees.org/~drich/SGI/SiliconSurf/products/Indy/Indy_Report4.html
https://www.employees.org/~drich/SGI/SiliconSurf/products/Indy/Indy_Report4.html

Firefox

2 0f 17

https://www.employees.org/~drich/SGI/SiliconSurf/product...

Slope Correction

Endpoint Filtering

5.4.3 SharpScene(tm) Accumulation Buffer

Progressive Refinement

Multi-Pass Spatial Anti-Aliasing

Optical Effects

Convolutions

Orthogonality

5.4.4 Lighting Features

Light Sources

Surface Properties

Two-Sided Lighting

Local Light and Viewer Positioning

5.4.5 Atmospheric Effects

5.4.6 Texture Mapping

Motivation
Quality
Flexibility

5.4.7 Stencil Planes

5.4.8 Arbitrary Clipping Planes

5.4.9 Pixel Read, Write, and Copy

5.4.10 Sphere Rendering

Section 6 XZGraphics (tm)

XZ Graphics combines outstanding polygon transformation and display performance,
with a feature set unavailable until now in a graphics subsystem priced this affordably.

XZ Graphics supports 1280 x 1024 screen resolution and 24-bit full color with a standard
24-bit Z Buffer supported by four Geometry Engines.

11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

XZ Graphics includes:

e 24-bit color (XS24 and IndyZ configurations)

e 24-bit Z Buffer (IndyZ configuration; optional on XS and XS24)
e 4 stencil bitplanes (IndyZ configuration; optional on XS and XS24)
e 4 Overlay and 4 Window Clipping ID planes

e 32 simultaneous window modes

e 1280 x 1024 screen resolution

» Screen refresh rate at 60 Hz and 72 Hz

e NTSC and PAL unencoded video output timings

e Genlock capability

» Stereo viewer control

« Slot for live video I/O option card

Advanced graphics features include hardware support for:

e Subpixel positioning
e Advanced lighting models:

Multiple colored light sources (up to 8)
Ambient, diffuse, and specular lighting models
Phong lighting

Spotlights

Local and infinite light source positioning
Two-sided lighting

e Anti-aliased lines and points

Full scene anti-aliasing

High-speed graphics DMA

Pan and zoom capabilities

Atmospheric effects

Sphere rendering

Pixel-blending capabilities for transparency effects
Soft shadows and depth-of-field

Texture-mapping

Multimode windowing environment

X11 drawing primitives and pixel move operations
Non-Uniform Rational B-Spline (NURBS) surfaces

5.1 VLSI Integration

The XZ Graphics subsystem contains 25 custom VLSI chips based on seven custom VLSI
designs. Together, these 25 ASICS total over 700,000 custom gates.

Among the most significant VLSI designs are:

GE7 The Geometry Engine combines standard cell and gate array design with the
equivalent of 80,000 custom gates. It features a floating point core surrounded by special

30f17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

circuitry for fast geometry calculations.

RE3 The Raster Engine holds 100,000 custom gates and runs at 50 MHz.

HQ2 The HQ2 is an 80,000 gate control-oriented device that incorporates several different
subsystems and clock rates with speeds up to 33 MHz.

VC1 The VC1 is a 50,000 gate control logic design that provides video timing control for
the output monitor, run-length encoded windowing tables, and the cursor.

ZRB1 A 13,000 gate device that runs at 50 MHz.

RB1 A 2,000 gate device that also runs at 50 MHz.

XMAPS Clocks in at 25 MHz and 18,000 gates.

5.2 Graphics Architecture

The Geometry Engine (GE7) at the heart of XZ Graphics was designed with a general
purpose microprogrammed floating point datapath architecture. This allows flexible
implementation of a variety of algorithms. Added to the general purpose floating point
core are many features that ensure high execution efficiency for graphics-related
algorithms. Special attention was paid to internal busing structures, to data stores for
variables and intermediate results, and to the construction of the microprogram word.
These features result in outstanding GE7 performance for graphics operations.

Multiprocessing in the Geometry Subsystem helps satisfy the heavy computational
demands of graphics rendering. XZ Graphics features four GEs arranged in a unique
Single Instruction Multiple Data parallel processing structure for an unprecedented 3D
graphics price performance ratio. Every instruction issues separate graphics primitives to
each of the Geometry Engines, allowing all four to execute the same instruction on one
clock cycle. The custom GE7 design includes several special solutions for the SIMD
architectural problem.

The custom Raster Engine uses the maximum available bandwidth of today's video RAMSs
to achieve exceptional framebuffer fill rates for all fill modes. The Raster Engine achieves
these fill rates while implementing advanced fill mode features such as Z buffering,
depth-cueing, alpha-blending, raster-ops, dithering, stenciling, clipping region checks,
and special effects useful in visual simulation.

For a single RE chip to match the available video RAM bandwidth, the design requires
very high clocking rates and multiple pipeline levels. The architecture is based on a
variable depth pipeline which swings from 25 pipe stages up to a depth of 40 stages. Each
pipe stage involves carefully tuned arithmetic units, and the whole engine is directed by
a carefully constructed pipeline control mechanism.

The image Z values are stored in a separate Z buffer memory outside the framebuffer
video RAMs that hold color values. In order to achieve the same fill rates for Z-Buffered
applications and non Z-Buffered applications, the Z buffer is designed with twice the
memory bandwidth of the framebuffer. Both buffers are controlled by the RE3.

5.2.1 The CPU Interface

4 of 17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

The GIO64 bus provides full-speed burst modes that allow close to maximum use of the
bus bandwidth. The CPU main memory has sufficient bandwidth to feed to the GIO64 bus.
The combination of a high bandwidth system bus and high bandwidth main memory is
essential to both CPU and graphics performance.

To make use of the data bandwidth available from the CPU, the XZ Graphics architecture
includes a set of high-speed DMA data funnels. The DMA data funnels provide a direct
connection between the CPU main memory and the graphics frame and Z Buffers. These
funnels can transfer a 32-bit word to or from the graphics buffers at a rate of one word
per Raster Engine clock. These powerful pixel transfer rates are excellent for applications
such as image processing, paint applications, and desktop publishing, as well as
processing user data from a GIO32-bis board slot. DMA data funnels are also
implemented within the graphics system to support operations such as bit-BLTing and
fast background patterning.

In order to feed the rendering system, the CPU must be able to push graphics commands
down the graphics pipe at an accelerated rate. Since most high performance drawing
commands boil down to a set of vertices describing one or more graphical primitives, the
CPU design supports a special graphics DMA for sending down vertices as the basic
drawing primitive. Each vertex may have several pieces of information, such as location,
color and normals for lighting. Each piece of information can be delivered to the graphics
system through a DMA transaction, which allows overlap between moving the data and
setting up the next vertex. The DMA transaction is initiated by a single load instruction to
prime the DMA engine, followed by a store instruction to the address of the vertex in user
virtual memory. This triggers the DMA transaction immediately and allows the user total
freedom in placement of graphics data in the address space. All of this occurs
transparently to the end-user application, requiring no special coding techniques.

5.3 XZ Graphics Hardware

The XZ Graphics architecture provides an order-of-magnitude leap in graphics processing
power over the highest performing workstations currently available in the same price
class. The tremendous interactive visual realism enabled by XZ Graphics derives from a
unique architecture implemented in 25 custom processors designed by Silicon Graphics.

The Indy CPU provides the graphics subsystem with the description of 2D and 3D objects.
This takes the form of IRIS Graphics Library(tm) commands bundled with world
coordinate data. Described are the object's geometric position with respect to the viewer,
together with various light sources, color, surface properties, and surface normal vectors
used for complex lighting calculations. The XZ Graphics architecture performs
transformations and other graphics operations to calculate specific pixel values for each
of the 1.3 million pixels on the 1280 x 1024 high-resolution display. Visual data from the
RISC host is processed through five pipelined graphics subsystems before being displayed
on the screen.

These include:

e Command Engine

50f17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

Geometry Subsystem
Raster Engine
Framebuffer

Display Subsystem

5.3.1 Command Engine

XZ Graphics is connected to the CPU subsystem via the 64-bit GIO64 bus. Drawing
commands, in conjunction with world coordinate geometric data, are passed across the
GIO64 bus and written into the graphics input FIFO. The graphics FIFO buffers
differences in computation latencies between the CPU-based application program and the
Graphics Engines. The FIFO is implemented as a subblock inside the HQ2 chip.

The Command Engine (CE) monitors the output of the graphics FIFO and passes the
stream of commands and data sent down by the application program to the Geometry
Subsystem. The CE analyzes the command stream to determine the types of graphical
primitives being received and to uncover the boundaries between these primitives.
Based on the results of the analysis, the Command Engine delegates primitives to each of
the four Geometry Engines. The data is read from the FIFO and passed to the delegated
Geometry Engine. The Command Engine fills in any graphical parameters not supplied by
the user from the state variables specified by earlier subroutine calls, and outputs a
complete packet of parameters to the Geometry Engine. The Command Engine accepts
coordinate data from the CPU in four formats:

e 16-bit integer
e 24-bit integer
e 32-bit IEEE floating point
» 64-bit IEEE floating point

Color data are also accepted in packed byte format. The Command Engine converts all
incoming data words to a uniform floating point format regardless of the input data
representation. The Command Engine is implemented as a microprogrammed processor
running inside the HQ2 chip.

FIGURE 13 X7 Graphics block diagram.
5.3.2 Geometry Subsystem

At the heart of the Geometry Subsystem is the GE7 Geometry Engine, a custom floating
point data path designed by Silicon Graphics. Four geometry engines execute together as
a SIMD machine under the control of a centralized sequencer. The geometry sequencer is
implemented in the HQ2 gate array. The sequencer addresses a wide microinstruction
memory whose contents are distributed to each of the four GE7s simultaneously. Each
Geometry Engine operates on a separate primitive, with the four GE7s operating on four
primitives concurrently. The data for each primitive is distributed to the Geometry
Engines by the Command Engine. Each GE7 is capable of 32 million floating point
operations per second (MFLOPS), making for a peak aggregate rate of 128 MFLOPS.

6 of 17 11/25/25, 22:45


https://www.employees.org/~drich/SGI/SiliconSurf/images/Indyreport_fig13.ps
https://www.employees.org/~drich/SGI/SiliconSurf/images/Indyreport_fig13.ps
https://www.employees.org/~drich/SGI/SiliconSurf/images/Indyreport_fig13.ps

Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

The GE7 core is structured to be a general-purpose floating-point data path. There is a
short computation latency for maximum throughput efficiency. Two separate arithmetic
blocks, one multiply and one add, operate in parallel to achieve the 32 MFLOPS rate. This
general-purpose datapath is enhanced with special busing structures into and out of the
arithmetic blocks. Additionally, the inclusion of several data stores ensures quick
operand retrieval and result storage. These enhancements, useful on a GE7 uniprocessor,
are coupled with unique flow of control instructions and data manipulation paradigms
allowing four GE7s to operate in a SIMD arrangement and achieve maximum use of the
arithmetic blocks.

Each Geometry Engine receives a stream of single-precision floating point data words
representing vertices in the world coordinate system, together with attributes for each
vertex. Transformations are done using 4 X 4 matrix stack to rotate, translate, and scale
incoming vertices with respect to the eye of the viewer. The transformations allow 2D
and 3D objects to be viewed at any size and from any angle. The result of the
transformation is a set of coordinates in a homogeneous coordinate system. A 3 x 3
matrix stack is used to transform surface normals.

The next task is to light vertices to improve the viewing and understanding of surface
contours and shapes. The Geometry Engines maintain the position, direction, and
intensity specifications for lighting calculations. Up to eight point-source lights or
spotlights are supported. Material specifications include ambient, diffuse, and specular
reflectance parameters, and lighting model information. The color applied to each vertex
is a function of the vertex position, the surface normal direction, the lighting model, the
lights, and the characteristics of the surface. The result of the lighting calculation is either
a set of eight-bit red, green, blue and alpha values (in RGB mode) or a single 12-bit color
index (in color index mode).

Primitives are then clipped to a 6-plane bounding box describing what region of
homogenous coordinate space is visible to the viewer. The ability to clip against
additional arbitrary planes is available. A fast accept/reject clip-checking algorithm
eliminates the need for complex clipping calculations in most cases. When clipping is
required, a Cohen-Sutherland clipping algorithm is implemented. The vertices of the
clipped primitive data go through a perspective division that provides a perspective view
of the resulting object, and compresses the 3D object into a 2D coordinate space for
viewing on the screen.

Polygon decomposition in screen coordinate space comes next. All polygons with four or
more vertices are broken into multiple independent triangular pieces. The triangles are
then handled identically through the remaining graphics pipelines.

The final stage of calculation in the geometry subsystem is to determine a number of
parameters pertaining to the triangle or vector. These parameters are used by the raster
subsystem to iterate pixels. They include the bottom most pixel center of the triangle, the
triangle-edge slopes, and the parameter slopes in both the X and Y directions. Floating-
point precision is used to maintain coordinate integrity when calculating slopes. All color
and depth components are first corrected to an initial pixel center. As a result, values
iterated in the raster subsystem remain planar across polygonal surfaces, and

7 of 17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

subsequent Z Buffer calculations result in clean intersections. Furthermore, maintaining
fractional X and Y position information for all primitives enables correct multi-pass
jittering operations.

Each GE7 passes the resulting parameters set to the Raster Subsystem for iteration.

FIGURE 14 Algorithms for processing graphics primitives.
5.3.3 Raster Subsystem

The Raster Subsystem performs the operations required to reduce a vector or triangle
description down to the individual pixels to be written into the framebuffer. The core of
the raster subsystem is Silicon Graphics' third-generation Raster Engine, the RE3 chip.
The RE3 accepts initial pixel values and parameter slopes from the geometry subsystem
and iterates either a vector or a triangle.

The RE3 has a deep and variable length pipeline that swings between 25 and 40 stages
depending on the mode of operation. At the front end of the pipeline is a set of DDAs that
allow iteration of the various slopes and pixel values initially loaded by the geometry
subsystem. The iteration block traverses the line or triangle primitive in full-pixel steps,
turning the primitive into an array of pixel values to be sent to the next block.

The pixel operations block has several possible functions. If either pixel blending or
raster operations is enabled, this block reads the destination pixel value at the address of
the incoming pixel from the iteration block, and performs the appropriate arithmetic or
logical merging of the two values. For color index anti-aliased lines, color compare is
performed. Fog and haze attenuation is calculated. Pixel values may be dithered before
sending to the next block.

The pixel-update-test block determines whether or not a calculated pixel should indeed
be written into the framebuffer or Z Buffer. Four simultaneous tests are performed:
screen mask check, clipping ID check, Z compare checks, and stencil value check. The
pixel address is tested against two screen masks, each of which provide window clipping
for any arrangement of two overlapping rectangular windows. If more complex
windowing arrangements are encountered, the clipping ID planes are used to check
clipping ID. The operation of the clipping ID planes, the Z Buffer planes, and the stencil
planes are described in more detail elsewhere in this report. If all four pixel-update-tests
pass, the pixel value is written to the framebuffer.

The output pixel value from the RE3 is written into a 5-way interleaved framebuffer,
which stores a total of 56 bits (including the Z Buffer) for every pixel on a 1280 x 1024
viewing screen. The make-up of these 56 bitplanes is described below.

Image Planes
There are 24 bitplanes for storing the color information for every pixel. In a single-

buffered RE3 mode, these planes store a full-color 24-bit image. In a double-buffered RE3
mode, the front and back buffer are each allotted 12-bits. Incoming 24-bit pixel values are

8 of 17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

dithered into 4-bit red, 4-bit green, 4-bit blue format producing nearly 24-bit resolution in
each 12-bit buffer. For color index modes, the 24 bitplanes provide two full 12-bit color
index buffers, one for the front buffer and one for the back buffer.

Depth Planes

XZ Graphics includes an optional 24-bit signed Z Buffer. The 24-bit Z coordinate
associated with each pixel is stored in the Z-Buffer planes. When hidden-surface removal
is performed, the Z coordinate of an incoming pixel is compared to the current depth
value already stored in the bitplanes. If the incoming Z coordinate is closer to the user's
viewpoint, and therefore visible, the color value of the new pixel is used to update the
image bitplanes, and the new Z coordinate value is written into the depth planes at the
same location. Conversely, if the incoming Z coordinate is farther from the viewer, the
new color value is ignored.

When running non-Z-Buffered applications these 24 depth planes may be used as a
second full-color 24-bit set of color planes, used identically to the standard color
framebuffer.

Note: as stencil planes are added through IRIS Graphics Library control, they are stolen
from the low order bits of the Z Buffer, with an effect on Z Buffer resolution.

Stencil Planes

XZ Graphics supports from 1 to 4 stencil planes. These planes reside in the low-order bits
of the Z Buffer. The Raster Engine has the ability to conditionally clear, write, increment,
or decrement these planes independent of Z depth value. This capability allows pixels to
be tagged as a way of extending the capability of the depth buffer to do a number of
prioritizing algorithms.

Overlay/Underlay Planes

The framebuffer dedicates four bits per pixel to overlay or underlay operations. These
planes are provided for use by a window manager or by applications that use features
such as pop-up menus.

Window Clipping Planes

Four-bit planes hold data that define the boundaries of the windows on the screen. Each
window opened is assigned a 4-bit clipping ID (CID). Every pixel associated with that
window not covered by another window has its CID value written into the window
clipping planes. For incoming pixels, the stored CID value is compared to the CID value of
the incoming pixel. If a match occurs, the incoming pixel is written to the framebuffer;
otherwise the framebulffer is left unchanged. The window clipping planes are used in
conjunction with the two screen masks to provide a very general window clipping
mechanism.

FIGURE 15 Framebuffer configurations.

9 of 17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

5.3.4 Display Subsystem

The Display Subsystem receives pixel information from the framebuffer, routes it
through the appropriate display mode, and sends it to Digital-to-Analog converters for
display.

Video Timing Control

Video timing control, window display mode control, and cursor control are handled by
the VCI gate array. Video timing determines the relationship between active pixels,
blanking periods, and sync times. These relationships vary from monitor to monitor. XZ
Graphics provides support for the following monitor types:

e 72 Hz 1280 x 1024

e 60 Hz 1280 x 1024

e 30 Hz 1280 x 1024

e 72Hz 1024 x 768

e 60 Hz 1024 x 768

e 30 Hz 1024 x 768

e NTSC (unencoded)

e PAL (unencoded)

e 120 Hz 1280 x 1024 stereo
e 120 Hz 1024 x 768 stereo

The VCI stores a window display mode for every pixel on the screen in a run-length
encoded table. This display ID (DID) value determines the color mode format used to
interpret the data from the image bitplanes. The DID value is passed to the Multimode
Graphics Processors that interpret the image bitplanes based on the DID value. XZ
Graphics displays multiple images simultaneously, in an overlapping window
environment, in single-buffered RGB, double buffered RGB, single-buffered color index,
and double-buffered color-index color modes. Simultaneous display of up to 32 unique
window styles is allowed.

The VCI controls a cursor memory capable of storing a 32 x 32 three-color cursor glyph.
Cursor data is fed into the pixel stream through Multimode Graphics Processors.

Multimode Graphics Processor

Five Multimode Graphics Processors (XMAP5) concurrently receive cursor information
from the VCI. The DID values determine how the image data is routed and presented to
the Digital-to-Analog Converters. If the overlay/underlay planes are active, they take
precedence over the image planes. A 16 x 24 auxiliary lookup table is included for
determining overlay/underlay color. The cursor takes the highest precedence and
supplants both the image and overlay/underlay planes. The MGPs hold 3 x 24 lookup
table for cursor color.

Digital-to-Analog Converters

10 of 17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

High-speed Digital-to-Analog Converters (DACs) drive the red, green, and blue electron
guns of the color display. When the Graphics Subsystem operates in RGB color mode, the
DACs receive up to 24 bits of color information for each pixel. Eight of these bits are
directly assigned to each of the red, green, and blue DACs to yield more than 16 million
colors. The DACs are multiplexed to handle the input from the five parallel pixel pipes. In
color-index mode, pixel data packets are used as indices into a 12-bit-in, 24-bit-out color
map before being sent to the DACs. This map defines 4096 simultaneously visible colors
from a palette of 16.7 million. The pixel-mapping feature of the color-index mode allows
screen colors to be quickly modified by simply changing the values stored in the color
maps.

The IRIS IndyZ graphics subsystem uses RAMDAC technology to provide gamma
correction under application control. Any 8-bit-to-8-bitmapping can be specified and is
applied both to RGB and color index pixels.

Live Video I/O Slot

The XZ Graphics design provides a port for RGB pixels to be extracted from the Video Bus
data stream. This capability allows a Live Video I/O board to be plugged into the Video
Bus for real-time capture of the contents of the graphics framebuffer (which can then be
sent to the video card), and real-time display of video input on the main graphics
monitor.

Genlock
Genlock is available for both high and low resolution video signals.
Stereo Viewer

Indy is shipped stereo-ready with a multi-sync high-resolution monitor. To actually utilize
the stereoscopic viewing option, users must obtain the StereoView option, including an
LED emitter synchronized to the monitor refresh rate of 120Hz and a pair of lightweight
LCD shutter glasses. Monitor over 19 inches come Stereo ready.

5.4 XZ Graphics Features

MicroPixel Sub-Pixel Positioning

After being projected to the screen by the Geometry Subsystem, all vertices retain their
fractional positioning information instead of being coerced into integers. This gives an

accurate description of the primitive\qs position in a floating-point space. Without this

feature, primitives would be rendered incorrectly and would jitter as they move, also
causing serious problems with the anti-aliasing features described below.

Blending

The pixel data in the framebuffer is replaced with weighted average of itself and the pixel

11 of 17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

data being drawn. The user selects the function controlling both the source and
destination factors used in the blend.

Once common blend operation uses the alpha component of the pixel being drawn as the
source factor and one minus alpha as the destination factor. The greater the alpha value,
the more weight is given to the incoming data in the blend. This method is used to draw
anti-aliased lines and to generate transparencies. It can be used anytime subpixel
coverage is demanded.

Blending results are best when drawn into a 24-bit framebuffer, especially when blending
in multiple passes. For this reason, it is best to perform the blending in single-buffer RGB
mode. For those who require smooth motion and are not drawing with Z Buffering
enabled, it is possible to blend the pixel data into the Z Buffer and copy each completed
frame from the Z Buffer to the framebuffer. Because of the fast pixel copy rates, this
method achieves smooth motion.

5.4.1 Point Anti-Aliasing

To render an anti-aliased point, a 2 x 2 grid of pixels is used to approximate the area
covered by a filtered point. The four pixels are given blend weights proportional to the
distance from their pixel centers to the actual point location in sub-pixel space.

5.4.2 Line Anti-Aliasing

Lines are anti-aliased by drawing a multi-pixel-wide line with higher weights for pixels
closer to the line in the minor axis, and lower values toward the outer pixels. Effectively,
we are approximating the location of a line by a wide line that is filtered in the minor
axis. Similar to points, RGB lines are blended into the framebuffer by the weights. For
color indexed anti-aliased lines, instead of generating a weight for blending, the
hardware substitutes the lower 4 bits of the color index value. The new color then
indexes into a ramp in the color look-up tables.

Slope Correction

As the slope of a line gets closer to 45 degrees, pixels that approximate the line should get
brighter since fewer pixels span the same length on a raster screen. To achieve this, the
coverage terms are adjusted by the slope of the line. The weights are higher for diagonal
lines and lower for horizontal and vertical lines. A hardware lookup table uses the line
slope to correctly generate the weights, and later blend them into the framebuffer. For
color indexed lines, the slope is also a factor in determining the new color index value.

Endpoint Filtering

So far, the weights of pixels that make up anti-aliased lines have been adjusted only in the
minor axis. The endpoints of the lines must also be adjusted in the major axis to avoid
popping from one pixel to the next. To correct this, the hardware uses the subpixel
information in the major axis to adjust the intensity of the endpoint color. This way the

12 of 17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

apparent endpoint moves gradually from one pixel to the next.
5.4.3 SharpScen Accumulation Buffer

XZ Graphics uses the CPU main memory as an accumulation buffer to combine or
accumulate a set of scenes. The IRIS Graphics Library also allows for a weighted blend of
the each of the scenes into the accumulated image. The weight of each scene is defined by
the user. These weights can be used with other features of the graphics subsystem (i.e.,
projection matrix) to define User-Programmed Filter Functions.

When using the accumulation buffer in a double-buffered mode, 12-bit RGB images in the
graphics framebuffer are accumulated into 32-bit RGB images in CPU main memory,
resulting in a certain loss of image quality. Single-buffered applications make use of the
full 24-bit color.

Progressive Refinement

As each frame is accumulated into the SharpScene buffer, a more accurately sampled
image is produced. The user can choose to render fewer frames to support real-time
constraints, or to render many frames to obtain a high-quality image.

Multi-Pass Spatial Anti-Aliasing

Multi-Pass Spatial Anti-Aliasing is done by rendering the same objects for several frames
while moving them spatially. By jittering the subpixel offsets (i.e., projection matrix) and
accumulating the scenes together, an anti-aliased image is rendered. Furthermore, the
user can choose a desired filter function to define the weights for each pass.

Optical Effects

By modifying the projection matrix as images are accumulated, viewing the scene from
various points across the aperture of a lens, the sense of depth of field is created. Objects
that are further from the focal plane of the lens are blurred while closer objects are made
sharper.

Convolutions

An image can be quickly filtered using the accumulation buffer. Since the user has
control of the weighted accumulation of each image, and the image can be moved about
on screen in multiples of pixel coordinates, the accumulation buffer can be used to
convolve the image using many filtering techniques.

Orthogonality
The accumulation buffer provides a solution for the problem of spatial aliasing, motion-

blur, depth of field, and penumbra. Another feature of the accumulation buffer is that all
these techniques can be used together in any combination to render a high-quality image.

13 0f 17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

5.4.4 Lighting Features

The XZ Graphics architecture supports a wide range of lighting capabilities to enable the
realistic rendering of geometric primitives. Lighting effects are computed on a per-vertex
basis (Phong lighting) and are thus supported in the Geometry Engines.

XZ Graphics supports all of the following IRIS Graphics Library lighting capabilities in
hardware.

Light Sources

Up to eight light sources may be used simultaneously. The user can specify the color and
position of each light source.

Surface Properties

The IRIS Graphics Library allows the user to configure a number of surface properties to
achieve a high degree of realism. Specifically, the user can define the emissivity of a
surface and its ambient, diffuse, or specular reflectivity, as well as its transparency
coefficients. A shininess coefficient is provided to specify how reflective an object is. The
Command Processor and Geometry Engines were specifically designed so that surface
properties can be modified on a per-vertex basis very quickly. This feature is particularly
useful for scientific visualization. For example, an aeronautical engineer can change the
diffuse reflectance at every vertex to show the stress contour across an airplane wing.

Two-Sided Lighting

The user can specify different surface properties for the front and back sides of
geometric primitives to display objects whose inside and outside colors differ. This
obviates the need to specify and render two separate primitives.

Local Light and Viewer Positioning

Traditionally, hardware-supported lighting models assume that the viewer and light
sources are positioned infinitely far from the object being illuminated. Although the
positioning of the viewer and/or light sources at a finite distance from the object can
enhance the realism of the scene, these models are often avoided because of costly
inverse square root operations. The XZ Graphics Geometry Engines include special VLSI
support for computing inverse square roots, thus speeding local lighting calculations
enormously.

5.4.5 Atmospheric Effects
The IRIS Graphics Library simulates those fog and haze effects required for visual

simulation applications by blending the object color with a user-specified fog color. The
user also enjoys control over the fog density through the IRIS Graphics Library interface.

14 of 17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

5.4.6 Texture Mapping

Motivation

Texture mapping has traditionally been used in fields such as visual simulation and
computer animation to enhance scene realism. Textures can add vegetation and trees to
barren terrain models without adding geometric complexity. Labels can be applied to
computer-modeled package designs to get a better appreciation of how products will
actually look. Patterns mapped onto geometric surfaces can provide additional motion
and spatial cues that surface shading alone can't offer. For example, a sphere rotating
about its axis appears static when displayed as a shaded surface; however, by affixing a
pattern to the sphere, its motion can be easily detected.

Quality

It is essential that errors be minimized during the texture-mapping process. Perspective
correction of texture coordinates is performed during the scan-conversion process to
prevent textures from "swimming" as an object moves in perspective.

Texture aliasing is minimized by filtering the texture for each pixel textured. Without
filtering, textures on surfaces appear to sparkle as surfaces move. Filtering is
accomplished using a mip-mapping technique [Reference Williams 1982 SIGGRAPH
paper]. Prefiltered representations of a texture are computed at different levels of
resolution. For each pixel textured, an interpolated texture value is derived by sampling
pixels from the two maps closest to the required texture resolution. Textures can have 8,
16, 24, or 32 bits per pixel.

Flexibility

A variety of texture types and environments are provided to support the diverse
applications of textures. Textures can be defined to repeat across a surface or to clamp
outside of a texture\qs unit range. Textures can be in monochrome or color, with alpha or
without. Texture alpha can be used to make a polygon\gs opacity vary at each pixel. For
instance, when an RGBA image of a tree is mapped onto a quadrilateral, objects behind
the polygon can appear through the polygon wherever the opacity of the tree map is low,
thereby creating the illusion of an actual tree.

Textures can be combined with their surfaces in a variety of ways. A monochrome
texture can be used to blend between the surface color and a constant color to create
effects such as grass on dirt or realistic asphalt. By adding alpha, a texture can be used to
create translucent clouds. Textures can also be used to modulate a surface\gs color or be
applied as a decal onto a surface.

The XZ Graphics architecture can automatically generate texture coordinates, based on
user-specified behavior. This feature can be used to texture map contours onto an object
without requiring the user to compute or store texture coordinates for the object.

5.4.7 Stencil Planes

15 of 17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

The stencil bitplanes implemented in the Raster Subsystem depth buffer allow a new
mechanism for affecting the results of pixel algorithms. In many ways, the stencil can be
thought of as an independent, high-priority Z Buffer. The stencil value can be tested
during each pixel write, and the result of the test determines both the resulting stencil
value, and whether the pixel algorithm will produce any other result.

One application of the stencil is Z-Buffered image copy. With one pass, the stencil planes
record the result of depth comparisons between source and destination areas of the
framebuffer; with a second pass, the image is copied from source to destination, with
only the pixels that passed the depth comparison being updated. As an example, this
method can be employed with a library of small 3D images, such as spheres and rods, to
quickly construct molecular models in the framebuffer.

A second application is the ability to draw hollow polygons---useful for visualizing the
structure of solid models. By drawing the outline of each facet into the stencil, and
subsequently performing Z-Buffered drawings of the whole facet while using the stencil
as a mask, the true joining edges of an object\gs surface can be displayed alone,
highlighted, or with the background color filled to expose a hidden-line representation.

Most significantly, the stencil mechanism allows Constructive Solid Geometry pixel
algorithms to be implemented in a parallelized environment. The flexible testing and
updating constructs designed into the Image Engines allows the construction of unions
and intersections of primitive shapes, all with the attributes of texture mapping,
transparency, and anti-aliasing.

5.4.8 Arbitrary Clipping Planes

The Geometry Subsystem supports the definition of six planes in 3D space. Geometric
primitives can be clipped against these planes in addition to the normal six planes that
describe the current viewing volume, providing an ideal mechanism for viewing the
cross-section of model components or volumetric data.

Alternatively, the distance between a primitive and any plane can be calculated. This
distance can be used as a texture-mapping coordinate, which then can be used to
produce a contour map applicable to any 3D model for improved visualization.

5.4.9 Pixel Read, Write, and Copy

XZ Graphics offers a host of features that greatly enhance the pixel read, write, and copy
operation. At the core of these features is a 32-bit DMA channel that provides ultra high-
speed pixel transfers between the host, the framebuffer, and the Z Buffer. In addition to
the standard 32-bit pixel, packed pixels of sizes 16, 8, and 1-bit are supported. During the
transfer, 1-bit pixels can be expanded into one of two 32-bit packed RGBA values defined
by the user. Future releases of the IRIS Graphics Library will support 8-bit to 32-bit
expansion (pixel look-up) during transfer.

Those interested in large data sets will discover that pan and zoom are supported by the

16 of 17 11/25/25, 22:45



Firefox https://www.employees.org/~drich/SGI/SiliconSurf/product...

hardware at interactive rates.

For pixel reads or writes, the screen-relative direction of the read or fill (right-to-left or
left-to-right, bottom-to-top or top-to-bottom) is user selectable. Copies from the Z Buffer to
the framebuffer are oriented from left-to-write and top-to-bottom. If Z-Buffering is not
required, the user can draw a 24-bit image into the Z Buffer, then copy it to the
framebuffer one frame at a time. By synchronizing the copy to the screen refresh, it is
possible to achieve the effect of true 24-bit double-buffering. This is especially useful
when doing multiple-pass blending operations.

5.4.10 Sphere Rendering

XZ Graphics supports high-speed rendering of high-quality spheres. Its intelligent frame
buffer allows a sphere to be rendered as a "2 1/2 D" image, i.e. a two-dimensional array of
pixel data with a depth value associated with each pixel. These images are rendered
using the standard z-buffer algorithm.

Sphere rendering will not be incorporated in to the IRIS Graphics Library at this time.
Instead, sample code will be provided for 2 1/2 D and several types of polygonal spheres.

“ e evocu |
ea® *

17 of 17 11/25/25, 22:45


https://www.employees.org/~drich/SGI/SiliconSurf/ss.home.page.html
https://www.employees.org/~drich/SGI/SiliconSurf/ss.home.page.html
https://www.employees.org/~drich/SGI/SiliconSurf/products/Indy/Indy_top.html
https://www.employees.org/~drich/SGI/SiliconSurf/products/Indy/Indy_top.html
https://www.employees.org/~drich/SGI/SiliconSurf/products/Indy/Indy_Prod_Guide1.html
https://www.employees.org/~drich/SGI/SiliconSurf/products/Indy/Indy_Prod_Guide1.html
https://www.employees.org/~drich/SGI/SiliconSurf/products/Indy/Indy_Report.book.html
https://www.employees.org/~drich/SGI/SiliconSurf/products/Indy/Indy_Report.book.html
https://www.employees.org/~drich/SGI/SiliconSurf/products/Indy/Indy_Report6.html
https://www.employees.org/~drich/SGI/SiliconSurf/products/Indy/Indy_Report6.html

